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preface

REDUCTIONISM is the most natural thing in the world to grasp. It’s simply

the belief that “a whole can be understood completely if you understand its parts,

and the nature of their ‘sum.’ ” No one in her left brain could reject reductionism.

—Douglas Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid

Reductionism has been the dominant approach to science
since the 1600s. René Descartes, one of reductionism’s earliest propo-

nents, described his own scientific method thus: “to divide all the difficulties
under examination into asmany parts as possible, and asmany aswere required
to solve them in the best way” and “to conduct my thoughts in a given order,
beginning with the simplest and most easily understood objects, and gradually
ascending, as it were step by step, to the knowledge of the most complex.”1

Since the time of Descartes, Newton, and other founders of the modern
scientific method until the beginning of the twentieth century, a chief goal
of science has been a reductionist explanation of all phenomena in terms of
fundamental physics. Many late nineteenth-century scientists agreed with the
well-known words of physicist Albert Michelson, who proclaimed in 1894
that “it seems probable that most of the grand underlying principles have
been firmly established and that further advances are to be sought chiefly in

1. Full references for all quotations are given in the notes.



the rigorous application of these principles to all phenomena which come
under our notice.”
Of course within the next thirty years, physics would be revolutionized by

the discoveries of relativity and quantum mechanics. But twentieth-century
science was also marked by the demise of the reductionist dream. In spite
of its great successes explaining the very large and very small, fundamental
physics, and more generally, scientific reductionism, have been notably mute
in explaining the complex phenomena closest to our human-scale concerns.
Many phenomena have stymied the reductionist program: the seemingly

irreducible unpredictability of weather and climate; the intricacies and adap-
tive nature of living organisms and the diseases that threaten them; the
economic, political, and cultural behavior of societies; the growth and effects
of modern technology and communications networks; and the nature of intel-
ligence and the prospect for creating it in computers. The antireductionist
catch-phrase, “the whole is more than the sum of its parts,” takes on increas-
ing significance as new sciences such as chaos, systems biology, evolutionary
economics, and network theory move beyond reductionism to explain how
complex behavior can arise from large collections of simpler components.
By the mid-twentieth century, many scientists realized that such phe-

nomena cannot be pigeonholed into any single discipline but require an
interdisciplinary understanding based on scientific foundations that have not
yet been invented. Several attempts at building those foundations include
(among others) the fields of cybernetics, synergetics, systems science, and,
more recently, the science of complex systems.
In 1984, a diverse interdisciplinary group of twenty-four prominent scien-

tists and mathematicians met in the high desert of Santa Fe, New Mexico, to
discuss these “emerging syntheses in science.” Their goal was to plot out the
founding of a new research institute that would “pursue research on a large
number of highly complex and interactive systems which can be properly
studied only in an interdisciplinary environment” and “promote a unity of
knowledge and a recognition of shared responsibility that will stand in sharp
contrast to the present growing polarization of intellectual cultures.” Thus
the Santa Fe Institute was created as a center for the study of complex systems.
In 1984 I had not yet heard the term complex systems, though these kinds of

ideas were already in my head. I was a first-year graduate student in Computer
Science at the University of Michigan, where I had come to study artificial
intelligence; that is, how to make computers think like people. One of my
motivations was, in fact, to understand how people think—how abstract rea-
soning, emotions, creativity, and even consciousness emerge from trillions of
tiny brain cells and their electrical and chemical communications. Having
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been deeply enamored of physics and reductionist goals, I was going through
my own antireductionist epiphany, realizing that not only did current-day
physics have little, if anything, to say on the subject of intelligence but that
even neuroscience, which actually focused on those brain cells, had very little
understanding of how thinking arises from brain activity. It was becoming
clear that the reductionist approach to cognition was misguided—we just
couldn’t understand it at the level of individual neurons, synapses, and the
like.
Therefore, although I didn’t yet know what to call it, the program of

complex systems resonated strongly with me. I also felt that my own field
of study, computer science, had something unique to offer. Influenced by
the early pioneers of computation, I felt that computation as an idea goes
much deeper than operating systems, programming languages, databases,
and the like; the deep ideas of computation are intimately related to the
deep ideas of life and intelligence. At Michigan I was lucky enough to
be in a department in which “computation in natural systems” was as
much a part of the core curriculum as software engineering or compiler
design.
In 1989, at the beginning of my last year of graduate school, my Ph.D.

advisor, Douglas Hofstadter, was invited to a conference in Los Alamos, New
Mexico, on the subject of “emergent computation.”Hewas too busy to attend,
so he sent me instead. I was both thrilled and terrified to present work at such
a high-profile meeting. It was at that meeting that I first encountered a large
group of people obsessed with the same ideas that I had been pondering. I
found that they not only had a name for this collection of ideas—complex
systems—but that their institute in nearby Santa Fe was exactly the place I
wanted to be. I was determined to find a way to get a job there.
Persistence, and being in the right place at the right time, eventually won

me an invitation to visit the Santa Fe Institute for an entire summer. The sum-
mer stretched into a year, and that stretched into additional years. I eventually
became one of the institute’s resident faculty. People from many different
countries and academic disciplines were there, all exploring different sides
of the same question. How do we move beyond the traditional paradigm of
reductionism toward a new understanding of seemingly irreducibly complex
systems?
The idea for this book came about when I was invited to give the Ulam

Memorial Lectures in Santa Fe—an annual set of lectures on complex systems
for a general audience, given in honor of the great mathematician Stanislaw
Ulam. The title of my lecture series was “The Past and Future of the Sciences
of Complexity.” It was very challenging to figure out how to introduce the
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audience of nonspecialists to the vast territory of complexity, to give them a
feel for what is already known and for the daunting amount that remains to
be learned. My role was like that of a tour guide in a large, culturally rich
foreign country. Our schedule permitted only a short time to hear about the
historical background, to visit some important sites, and to get a feel for the
landscape and culture of the place, with translations provided from the native
language when necessary.
This book is meant to be a much expanded version of those lectures—

indeed, a written version of such a tour. It is about the questions that
fascinate me and others in the complex systems community, past and present:
How is it that those systems in nature we call complex and adaptive—brains,
insect colonies, the immune system, cells, the global economy, biological
evolution—produce such complex and adaptive behavior from underlying,
simple rules? How can interdependent yet self-interested organisms come
together to cooperate on solving problems that affect their survival as a whole?
And are there any general principles or laws that apply to such phenomena?
Can life, intelligence, and adaptation be seen as mechanistic and computa-
tional? If so, could we build truly intelligent and living machines? And if we
could, would we want to?
I have learned that as the lines between disciplines begin to blur, the

content of scientific discourse also gets fuzzier. People in the field of complex
systems talk about many vague and imprecise notions such as spontaneous
order, self-organization, and emergence (as well as “complexity” itself ). A
central purpose of this book is to provide a clearer picture of what these
people are talking about and to ask whether such interdisciplinary notions
andmethods are likely to lead to useful science and to new ideas for addressing
the most difficult problems faced by humans, such as the spread of disease,
the unequal distribution of the world’s natural and economic resources, the
proliferation of weapons and conflicts, and the effects of our society on the
environment and climate.
The chapters that follow give a guided tour, flavored with my own per-

spectives, of some of the core ideas of the sciences of complexity—where they
came from and where they are going. As in any nascent, expanding, and vital
area of science, people’s opinions will differ (to put it mildly) about what the
core ideas are, what their significance is, and what they will lead to. Thus my
perspective may differ from that of my colleagues. An important part of this
book will be spelling out some of those differences, and I’ll do my best to
provide glimpses of areas in which we are all in the dark or just beginning to
see some light. These are the things that make science of this kind so stim-
ulating, fun, and worthwhile both to practice and to read about. Above all
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else, I hope to communicate the deep enchantment of the ideas and debates
and the incomparable excitement of pursuing them.
This book has five parts. In part I I give somebackground on the history and

content of four subject areas that are fundamental to the study of complex
systems: information, computation, dynamics and chaos, and evolution. In
parts II–IV I describe how these four areas are being woven together in the
science of complexity. I describe how life and evolution can be mimicked
in computers, and conversely how the notion of computation itself is being
imported to explain the behavior of natural systems. I explore the new science
of networks and how it is discovering deep commonalities among systems
as disparate as social communities, the Internet, epidemics, and metabolic
systems in organisms. I describe several examples of how complexity can be
measured in nature, how it is changing our view of living systems, and how
this new view might inform the design of intelligent machines. I look at
prospects of computer modeling of complex systems, as well as the perils of
such models. Finally, in the last part I take on the larger question of the search
for general principles in the sciences of complexity.
No background inmath or science is needed to grasp what follows, though

I will guide you gently and carefully through explorations in both. I hope
to offer value to scientists and nonscientists alike. Although the discussion
is not technical, I have tried in all cases to make it substantial. The notes
give references to quotations, additional information on the discussion, and
pointers to the scientific literature for those who want even more in-depth
reading.
Have you been curious about the sciences of complexity? Would you like

to come on such a guided tour? Let’s begin.
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part i
Background and
History

Science has explored the microcosmos and the macrocosmos; we have a good sense of

the lay of the land. The great unexplored frontier is complexity.

—Heinz Pagels, The Dreams of Reason



What Is Complexity?chapter 1

Ideas thus made up of several simple ones put together, I call Complex; such as are

Beauty, Gratitude, a Man, an Army, the Universe.

—John Locke, An Essay Concerning Human Understanding

Brazil: The Amazon rain forest. Half a million army ants are on
the march. No one is in charge of this army; it has no commander.
Each individual ant is nearly blind and minimally intelligent, but the
marching ants together create a coherent fan-shapedmass of movement
that swarms over, kills, and efficiently devours all prey in its path.What
cannot be devoured right away is carried with the swarm. After a day
of raiding and destroying the edible life over a dense forest the size of
a football field, the ants build their nighttime shelter—a chain-mail
ball a yard across made up of the workers’ linked bodies, sheltering the
young larvae and mother queen at the center. When dawn arrives, the
living ball melts away ant by ant as the colony members once again
take their places for the day’s march.

Nigel Franks, a biologist specializing in ant behavior, has written, “The
solitary army ant is behaviorally one of the least sophisticated animals imag-
inable,” and, “If 100 army ants are placed on a flat surface, they will walk
around and around in never decreasing circles until they die of exhaustion.”
Yet put half a million of them together, and the group as a whole becomes
what some have called a “superorganism” with “collective intelligence.”



How does this come about? Although many things are known about ant
colony behavior, scientists still do not fully understand all the mechanisms
underlying a colony’s collective intelligence. As Franks comments further, “I
have studied E. burchelli [a common species of army ant] for many years, and
for me the mysteries of its social organization still multiply faster than the
rate at which its social structure can be explored.”
The mysteries of army ants are a microcosm for the mysteries of many

natural and social systems that we think of as “complex.” No one knows
exactly how any community of social organisms—ants, termites, humans—
come together to collectively build the elaborate structures that increase the
survival probability of the community as a whole. Similarly mysterious is how
the intricate machinery of the immune system fights disease; how a group
of cells organizes itself to be an eye or a brain; how independent members
of an economy, each working chiefly for its own gain, produce complex but
structured global markets; or, most mysteriously, how the phenomena we call
“intelligence” and “consciousness” emerge from nonintelligent, nonconscious
material substrates.
Such questions are the topics of complex systems, an interdisciplinary field of

research that seeks to explain how large numbers of relatively simple entities
organize themselves,without the benefit of any central controller, into a collec-
tive whole that creates patterns, uses information, and, in some cases, evolves
and learns. The word complex comes from the Latin root plectere: to weave,
entwine. In complex systems, many simple parts are irreducibly entwined,
and the field of complexity is itself an entwining of many different fields.
Complex systems researchers assert that different complex systems in

nature, such as insect colonies, immune systems, brains, and economies, have
much in common. Let’s look more closely.

Insect Colonies

Colonies of social insects provide some of the richest and most mysterious
examples of complex systems in nature. An ant colony, for instance, can
consist of hundreds to millions of individual ants, each one a rather simple
creature that obeys its genetic imperatives to seek out food, respond in simple
ways to the chemical signals of other ants in its colony, fight intruders, and so
forth. However, as any casual observer of the outdoors can attest, the ants in
a colony, each performing its own relatively simple actions, work together to
build astoundingly complex structures that are clearly of great importance for
the survival of the colony as a whole. Consider, for example, their use of soil,
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leaves, and twigs to construct huge nests of great strength and stability, with
large networks of underground passages and dry, warm, brooding chambers
whose temperatures are carefully controlled by decaying nestmaterials and the
ants’ own bodies. Consider also the long bridges certain species of ants build
with their own bodies to allow emigration from one nest site to another via tree
branches separated by great distances (to an ant, that is) (figure 1.1). Although
much is now understood about ants and their social structures, scientists still
can fully explain neither their individual nor group behavior: exactly how
the individual actions of the ants produce large, complex structures, how the
ants signal one another, and how the colony as a whole adapts to changing
circumstances (e.g., changing weather or attacks on the colony). And how
did biological evolution produce creatures with such an enormous contrast
between their individual simplicity and their collective sophistication?

The Brain

The cognitive scientist Douglas Hofstadter, in his book Gödel, Escher, Bach,
makes an extended analogy between ant colonies and brains, both being

figure 1.1. Ants build a
bridge with their bodies to
allow the colony to take the
shortest path across a gap.
(Photograph courtesy of
Carl Rettenmeyer.)

what is complexity? 5



complex systems in which relatively simple components with only limited
communication among themselves collectively give rise to complicated and
sophisticated system-wide (“global”) behavior. In the brain, the simple com-
ponents are cells called neurons. The brain is made up ofmany different types of
cells in addition to neurons, but most brain scientists believe that the actions
of neurons and the patterns of connections among groups of neurons are what
cause perception, thought, feelings, consciousness, and the other important
large-scale brain activities.
Neurons are pictured in figure 1.2 (top). Neurons consists of three main

parts: the cell body (soma), the branches that transmit the cell’s input from
other neurons (dendrites), and the single trunk transmitting the cell’s output
to other neurons (axon). Very roughly, a neuron can be either in an active state
(firing) or an inactive state (not firing). A neuron fires when it receives enough
signals from other neurons through its dendrites. Firing consists of sending an
electric pulse through the axon, which is then converted into a chemical signal
via chemicals called neurotransmitters. This chemical signal in turn activates
other neurons through their dendrites. The firing frequency and the resulting
chemical output signals of a neuron can vary over time according to both its
input and how much it has been firing recently.
These actions recall those of ants in a colony: individuals (neurons or ants)

perceive signals from other individuals, and a sufficient summed strength
of these signals causes the individuals to act in certain ways that produce
additional signals. The overall effects can be very complex. We saw that an
explanation of ants and their social structures is still incomplete; similarly,
scientists don’t yet understand how the actions of individual or dense networks
of neurons give rise to the large-scale behavior of the brain (figure 1.2, bottom).
They don’t understand what the neuronal signals mean, how large numbers of
neurons work together to produce global cognitive behavior, or how exactly
they cause the brain to think thoughts and learn new things. And again,
perhaps most puzzling is how such an elaborate signaling system with such
powerful collective abilities ever arose through evolution.

The Immune System

The immune system is another example of a system in which relatively
simple components collectively give rise to very complex behavior involv-
ing signaling and control, and in which adaptation occurs over time.
A photograph illustrating the immune system’s complexity is given in
figure 1.3.
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figure 1.2. Top: microscopic view of neurons, visible via staining.
Bottom: a human brain. How does the behavior at one level give rise to
that of the next level? (Neuron photograph from brainmaps.org
[http://brainmaps.org/smi32-pic.jpg], licensed under Creative
Commons [http://creativecommons.org/licenses/by/3.0/]. Brain
photograph courtesy of Christian R. Linder.)

what is complexity? 7
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figure 1.3. Immune system cells attacking a cancer cell.
(Photograph by Susan Arnold, from National Cancer Institute
Visuals Online [http://visualsonline.cancer.gov/
details.cfm?imageid=2370].)

The immune system, like the brain, differs in sophistication in different
animals, but the overall principles are the same across many species. The
immune system consists of many different types of cells distributed over the
entire body (in blood, bone marrow, lymph nodes, and other organs). This
collection of cells works together in an effective and efficient way without any
central control.
The star players of the immune system are white blood cells, otherwise

known as lymphocytes. Each lymphocyte can recognize, via receptors on its cell
body, molecules corresponding to certain possible invaders (e.g., bacteria).
Some one trillion of these patrolling sentries circulate in the blood at a given
time, each ready to sound the alarm if it is activated—that is, if its particular
receptors encounter, by chance, a matching invader. When a lymphocyte is
activated, it secretes large numbers of molecules—antibodies—that can iden-
tify similar invaders. These antibodies go out on a seek-and-destroy mission
throughout the body. An activated lymphocyte also divides at an increased
rate, creating daughter lymphocytes that will help hunt out invaders and
secrete antibodies against them. It also creates daughter lymphocytes that will
hang around and remember the particular invader that was seen, thus giving
the body immunity to pathogens that have been previously encountered.

8 background and history
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One class of lymphocytes are calledB cells (theB indicates that they develop
in the bone marrow) and have a remarkable property: the better the match
between a B cell and an invader, the more antibody-secreting daughter cells
the B cell creates. The daughter cells each differ slightly from the mother
cell in random ways via mutations, and these daughter cells go on to create
their own daughter cells in direct proportion to how well they match the
invader. The result is a kind of Darwinian natural selection process, in which
the match between B cells and invaders gradually gets better and better,
until the antibodies being produced are extremely efficient at seeking and
destroying the culprit microorganisms.
Many other types of cells participate in the orchestration of the immune

response. T cells (which develop in the thymus) play a key role in regulating
the response of B cells. Macrophages roam around looking for substances that
have been tagged by antibodies, and they do the actual work of destroying the
invaders. Other types of cells help effect longer-term immunity. Still other
parts of the system guard against attacking the cells of one’s own body.
Like that of the brain and ant colonies, the immune system’s behavior arises

from the independent actions of myriad simple players with no one actually
in charge. The actions of the simple players—B cells, T cells, macrophages,
and the like—can be viewed as a kind of chemical signal-processing network
in which the recognition of an invader by one cell triggers a cascade of signals
among cells that put into play the elaborate complex response. As yet many
crucial aspects of this signal-processing system are not well understood. For
example, it is still to be learned what, precisely, are the relevant signals,
their specific functions, and how they work together to allow the system as a
whole to “learn” what threats are present in the environment and to produce
long-term immunity to those threats. We do not yet know precisely how the
system avoids attacking the body; or what gives rise to flaws in the system,
such as autoimmune diseases, in which the system does attack the body; or
the detailed strategies of the human immunodeficiency virus (HIV), which
is able to get by the defenses by attacking the immune system itself. Once
again, a key question is how such an effective complex system arose in the
first place in living creatures through biological evolution.

Economies

Economies are complex systems in which the “simple, microscopic” com-
ponents consist of people (or companies) buying and selling goods, and the
collective behavior is the complex, hard-to-predict behavior of markets as

what is complexity? 9



a whole, such as changes in the price of housing in different areas of the
country or fluctuations in stock prices (figure 1.4). Economies are thought
by some economists to be adaptive on both the microscopic and macro-
scopic level. At the microscopic level, individuals, companies, and markets
try to increase their profitability by learning about the behavior of other indi-
viduals and companies. This microscopic self-interest has historically been
thought to push markets as a whole—on the macroscopic level—toward an
equilibrium state in which the prices of goods are set so there is no way to
change production or consumption patterns to make everyone better off. In
terms of profitability or consumer satisfaction, if someone is made better off,
someone else will be made worse off. The process by which markets obtain
this equilibrium is called market efficiency. The eighteenth-century economist
Adam Smith called this self-organizing behavior of markets the “invisible
hand”: it arises from the myriad microscopic actions of individual buyers and
sellers.
Economists are interested in howmarkets become efficient, and conversely,

what makes efficiency fail, as it does in real-world markets. More recently,
economists involved in the field of complex systems have tried to explain
market behavior in terms similar to those used previously in the descriptions of
other complex systems: dynamic hard-to-predict patterns in global behavior,
such as patterns of market bubbles and crashes; processing of signals and
information, such as the decision-making processes of individual buyers and
sellers, and the resulting “information processing” ability of the market as
a whole to “calculate” efficient prices; and adaptation and learning, such as
individual sellers adjusting their production to adapt to changes in buyers’
needs, and the market as a whole adjusting global prices.

The World Wide Web

The World Wide Web came on the world scene in the early 1990s and has
experienced exponential growth ever since. Like the systems described above,
theWeb can be thought of as a self-organizing social system: individuals, with
little or no central oversight, perform simple tasks: posting Web pages and
linking to otherWebpages.However, complex systems scientists have discov-
ered that the network as a whole has many unexpected large-scale properties
involving its overall structure, the way in which it grows, how information
propagates over its links, and the coevolutionary relationships between the
behavior of search engines and the Web’s link structure, all of which lead
to what could be called “adaptive” behavior for the system as a whole. The
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figure 1.4. Individual actions on a trading floor give rise to the
hard-to-predict large-scale behavior of financial markets. Top: New York
Stock Exchange (photograph from Milstein Division of US History,
Local History and Genealogy, The New York Public Library, Astor,
Lenox, and Tilden Foundations, used by permission). Bottom: Dow
Jones Industrial Average closing price, plotted monthly 1970–2008.
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figure 1.5. Network structure of a section of the World Wide
Web. (Reprinted with permission from M.E.J. Newman and
M. Girvin, Physical Review Letters E, 69,026113, 2004. Copyright
2004 by the American Physical Society.)

complex behavior emerging from simple rules in the World Wide Web is
currently a hot area of study in complex systems. Figure 1.5 illustrates the
structure of one collection of Web pages and their links. It seems that much
of the Web looks very similar; the question is, why?

Common Properties of Complex Systems

When looked at in detail, these various systems are quite different, but viewed
at an abstract level they have some intriguing properties in common:

1. Complex collective behavior: All the systems I described above consist
of large networks of individual components (ants, B cells, neurons,
stock-buyers, Web-site creators), each typically following relatively
simple rules with no central control or leader. It is the collective actions
of vast numbers of components that give rise to the complex,
hard-to-predict, and changing patterns of behavior that fascinate us.
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2. Signaling and information processing: All these systems produce and
use information and signals from both their internal and external
environments.

3. Adaptation: All these systems adapt—that is, change their behavior to
improve their chances of survival or success—through learning or
evolutionary processes.

Now I can propose a definition of the term complex system: a system in
which largenetworksof componentswithnocentral control and simple
rules of operation give rise to complex collective behavior, sophisti-
cated information processing, and adaptation via learning or evolution.
(Sometimes a differentiation is made between complex adaptive systems, in which
adaptation plays a large role, and nonadaptive complex systems, such as a hur-
ricane or a turbulent rushing river. In this book, as most of the systems I do
discuss are adaptive, I do not make this distinction.)
Systems in which organized behavior arises without an internal or exter-

nal controller or leader are sometimes called self-organizing. Since simple rules
produce complex behavior in hard-to-predict ways, the macroscopic behavior
of such systems is sometimes called emergent. Here is an alternative defini-
tion of a complex system: a system that exhibits nontrivial emergent and
self-organizing behaviors. The central question of the sciences of com-
plexity is how this emergent self-organized behavior comes about. In this
book I try to make sense of these hard-to-pin-down notions in different
contexts.

How Can Complexity Be Measured?

In the paragraphs above I have sketched some qualitative common properties
of complex systems. Butmore quantitative questions remain: Just how complex
is a particular complex system? That is, how do wemeasure complexity? Is there
any way to say precisely howmuch more complex one system is than another?
These are key questions, but they have not yet been answered to anyone’s

satisfaction and remain the source of many scientific arguments in the field.
As I describe in chapter 7, many different measures of complexity have been
proposed; however, none has been universally accepted by scientists. Several
of these measures and their usefulness are described in various chapters of this
book.
But how can there be a science of complexity when there is no agreed-on

quantitative definition of complexity?
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I have two answers to this question. First, neither a single science of complexity
nor a single complexity theory exists yet, in spite of the many articles and books
that have used these terms. Second, as I describe in many parts of this book,
an essential feature of forming a new science is a struggle to define its central
terms. Examples can be seen in the struggles to define such core concepts as
information, computation, order, and life. In this book I detail these struggles,
both historical and current, and tie them in with our struggles to understand
the many facets of complexity. This book is about cutting-edge science, but it
is also about the history of core concepts underlying this cutting-edge science.
The next four chapters provide this history and background on the concepts
that are used throughout the book.
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Dynamics, Chaos, and Predictionchapter 2

It makes me so happy. To be at the beginning again, knowing almost nothing. . . .

The ordinary-sized stuff which is our lives, the things people write poetry

about—clouds—daffodils—waterfalls. . . .these things are full of mystery, as

mysterious to us as the heavens were to the Greeks. . .It’s the best possible

time to be alive, when almost everything you thought you knew is wrong.

—Tom Stoppard, Arcadia

Dynamical systems theory (or dynamics) concerns the descrip-
tion and prediction of systems that exhibit complex changing behavior at

the macroscopic level, emerging from the collective actions of many interact-
ing components. The word dynamic means changing, and dynamical systems
are systems that change over time in some way. Some examples of dynamical
systems are

The solar system (the planets change position over time)

The heart of a living creature (it beats in a periodic fashion rather than
standing still)

The brain of a living creature (neurons are continually firing,
neurotransmitters are propelled from one neuron to another, synapse
strengths are changing, and generally the whole system is in a continual
state of flux)



The stock market

The world’s population

The global climate

Dynamical systems include these andmost other systems that you probably
can think of. Even rocks change over geological time. Dynamical systems
theory describes in general terms the ways in which systems can change, what
types of macroscopic behavior are possible, and what kinds of predictions
about that behavior can be made.
Dynamical systems theory has recently been in vogue in popular science

because of the fascinating results coming from one of its intellectual offspring,
the study of chaos. However, it has a long history, starting, as many sciences
did, with the Greek philosopher Aristotle.

Early Roots of Dynamical Systems Theory

Aristotle was the author of one of the earliest recorded theories of motion,
one that was accepted widely for over 1,500 years. His theory rested on two
main principles, both of which turned out to be wrong. First, he believed
that motion on Earth differs from motion in the heavens. He asserted that on

Aristotle, 384–322 B.C.
(Ludovisi Collection)
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Earth objects move in straight lines and only when something forces them
to; when no forces are applied, an object comes to its natural resting state. In
the heavens, however, planets and other celestial objects move continuously
in perfect circles centered about the Earth. Second, Aristotle believed that
earthly objects move in different ways depending on what they are made of.
For example, he believed that a rock will fall to Earth because it is mainly
composed of the element earth, whereas smoke will rise because it is mostly
composed of the element air. Likewise, heavier objects, presumably containing
more earth, will fall faster than lighter objects.
Clearly Aristotle (likemany theorists since) was not one to let experimental

results get in the way of his theorizing. His scientific method was to let logic
and common sense direct theory; the importance of testing the resulting
theories by experiments is a more modern notion. The influence of Aristotle’s
ideas was strong and continued to hold sway over most of Western science
until the sixteenth century—the time of Galileo.
Galileo was a pioneer of experimental, empirical science, along with his

predecessor Copernicus and his contemporary Kepler. Copernicus established
that the motion of the planets is centered not about the Earth but about the
sun. (Galileo got into big trouble with the Catholic Church for promoting
this view and was eventually forced to publicly renounce it; only in 1992 did
the Church officially admit that Galileo had been unfairly persecuted.) In the
early 1600s, Kepler discovered that the motion of the planets is not circular
but rather elliptical, and he discovered laws describing this elliptical motion.
Whereas Copernicus andKepler focused their research on celestial motion,

Galileo studied motion not only in the heavens but also here on Earth by
experimenting with the objects one now finds in elementary physics courses:
pendula, balls rolling down inclined planes, falling objects, light reflected by
mirrors. Galileo did not have the sophisticated experimental devices we have
today: he is said to have timed the swinging of a pendulum by counting his
heartbeats and to have measured the effects of gravity by dropping objects off
the leaning tower of Pisa. These now-classic experiments revolutionized ideas
about motion. In particular, Galileo’s studies directly contradicted Aristotle’s
long-held principles of motion. Against common sense, rest is not the natural
state of objects; rather it takes force to stop a moving object. Heavy and light
objects in a vacuum fall at the same rate. And perhaps most revolutionary
of all, laws of motion on the Earth could explain some aspects of motions
in the heavens. With Galileo, the scientific revolution, with experimental
observations at its core, was definitively launched.
The most important person in the history of dynamics was Isaac New-

ton. Newton, who was born the year after Galileo died, can be said to have

dynamics, chaos, and prediction 17



Galileo, 1564–1642 (AIP Emilio
Segre Visual Archives, E. Scott

Barr Collection)

Isaac Newton, 1643–1727
(Original engraving by unknown
artist, courtesy AIP Emilio Segre

Visual Archives)

invented, on his own, the science of dynamics. Along the way he also had to
invent calculus, the branch of mathematics that describes motion and change.
Physicists call the general study of motion mechanics. This is a historical

term dating from ancient Greece, reflecting the classical view that all motion
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could be explained in terms of the combined actions of simple “machines”
(e.g., lever, pulley, wheel and axle). Newton’s work is known today as classical
mechanics. Mechanics is divided into two areas: kinematics, which describes
how things move, and dynamics, which explains why things obey the laws
of kinematics. For example, Kepler’s laws are kinematic laws—they describe
how the planets move (in ellipses with the sun at one focus)—but not why they
move in this particular way. Newton’s laws are the foundations of dynamics:
they explain the motion of the planets, and everything else, in terms of the
basic notions of force and mass.
Newton’s famous three laws are as follows:

1. Constant motion: Any object not subject to a force moves with
unchanging speed.

2. Inertial mass: When an object is subject to a force, the resulting change
in its motion is inversely proportional to its mass.

3. Equal and opposite forces: If object A exerts a force on object B, then
object B must exert an equal and opposite force on object A.

One of Newton’s greatest accomplishments was to realize that these laws
applied not just to earthly objects but to those in the heavens as well. Galileo
was the first to state the constant-motion law, but he believed it applied only
to objects on Earth. Newton, however, understood that this law should apply
to the planets as well, and realized that elliptical orbits, which exhibit a con-
stantly changing direction of motion, require explanation in terms of a force,
namely gravity. Newton’s other major achievement was to state a universal
law of gravity: the force of gravity between two objects is proportional to
the product of their masses divided by the square of the distance between
them. Newton’s insight—now the backbone of modern science—was that
this law applies everywhere in the universe, to falling apples as well as to
planets. As he wrote: “nature is exceedingly simple and conformable to her-
self. Whatever reasoning holds for greater motions, should hold for lesser
ones as well.”
Newtonian mechanics produced a picture of a “clockwork universe,” one

that is wound up with the three laws and then runs its mechanical course. The
mathematician Pierre Simon Laplace saw the implication of this clockwork
view for prediction: in 1814 he asserted that, given Newton’s laws and the
current position and velocity of every particle in the universe, it was possible,
in principle, to predict everything for all time. With the invention of elec-
tronic computers in the 1940s, the “in principle” might have seemed closer
to “in practice.”
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Revised Views of Prediction

However, two major discoveries of the twentieth century showed that
Laplace’s dream of complete prediction is not possible, even in principle. One
discovery wasWerner Heisenberg’s 1927 “uncertainty principle” in quantum
mechanics, which states that one cannot measure the exact values of the posi-
tion and the momentum (mass times velocity) of a particle at the same time.
The more certain one is about where a particle is located at a given time, the
less one can know about its momentum, and vice versa. However, effects of
Heisenberg’s principle exist only in the quantum world of tiny particles, and
most people viewed it as an interesting curiosity, but not one that would have
much implication for prediction at a larger scale—predicting theweather, say.
It was the understanding of chaos that eventually laid to rest the hope of

perfect prediction of all complex systems, quantum or otherwise. The defining
idea of chaos is that there are some systems—chaotic systems—in which even
minuscule uncertainties in measurements of initial position and momentum
can result in huge errors in long-term predictions of these quantities. This is
known as “sensitive dependence on initial conditions.”
In parts of the natural world such small uncertainties will not matter. If

your initial measurements are fairly but not perfectly precise, your predic-
tions will likewise be close to right if not exactly on target. For example,
astronomers can predict eclipses almost perfectly in spite of even relatively
large uncertainties in measuring the positions of planets. But sensitive depen-
dence on initial conditions says that in chaotic systems, even the tiniest errors
in your initial measurements will eventually produce huge errors in your
prediction of the future motion of an object. In such systems (and hurricanes
may well be an example) any error, no matter how small, will make long-term
predictions vastly inaccurate.
This kind of behavior is counterintuitive; in fact, for a long time many

scientists denied it was possible. However, chaos in this sense has been
observed in cardiac disorders, turbulence in fluids, electronic circuits, drip-
ping faucets, and many other seemingly unrelated phenomena. These days,
the existence of chaotic systems is an accepted fact of science.
It is hard to pin down who first realized that such systems might exist.

The possibility of sensitive dependence on initial conditions was proposed
by a number of people long before quantum mechanics was invented. For
example, the physicist James Clerk Maxwell hypothesized in 1873 that there
are classes of phenomena affected by “influences whose physical magnitude is
too small to be taken account of by a finite being, [but which] may produce
results of the highest importance.”
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Possibly the first clear example of a chaotic system was given in the late
nineteenth century by the French mathematician Henri Poincaré. Poincaré
was the founder of and probably the most influential contributor to the mod-
ern field of dynamical systems theory, which is amajor outgrowth ofNewton’s
science of dynamics. Poincaré discovered sensitive dependence on initial con-
ditions when attempting to solve amuch simpler problem than predicting the
motion of a hurricane. He more modestly tried to tackle the so-called three-
body problem: to determine, using Newton’s laws, the long-term motions
of three masses exerting gravitational forces on one another. Newton solved
the two-body problem, but the three-body problem turned out to be much
harder. Poincaré tackled it in 1887 as part of a mathematics contest held in
honor of the king of Sweden. The contest offered a prize of 2,500 Swedish
crowns for a solution to the “many body” problem: predicting the future
positions of arbitrarily many masses attracting one another under Newton’s
laws. This problem was inspired by the question of whether or not the solar
system is stable: will the planets remain in their current orbits, or will they
wander from them? Poincaré started off by seeing whether he could solve it
for merely three bodies.
He did not completely succeed—the problem was too hard. But his

attemptwas so impressive that hewas awarded the prize anyway. LikeNewton
with calculus, Poincaré had to invent a new branch of mathematics, algebraic
topology, to even tackle the problem. Topology is an extended form of geom-
etry, and it was in looking at the geometric consequences of the three-body
problem that he discovered the possibility of sensitive dependence on initial
conditions. He summed up his discovery as follows:

If we knew exactly the laws of nature and the situation of the uni-
verse at the initial moment, we could predict exactly the situation of
that same universe at a succeeding moment. But even if it were the
case that the natural laws had no longer any secret for us, we could
still only know the initial situation approximately. If that enabled
us to predict the succeeding situation with the same approximation,
that is all we require, and we should say that the phenomenon has
been predicted, that it is governed by laws. But it is not always so;
it may happen that small differences in the initial conditions produce
very great ones in the final phenomenon. A small error in the for-
mer will produce an enormous error in the latter. Prediction becomes
impossible. . . .

In other words, even if we know the laws of motion perfectly, two different
sets of initial conditions (here, initial positions, masses, and velocities for
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Henri Poincaré, 1854–1912
(AIP Emilio Segre Visual

Archives)

objects), even if they differ in aminuscule way, can sometimes produce greatly
different results in the subsequent motion of the system. Poincaré found an
example of this in the three-body problem.
It was not until the invention of the electronic computer that the scientific

world began to see this phenomenon as significant. Poincaré, way ahead of
his time, had guessed that sensitive dependence on initial conditions would
stymie attempts at long-term weather prediction. His early hunch gained
some evidence when, in 1963, the meteorologist Edward Lorenz found that
even simple computer models of weather phenomena were subject to sensitive
dependence on initial conditions. Even with today’s modern, highly complex
meteorological computer models, weather predictions are at best reasonably
accurate only to about one week in the future. It is not yet known whether
this limit is due to fundamental chaos in the weather, or how much this limit
can be extended by collecting more data and building even better models.

Linear versus Nonlinear Rabbits

Let’s now look more closely at sensitive dependence on initial conditions.
How, precisely, does the huge magnification of initial uncertainties come
about in chaotic systems? The key property is nonlinearity. A linear system
is one you can understand by understanding its parts individually and then
putting them together. When my two sons and I cook together, they like to
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take turns adding ingredients. Jake puts in two cups of flour. Then Nicky
puts in a cup of sugar. The result? Three cups of flour/sugar mix. The whole
is equal to the sum of the parts.
A nonlinear system is one in which the whole is different from the sum

of the parts. Jake puts in two cups of baking soda. Nicky puts in a cup of
vinegar. The whole thing explodes. (You can try this at home.) The result?
More than three cups of vinegar-and-baking-soda-and-carbon-dioxide fizz.
The difference between the two examples is that in the first, the flour and

sugar don’t really interact to create something new, whereas in the second,
the vinegar and baking soda interact (rather violently) to create a lot of carbon
dioxide.
Linearity is a reductionist’s dream, and nonlinearity can sometimes be a

reductionist’s nightmare. Understanding the distinction between linearity
and nonlinearity is very important and worthwhile. To get a better handle
on this distinction, as well as on the phenomenon of chaos, let’s do a bit of
very simple mathematical exploration, using a classic illustration of linear
and nonlinear systems from the field of biological population dynamics.
Suppose you have a population of breeding rabbits in which every year all

the rabbits pair up to mate, and each pair of rabbit parents has exactly four
offspring and then dies. The population growth, starting from two rabbits, is
illustrated in figure 2.1.

figure 2.1. Rabbits with doubling population.

dynamics, chaos, and prediction 23



figure 2.2. Rabbits with doubling population, split on two islands.

It is easy to see that the population doubles every year without limit
(which means the rabbits would quickly take over the planet, solar system,
and universe, but we won’t worry about that for now).
This is a linear system: the whole is equal to the sum of the parts. What do

I mean by this? Let’s take a population of four rabbits and split them between
two separate islands, two rabbits on each island. Then let the rabbits proceed
with their reproduction. The population growth over two years is illustrated
in figure 2.2.
Each of the two populations doubles each year. At each year, if you add

the populations on the two islands together, you’ll get the same number of
rabbits that you would have gotten had there been no separation—that is,
had they all lived on one island.
If you make a plot with the current year’s population size on the horizontal

axis and the next-year’s population size on the vertical axis, you get a straight
line (figure 2.3). This is where the term linear system comes from.
But what happens when, more realistically, we consider limits to popu-

lation growth? This requires us to make the growth rule nonlinear. Suppose
that, as before, each year every pair of rabbits has four offspring and then
dies. But now suppose that some of the offspring die before they reproduce
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figure 2.3. A plot of how the population size next year depends on
the population size this year for the linear model.

because of overcrowding. Population biologists sometimes use an equation
called the logistic model as a description of population growth in the presence
of overcrowding. This sense of the word modelmeans a mathematical formula
that describes population growth in a simplified way.
In order to use the logistic model to calculate the size of the next gen-

eration’s population, you need to input to the logistic model the current
generation’s population size, the birth rate, the death rate (the probability of an
individual will die due to overcrowding), and the maximum carrying capacity
(the strict upper limit of the population that the habitat will support.)
I won’t give the actual equation for the logistic model here (it is given in

the notes), but you can see its behavior in figure 2.4.
As a simple example, let’s set birth rate = 2 and death rate = 0.4, assume

the carrying capacity is thirty-two, and start with a population of twenty
rabbits in the first generation. Using the logistic model, I calculate that the
number of surviving offspring in the second generation is twelve. I then plug
this new population size into the model, and find that there are still exactly
twelve surviving rabbits in the third generation. The population will stay at
twelve for all subsequent years.
If I reduce the death rate to 0.1 (keeping everything else the same), things

get a little more interesting. From the model I calculate that the second
generation has 14.25 rabbits and the third generation has 15.01816.

dynamics, chaos, and prediction 25



0 10

10

5

0
20 30

Population at current generation

P
op

ul
at

io
n 

at
 n

ex
t g

en
er

at
io

n

figure 2.4. A plot of how the population size next year depends
on the population size this year under the logistic model, with birth
rate equal to 2, death rate equal to 0.4, and carrying capacity equal
to 32. The plot will also be a parabola for other values of these
parameters.

Wait a minute! How can we have 0.25 of a rabbit, much less 0.01816 of
a rabbit? Obviously in real life we cannot, but this is a mathematical model,
and it allows for fractional rabbits. This makes it easier to do the math, and
can still give reasonable predictions of the actual rabbit population. So let’s
not worry about that for now.
This process of calculating the size of the next population again and

again, starting each time with the immediately previous population, is called
“iterating the model.”
What happens if the death rate is set back to 0.4 and carrying capacity is

doubled to sixty-four? The model tells me that, starting with twenty rabbits,
by year nine the population reaches a value close to twenty-four and stays
there.
You probably noticed from these examples that the behavior is more

complicated than when we simply doubled the population each year. That’s
because the logistic model is nonlinear, due to its inclusion of death by over-
crowding. Its plot is a parabola instead of a line (figure 2.4). The logistic
population growth is not simply equal to the sum of its parts. To show this,
let’s seewhat happens if we take a population of twenty rabbits and segregate it
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figure 2.5. Rabbit population split on two islands, following the logistic model.

into populations of ten rabbits each, and iterate the model for each population
(with birth rate = 2 and death rate = .4, as in the first example above). The
result is illustrated in figure 2.5.
At year one, the original twenty-rabbit population has been cut down to

twelve rabbits, but each of the original ten-rabbit populations now has eleven
rabbits, for a total of twenty-two rabbits. The behavior of the whole is clearly
not equal to the sum of the behavior of the parts.

The Logistic Map

Many scientists and mathematicians who study this sort of thing have used
a simpler form of the logistic model called the logistic map, which is perhaps
the most famous equation in the science of dynamical systems and chaos. The
logistic model is simplified by combining the effects of birth rate and death
rate into one number, called R. Population size is replaced by a related concept
called “fraction of carrying capacity,” called x. Given this simplified model,
scientists and mathematicians promptly forget all about population growth,
carrying capacity, and anything else connected to the real world, and simply
get lost in the astounding behavior of the equation itself. We will do the
same.
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Here is the equation, where xt is the current value of x and xt+1 is its
value at the next time step:1

xt+1 = R xt(1− xt).

I give the equation for the logistic map to show you how simple it is.
In fact, it is one of the simplest systems to capture the essence of chaos:
sensitive dependence on initial conditions. The logistic map was brought to
the attention of population biologists in a 1971 article by the mathematical
biologist Robert May in the prestigious journalNature. It had been previously
analyzed in detail by several mathematicians, including StanislawUlam, John
vonNeumann,NicholasMetropolis, Paul Stein, andMyron Stein. But it really
achieved fame in the 1980s when the physicist Mitchell Feigenbaum used it
to demonstrate universal properties common to a very large class of chaotic
systems. Because of its apparent simplicity and rich history, it is a perfect
vehicle to introduce some of the major concepts of dynamical systems theory
and chaos.
The logistic map gets very interesting as we vary the value of R. Let’s start

with R = 2. We need to also start out with some value between 0 and 1 for
x0, say 0.5. If you plug those numbers into the logistic map, the answer for
x1 is 0.5. Likewise, x2 = 0.5, and so on. Thus, if R = 2 and the population
starts out at half the maximum size, it will stay there forever.
Now let’s try x0 = 0.2. You can use your calculator to compute this one.

(I’m using one that reads off at most seven decimal places.) The results are
more interesting:

x0 = 0.2

x1 = 0.32

x2 = 0.4352

x3 = 0.4916019

x4 = 0.4998589

x5 = 0.5

x6 = 0.5

...

1. Authors of popular-audience science books are always warned of the following rule: every equation
in your book will cut the readership by one-half. I’m no exception—my editor told me this fact very
clearly. I’m going to give the logistic map equation here anyway, so the half of you who would throw the
book out the window if you ever encountered an equation, please skip over the next line.

28 background and history



0 5

R = 2.0
1

0.8

0.6

0.4

0.2

x(
t)

0
10 15 20
t

figure 2.6. Behavior of the logistic map for R = 2 and x0 = 0.2.

The same eventual result (xt = 0.5 forever) occurs but here it takes five
iterations to get there.
It helps to see these results visually. A plot of the value of xt at each time

t for 20 time steps is shown in figure 2.6. I’ve connected the points by lines
to better show how as time increases, x quickly converges to 0.5.
What happens if x0 is large, say, 0.99? Figure 2.7 shows a plot of the

results.
Again the sameultimate result occurs, butwith a longer andmore dramatic

path to get there.
You may have guessed it already: if R = 2 then xt eventually always gets

to 0.5 and stays there. The value 0.5 is called a fixed point: how long it takes
to get there depends on where you start, but once you are there, you are fixed.
If you like, you can do a similar set of calculations for R = 2.5, and you

will find that the system also always goes to a fixed point, but this time the
fixed point is 0.6.
For even more fun, let R = 3.1. The behavior of the logistic map now gets

more complicated. Let x0 = 0.2. The plot is shown in figure 2.8.
In this case x never settles down to a fixed point; instead it eventually settles

into an oscillation between two values, which happen to be 0.5580141 and
0.7645665. If the former is plugged into the formula the latter is produced,
and vice versa, so this oscillation will continue forever. This oscillation will be
reached eventually no matter what value is given for x0. This kind of regular
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figure 2.7. Behavior of the logistic map for R = 2 and x0 = 0.99.
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figure 2.8. Behavior of the logistic map for R = 3.1 and x0 = 0.2.

final behavior (either fixed point or oscillation) is called an “attractor,” since,
loosely speaking, any initial condition will eventually be “attracted to it.”
For values ofR up to around 3.4 the logisticmapwill have similar behavior:

after a certain number of iterations, the system will oscillate between two
different values. (The final pair of values will be different for each value of
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figure 2.9. Behavior of the logistic map for R = 3.49 and x0 = 0.2.

R.) Because it oscillates between two values, the system is said to have period
equal to 2.
But at a value between R = 3.4 and R = 3.5 an abrupt change occurs.

Given any value of x0, the system will eventually reach an oscillation among
four distinct values instead of two. For example, if we set R = 3.49, x0 = 0.2,
we see the results in figure 2.9.
Indeed, the values of x fairly quickly reach an oscillation among four

different values (which happen to be approximately 0.872, 0.389, 0.829, and
0.494, if you’re interested). That is, at someR between 3.4 and 3.5, the period
of the final oscillation has abruptly doubled from 2 to 4.
Somewhere between R = 3.54 and R = 3.55 the period abruptly dou-

bles again, jumping to 8. Somewhere between 3.564 and 3.565 the period
jumps to 16. Somewhere between 3.5687 and 3.5688 the period jumps to
32. The period doubles again and again after smaller and smaller increases in
R until, in short order, the period becomes effectively infinite, at an R value
of approximately 3.569946. Before this point, the behavior of the logistic
map was roughly predictable. If you gave me the value for R, I could tell you
the ultimate long-term behavior from any starting point x0: fixed points are
reached when R is less than about 3.1, period-two oscillations are reached
when R is between 3.1 and 3.4, and so on.
When R is approximately 3.569946, the values of x no longer settle into

an oscillation; rather, they become chaotic. Here’s what this means. Let’s
call the series of values x0, x1, x2, and so on the trajectory of x. At values of

dynamics, chaos, and prediction 31



1

0.8

0.6

0.4

0.2

x 
(t

)

0
0 20 40

R = 4.0

60 80
t

figure 2.10. Two trajectories of the logistic map for
R = 4.0 : x0 = 0.2 and x0 = 0.2000000001.

R that yield chaos, two trajectories starting from very similar values of x0,
rather than converging to the same fixed point or oscillation, will instead
progressively diverge from each other. At R = 3.569946 this divergence
occurs very slowly, but we can see a more dramatic sensitive dependence on
x0 if we set R = 4.0. First I set x0 = 0.2 and iterate the logistic map to obtain
a trajectory. Then I restarted with a new x0, increased slightly by putting a 1
in the tenth decimal place, x0 = 0.2000000001, and iterated the map again
to obtain a second trajectory. In figure 2.10 the first trajectory is the dark
curve with black circles, and the second trajectory is the light line with open
circles.
The two trajectories start off very close to one another (so close that the

first, solid-line trajectory blocks our view of the second, dashed-line trajec-
tory), but after 30 or so iterations they start to diverge significantly, and soon
after there is no correlation between them. This is what is meant by “sensitive
dependence on initial conditions.”
So far we have seen three different classes of final behavior (attractors):

fixed-point, periodic, and chaotic. (Chaotic attractors are also sometimes called
“strange attractors.”) Type of attractor is one way in which dynamical systems
theory characterizes the behavior of a system.
Let’s pause a minute to consider how remarkable the chaotic behavior

really is. The logistic map is an extremely simple equation and is completely
deterministic: every xt maps onto one and only one value of xt+1. And yet the
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chaotic trajectories obtained from this map, at certain values of R, look very
random—enough so that the logistic map has been used as a basis for gen-
erating pseudo-random numbers on a computer. Thus apparent randomness
can arise from very simple deterministic systems.
Moreover, for the values ofR that produce chaos, if there is any uncertainty

in the initial condition x0, there exists a time beyond which the future value
cannot be predicted. This was demonstrated above with R = 4. If we don’t
know the value of the tenth and higher decimal places of x0—a quite likely
limitation for many experimental observations—then by t = 30 or so the
value of xt is unpredictable. For any value of R that yields chaos, uncertainty
in any decimal place of x0, however far out in the decimal expansion, will
result in unpredictability at some value of t.
Robert May, the mathematical biologist, summed up these rather

surprising properties, echoing Poincaré:

The fact that the simple and deterministic equation (1) [i.e., the logis-
tic map] can possess dynamical trajectories which look like some sort
of random noise has disturbing practical implications. It means, for
example, that apparently erratic fluctuations in the census data for
an animal population need not necessarily betoken either the vagaries
of an unpredictable environment or sampling errors: they may sim-
ply derive from a rigidly deterministic population growth relationship
such as equation (1). . . . Alternatively, it may be observed that in the
chaotic regime arbitrarily close initial conditions can lead to trajecto-
ries which, after a sufficiently long time, diverge widely. This means
that, even if we have a simple model in which all the parameters are
determined exactly, long-term prediction is nevertheless impossible.

In short, the presence of chaos in a system implies that perfect prediction à
la Laplace is impossible not only in practice but also in principle, since we can
never know x0 to infinitely many decimal places. This is a profound negative
result that, along with quantum mechanics, helped wipe out the optimistic
nineteenth-century view of a clockworkNewtonian universe that ticked along
its predictable path.
But is there a more positive lesson to be learned from studies of the logistic

map? Can it help the goal of dynamical systems theory, which attempts to
discover general principles concerning systems that change over time? In
fact, deeper studies of the logistic map and related maps have resulted in an
equally surprising and profound positive result—the discovery of universal
characteristics of chaotic systems.
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Universals in Chaos

The term chaos, as used to describe dynamical systems with sensitive depen-
dence on initial conditions, was first coined by physicists T. Y. Li and James
Yorke. The term seems apt: the colloquial sense of the word “chaos” implies
randomness and unpredictability, qualities we have seen in the chaotic ver-
sion of logistic map. However, unlike colloquial chaos, there turns out to
be substantial order in mathematical chaos in the form of so-called universal
features that are common to a wide range of chaotic systems.

the first universal feature: the period-doubling
route to chaos

In the mathematical explorations we performed above, we saw that as R was
increased from 2.0 to 4.0, iterating the logistic map for a given value of R
first yielded a fixed point, then a period-two oscillation, then period four,
then eight, and so on, until chaos was reached. In dynamical systems theory,
each of these abrupt period doublings is called a bifurcation. This succession of
bifurcations culminating in chaos has been called the “period doubling route
to chaos.”
These bifurcations are often summarized in a so-called bifurcation diagram

that plots the attractor the system ends up in as a function of the value of a
“control parameter” such as R. Figure 2.11 gives such a bifurcation diagram
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figure 2.11. Bifurcation diagram for the logistic map, with
attractor plotted as a function of R.
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for the logistic map. The horizontal axis gives R. For each value of R, the final
(attractor) values of x are plotted. For example, for R = 2.9, x reaches a fixed-
point attractor of x = 0.655. At R = 3.0, x reaches a period-two attractor.
This can be seen as the first branch point in the diagram, when the fixed-point
attractors give way to the period-two attractors. For R somewhere between
3.4 and 3.5, the diagram shows a bifurcation to a period-four attractor, and so
on, with further period doublings, until the onset of chaos at R approximately
equal to 3.569946.
The period-doubling route to chaos has a rich history. Period doubling

bifurcations had been observed in mathematical equations as early as the
1920s, and a similar cascade of bifurcations was described by P. J. Myrberg,
a Finnish mathematician, in the 1950s. Nicholas Metropolis, Myron Stein,
and Paul Stein, working at Los Alamos National Laboratory, showed that not
just the logistic map but anymap whose graph is parabola-shaped will follow
a similar period-doubling route. Here, “parabola-shaped” means that plot of
the map has just one hump—in mathematical terms, it is “unimodal.”

the second universal feature: feigenbaum’s
constant

The discovery that gave the period-doubling route its renowned place among
mathematical universals was made in the 1970s by the physicist Mitchell
Feigenbaum. Feigenbaum, using only a programmable desktop calculator,
made a list of the R values at which the period-doubling bifurcations occur
(where ≈ means “approximately equal to”):

R1 ≈ 3.0
R2 ≈ 3.44949
R3 ≈ 3.54409
R4 ≈ 3.564407
R5 ≈ 3.568759
R6 ≈ 3.569692
R7 ≈ 3.569891
R8 ≈ 3.569934

...
R∞ ≈ 3.569946

Here, R1 corresponds to period 21(= 2),R2 corresponds to period
22(= 4), and in general, Rn corresponds to period 2n. The symbol ∞
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(“infinity”) is used to denote the onset of chaos—a trajectory with an infinite
period.
Feigenbaum noticed that as the period increases, the R values get closer

and closer together. This means that for each bifurcation,R has to be increased
less than it had before to get to the next bifurcation. You can see this
in the bifurcation diagram of Figure 2.11: as R increases, the bifurcations
get closer and closer together. Using these numbers, Feigenbaum measured
the rate at which the bifurcations get closer and closer; that is, the rate at
which the R values converge. He discovered that the rate is (approximately)
the constant value 4.6692016. What this means is that as R increases,
each new period doubling occurs about 4.6692016 times faster than the
previous one.
This fact was interesting but not earth-shaking. Things started to get a lot

more interesting when Feigenbaum looked at some other maps—the logistic
map is just one of many that have been studied. As I mentioned above, a
few years before Feigenbaum made these calculations, his colleagues at Los
Alamos, Metropolis, Stein, and Stein, had shown that any unimodal map
will follow a similar period-doubling cascade. Feigenbaum’s next step was to
calculate the rate of convergence for some other unimodal maps. He started
with the so-called sine map, an equation similar to the logistic map but which
uses the trigonometric sine function.
Feigenbaum repeated the steps I sketched above: he calculated the values of

R at the period-doubling bifurcations in the sine map, and then calculated the
rate at which these values converged. He found that the rate of convergence
was 4.6692016.
Feigenbaum was amazed. The rate was the same. He tried it for other

unimodal maps. It was still the same. No one, including Feigenbaum, had
expected this at all. But once the discovery had been made, Feigenbaum went
on to develop a mathematical theory that explained why the common value of
4.6692016, now called Feigenbaum’s constant, is universal—which here means
the same for all unimodalmaps. The theory used a sophisticatedmathematical
technique called renormalization that had been developed originally in the
area of quantum field theory and later imported to another field of physics:
the study of phase transitions and other “critical phenomena.” Feigenbaum
adapted it for dynamical systems theory, and it has become a cornerstone in
the understanding of chaos.
It turned out that this is not just a mathematical curiosity. In the

years since Feigenbaum’s discovery, his theory has been verified in several
laboratory experiments on physical dynamical systems, including fluid flow,
electronic circuits, lasers, and chemical reactions. Period-doubling cascades
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have been observed in these systems, and values of Feigenbaum’s constant
have been calculated in steps similar to those we saw above. It is often
quite difficult to get accurate measurements of, say, what corresponds to
R values in such experiments, but even so, the values of Feigenbaum’s con-
stant found by the experimenters agree well within the margin of error to
Feigenbaum’s value of approximately 4.6692016. This is impressive, since
Feigenbaum’s theory, which yields this number, involves only abstract math,
no physics. As Feigenbaum’s colleague Leo Kadanoff said, this is “the best
thing that can happen to a scientist, realizing that something that’s hap-
pened in his or her mind exactly corresponds to something that happens
in nature.”
Large-scale systems such as the weather are, as yet, too hard to experiment

with directly, so no one has directly observed period doubling or chaos in their
behavior. However, certain computer models of weather have displayed the
period-doubling route to chaos, as have computer models of electrical power
systems, the heart, solar variability, and many other systems.
There is one more remarkable fact to mention about this story. Similar

to many important scientific discoveries, Feigenbaum’s discoveries were also
made, independently and at almost the same time, by another research team.
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This team consisted of the French scientists Pierre Coullet andCharles Tresser,
who also used the technique of renormalization to study the period-doubling
cascade and discovered the universality of 4.6692016 for unimodal maps.
Feigenbaum may actually have been the first to make the discovery and was
also able to more widely and clearly disseminate the result among the interna-
tional scientific community, which is why he has received most of the credit
for this work. However, in many technical papers, the theory is referred to as
the “Feigenbaum-Coullet-Tresser theory” and Feigenbaum’s constant as the
“Feigenbaum-Coullet-Tresser constant.” In the course of this book I point out
several other examples of independent, simultaneous discoveries using ideas
that are “in the air” at a given time.

Revolutionary Ideas from Chaos

The discovery and understanding of chaos, as illustrated in this chapter, has
produced a rethinking of many core tenets of science. Here I summarize
some of these new ideas, which few nineteenth-century scientists would have
believed.

• Seemingly random behavior can emerge from deterministic systems,
with no external source of randomness.

• The behavior of some simple, deterministic systems can be impossible,
even in principle, to predict in the long term, due to sensitive
dependence on initial conditions.

• Although the detailed behavior of a chaotic system cannot be
predicted, there is some “order in chaos” seen in universal properties
common to large sets of chaotic systems, such as the period-doubling
route to chaos and Feigenbaum’s constant. Thus even though
“prediction becomes impossible” at the detailed level, there are some
higher-level aspects of chaotic systems that are indeed predictable.

In summary, changing, hard-to-predict macroscopic behavior is a hall-
mark of complex systems. Dynamical systems theory provides a mathematical
vocabulary for characterizing such behavior in terms of bifurcations, attrac-
tors, and universal properties of the ways systems can change. This vocabulary
is used extensively by complex systems researchers.
The logistic map is a simplified model of population growth, but the

detailed study of it and similar model systems resulted in a major revamp-
ing of the scientific understanding of order, randomness, and predictability.
This illustrates the power of idea models—models that are simple enough to
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study via mathematics or computers but that nonetheless capture fundamen-
tal properties of natural complex systems. Idea models play a central role in
this book, as they do in the sciences of complex systems.
Characterizing the dynamics of a complex system is only one step in under-

standing it. We also need to understand how these dynamics are used in
living systems to process information and adapt to changing environments.
The next three chapters give some background on these subjects, and later
in the book we see how ideas from dynamics are being combined with ideas
from information theory, computation, and evolution.
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Informationchapter 3

The law that entropy increases—the Second Law of Thermodynamics—holds, I

think, the supreme position among the laws of Nature…[I] f your theory is found

to be against the Second Law of Thermodynamics I can give you no hope; there is

nothing for it but to collapse in deepest humiliation.

—Sir Arthur Eddington, The Nature of the Physical World

Complex systems are often said to be “self-organizing”: con-
sider, for example, the strong, structured bridges made by army ants;

the synchronous flashing of fireflies; the mutually sustaining markets of an
economy; and the development of specialized organs by stem cells—all are
examples of self-organization. Order is created out of disorder, upending the
usual turn of events in which order decays and disorder (or entropy) wins out.
A complete account of how such entropy-defying self-organization takes

place is the holy grail of complex systems science. But before this can be
tackled, we need to understand what is meant by “order” and “disorder” and
how people have thought about measuring such abstract qualities.
Many complex systems scientists use the concept of information to char-

acterize and measure order and disorder, complexity and simplicity. The
immunologist Irun Cohen states that “complex systems sense, store, and
deploy more information than do simple systems.” The economist Eric
Beinhocker writes that “evolution can perform its tricks not just in the ‘sub-
strate’ of DNA but in any system that has the right information processing



and information storage characteristics.” The physicist Murray Gell-Mann
said of complex adaptive systems that “Although they differ widely in their
physical attributes, they resemble one another in the way they handle infor-
mation. That common feature is perhaps the best starting point for exploring
how they operate.”
But just what is meant by “information”?

What Is Information?

You see the word “information” all over the place these days: the “information
revolution,” the “information age,” “information technology” (often simply
“IT”), the “information superhighway,” and so forth. “Information” is used
colloquially to refer to any medium that presents knowledge or facts: news-
papers, books, my mother on the phone gossiping about relatives, and, most
prominently these days, the Internet. More technically, it is used to describe
a vast array of phenomena ranging from the fiber-optic transmissions that
constitute signals from one computer to another on the Internet to the tiny
molecules that neurons use to communicate with one another in the brain.
The different examples of complex systems I described in chapter 1 are all

centrally concerned with the communication and processing of information in
various forms. Since the beginning of the computer age, computer scientists
have thought of information transmission and computation as something that
takes place not only in electronic circuits but also in living systems.
In order to understand the information and computation in these systems,

the first step, of course, is to have a precise definition of what is meant by
the terms information and computation. These terms have been mathematically
defined only in the twentieth century. Unexpectedly, it all began with a late
nineteenth-century puzzle in physics involving a very smart “demon” who
seemed to get a lot done without expending any energy. This little puzzle got
many physicists quite worried that one of their fundamental laws might be
wrong. How did the concept of information save the day? Before getting there,
we need a little bit of background on the physics notions of energy, work, and
entropy.

Energy, Work, and Entropy

The scientific study of information really begins with the science of thermo-
dynamics, which describes energy and its interactions with matter. Physicists
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of the nineteenth century considered the universe to consist of two different
types of entities: matter (e.g., solids, liquids, and vapors) and energy (e.g., heat,
light, and sound).
Energy is roughly defined as a system’s potential to “do work,” which

correlates well with our intuitive notion of energy, especially in this age of
high-energy workaholics. The origin of the term is the Greek word, energia,
which literally means “to work.” However, physicists have a specific meaning
of “work” done by an object: the amount of force applied to the object mul-
tiplied by the distance traveled by the object in the direction that force was
applied.
For example, suppose your car breaks down on a flat road and you have

to push it for a quarter of a mile to the nearest gas station. In physics terms,
the amount of work that you expend is the amount of force with which you
push the car multiplied by the distance to the gas station. In pushing the
car, you transform energy stored in your body into the kinetic energy (i.e.,
movement) of the car, and the amount of energy that is transformed is equal
to the amount of work that is done plus whatever energy is converted to heat,
say, by the friction of the wheels on the road, or by your own body warming
up. This so-called heat loss is measured by a quantity called entropy. Entropy
is a measure of the energy that cannot be converted into additional work.
The term “entropy” comes from another Greek word—“trope”—meaning
“turning into” or “transformation.”
By the end of the nineteenth century two fundamental laws concerning

energy had been discovered, the so-called laws of thermodynamics. These laws
apply to “isolated systems”—ones that do not exchange energy with any
outside entity.

First law: Energy is conserved. The total amount of energy in the universe
is constant. Energy can be transformed from one form to another, such
as the transformation of stored body energy to kinetic energy of a
pushed car plus the heat generated by this action. However, energy can
never be created or destroyed. Thus it is said to be “conserved.”

Second law: Entropy always increases until it reaches a maximum value. The
total entropy of a system will always increase until it reaches its
maximum possible value; it will never decrease on its own unless an
outside agent works to decrease it.

As you’ve probably noticed, a room does not clean itself up, and Cheerios
spilled on the floor, left to their own devices, will never find their way back
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into the cereal box. Someone or something has to do work to turn disorder
into order.
Furthermore, transformations of energy, such as the car-pushing example

above, will always produce some heat that cannot be put to work. This is why,
for example, no one has found a way to take the heat generated by the back
of your refrigerator and use it to produce new power for cooling the inside of
the refrigerator so that it will be able to power itself. This explains why the
proverbial “perpetual motion machine” is a myth.
The second law of thermodynamics is said to define the “arrow of time,”

in that it proves there are processes that cannot be reversed in time (e.g.,
heat spontaneously returning to your refrigerator and converting to electrical
energy to cool the inside). The “future” is defined as the direction of time in
which entropy increases. Interestingly, the second law is the only fundamental
law of physics that distinguishes between past and future. All other laws
are reversible in time. For example, consider filming an interaction between
elementary particles such as electrons, and then showing this movie to a
physicist. Now run the movie backward, and ask the physicist which version
was the “real” version. The physicist won’t be able to guess, since the forward
and backward interactions both obey the laws of physics. This is what reversible
means. In contrast, if youmake an infrared film of heat being produced by your
refrigerator, and show it forward and backward, any physicist will identify
the forward direction as “correct” since it obeys the second law, whereas the
backward version does not. This is what irreversiblemeans. Why is the second
law different from all other physical laws? This is a profound question. As the
physicist Tony Rothman points out, “Why the second law should distinguish
between past and future while all the other laws of nature do not is perhaps
the greatest mystery in physics.”

Maxwell’s Demon

The British physicist James Clerk Maxwell is most famous for his discovery of
what are now called Maxwell’s Equations: compact expressions of Maxwell’s
theory that unified electricity and magnetism. During his lifetime, he was
one of the world’s most highly regarded scientists, and today would be on any
top fifty list of all-time greats of science.
In his 1871 book,Theory of Heat,Maxwell posed a puzzle under the heading

“Limitation of the Second Law of Thermodynamics.” Maxwell proposed a box
that is divided into two halves by a wall with a hinged door, as illustrated
in figure 3.1. The door is controlled by a “demon,” a very small being who
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figure 3.1. Top: James
Clerk Maxwell,

1831–1879 (AIP Emilio
Segre Visual Archives)
Bottom: Maxwell’s

Demon, who opens the
door for fast (white)

particles moving to the
left and for slow (black)
particles moving to the

right.

measures the velocity of air molecules as they whiz past him. He opens the
door to let the fast ones go from the right side to the left side, and closes it
when slow ones approach it from the right. Likewise, he opens the door for
slow molecules moving from left to right and closes it when fast molecules
approach it from the left. After some time, the box will be well organized,
with all the fast molecules on the left and all the slow ones on the right. Thus
entropy will have been decreased.
According to the second law, work has to be done to decrease entropy.

What work has been done by the demon? To be sure, he has opened and
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closed the door many times. However, Maxwell assumed that a massless and
frictionless “slide” could be used as a door by the demon, so that opening
and closing it would require negligible work, which we can ignore. (Feasible
designs for such a door have been proposed.) Has any other work been done
by the demon?
Maxwell’s answer was no: “the hot system [the left side] has gotten

hotter and the cold [right side] colder and yet no work has been done,
only the intelligence of a very observant and neat-fingered being has been
employed.”
How did entropy decrease with little or no work being done? Doesn’t this

directly violate the second law of thermodynamics? Maxwell’s demon puzzled
many of the great minds of the late nineteenth and early twentieth centuries.
Maxwell’s own answer to his puzzle was that the second law (the increase
of entropy over time) is not really a law at all, but rather a statistical effect
that holds for large collections of molecules, like the objects we encounter
in day-to-day life, but does not necessarily hold at the scale of individual
molecules.
However, many physicists of his day and long after vehemently disagreed.

They believed that the second law has to remain inviolate; instead there must
be something fishy about the demon. For entropy to decrease, work must
actually have been done in some subtle, nonapparent way.
Many people tried to resolve the paradox, but no one was able to offer

a satisfactory solution for nearly sixty years. In 1929, a breakthrough came:
the great Hungarian physicist Leo Szilard (pronounced “ziLARD”) proposed
that it is the “intelligence” of the demon, or more precisely, the act of
obtaining information through measurement, that constitutes the missing
work.
Szilard was the first to make a link between entropy and information, a

link that later became the foundation of information theory and a key idea in
complex systems. In a famous paper entitled “On the Decrease of Entropy in
a Thermodynamic System by the Intervention of Intelligent Beings,” Szilard
argued that the measurement process, in which the demon acquires a sin-
gle “bit” of information (i.e., the information as to whether an approaching
molecule is a slow one or a fast one) requires energy and must produce at
least as much entropy as is decreased by the sorting of that molecule into the
left or right side of the box. Thus the entire system, comprising the box, the
molecules, and the demon, obeys the second law of thermodynamics.
In coming up with his solution, Szilard was perhaps the first to define the

notion of a bit of information—the information obtained from the answer to a
yes/no (or, in the demon’s case, “fast/slow”) question.
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Emilio Segre Visual Archives)

From our twenty-first-century vantage, it may seem obvious (or at least
unsurprising) that the acquisition of information requires expenditure of
work. But at the time ofMaxwell, and even sixty years later when Szilardwrote
his famous paper, there was still a strong tendency in people’s minds to view
physical and mental processes as completely separate. This highly ingrained
intuition may be why Maxwell, as astute as he was, did not see the “intelli-
gence” or “observing powers” of the demon as relating to the thermodynamics
of the box-molecules-demon system. Such relationships between information
and physics became clear only in the twentieth century, beginning with the
discovery that the “observer” plays a key role in quantum mechanics.
Szilard’s theory was later extended and generalized by the French physi-

cists Leon Brillouin and Denis Gabor. Many scientists of the 1950s and later
believed that Brillouin’s theory in particular had definitively finished off the
demon by demonstrating in detail how making a measurement entails an
increase of entropy.
However, it wasn’t over yet. Fifty years after Szilard’s paper, it was dis-

covered that there were some holes in Szilard’s and Brillouin’s solutions as
well. In the 1980s, the mathematician Charles Bennett showed that there
are very clever ways to observe and remember information—in the demon’s
case, whether an air molecule is fast or slow—without increasing entropy.
Bennett’s remarkable demonstration of this formed the basis for reversible
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computing, which says that, in theory, any computation can be done without
expending energy. Bennett’s discoveries might seem to imply that we are
back at square one with the demon, since measurement can, in fact, be done
without increasing entropy. However, Bennett noted that the second law of
thermodynamics was saved again by an earlier discovery made in the 1960s
by physicist Rolf Landauer: it is not the act of measurement, but rather the
act of erasing memory that necessarily increases entropy. Erasing memory is
not reversible; if there is true erasure, then once the information is gone, it
cannot be restored without additional measurement. Bennett showed that for
the demon to work, its memory must be erased at some point, and when it is,
the physical act of this erasure will produce heat, thus increasing entropy by
an amount exactly equal to the amount entropy was decreased by the demon’s
sorting actions.
Landauer and Bennett’s solution to the paradox of Maxwell’s demon fixed

holes in Szilard’s solution, but it was in the same spirit: the demon’s act of
measurement and decision making, which requires erasure, will inevitably
increase entropy, and the second law is saved. (I should say here that there are
still some physicists who don’t buy the Landauer and Bennett solution; the
demon remains controversial to this day.)
Maxwell invented his demon as a simple thought experiment to demon-

strate his view that the second law of thermodynamics was not a law but
a statistical effect. However, like many of the best thought-experiments in
science, the demon’s influence was much broader: resolutions to the demon
paradox became the foundations of two new fields: information theory and
the physics of information.

Statistical Mechanics in a Nutshell

In an earlier section, I defined “entropy” as a measure of the energy that cannot
be converted into additional work but is instead transformed into heat. This
notion of entropy was originally defined by Rudolph Clausius in 1865. At
the time of Clausius, heat was believed to be a kind of fluid that could move
from one system to another, and temperature was a property of a system that
affected the flow of heat.
In the next few decades, a different view of heat emerged in the scientific

community: systems are made up of molecules, and heat is a result of the
motion, or kinetic energy, of those molecules. This new view was largely a
result of the work of Ludwig Boltzmann, who developed what is now called
statistical mechanics.
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Ludwig Boltzmann, 1844–1906
(AIP Emilio Segre Visual
Archives, Segre Collection)

Statistical mechanics proposes that large-scale properties (e.g., heat)
emerge from microscopic properties (e.g., the motions of trillions of
molecules). For example, think about a room full of moving air molecules. A
classicalmechanics analysis would determine the position and velocity of each
molecule, as well as all the forces acting on that molecule, and would use this
information to determine the future position and velocity of that molecule.
Of course, if there are fifty quadrillion molecules, this approach would take
rather a long time—in fact it always would be impossible, both in practice
and, as quantum mechanics has shown, in principle. A statistical mechanics
approach gives up on determining the exact position, velocity, and future
behavior of each molecule and instead tries to predict the average positions
and velocities of large ensembles of molecules.
In short, classical mechanics attempts to say something about every single

microscopic entity (e.g., molecule) by using Newton’s laws. Thermodynam-
ics gives laws of macroscopic entities—heat, energy, and entropy—without
acknowledging that any microscopic molecules are the source of these macro-
scopic entities. Statistical mechanics is a bridge between these two extremes,
in that it explains how the behavior of the macroscopic entities arise from
statistics of large ensembles of microscopic entities.
There is one problem with the statistical approach—it gives only the

probable behavior of the system. For example, if all the air molecules in a
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room are flying around randomly, they are most likely to be spread out all
over the room, and all of us will have enough air to breathe. This is what we
predict and depend on, and it has never failed us yet. However, according to
statistical mechanics, since the molecules are flying around randomly, there
is some very small chance that at some point they will all fly over to the same
corner at the same time. Then any person who happened to be in that corner
would be crushed by the huge air pressure, and the rest of us would suffocate
from lack of air. As far as I know, such an event has never happened in any
room anywhere. However, there is nothing in Newton’s laws that says it can’t
happen; it’s just incredibly unlikely. Boltzmann reasoned that if there are
enough microscopic entities to average over, his statistical approach will give
the right answer virtually all the time, and indeed, in practice it does so. But
at the time Boltzmann was formulating his new science, the suggestion that a
physical law could apply only “virtually all of the time” rather than exactly all
of the time was repellent to many other scientists. Furthermore, Boltzmann’s
insistence on the reality of microscopic entities such as molecules and atoms
was also at odds with his colleagues. Some have speculated that the rejection
of his ideas by most of his fellow scientists contributed to his suicide in 1906,
at the age of 62. Only years after his death were his ideas generally accepted;
he is now considered to be one of the most important scientists in history.

Microstates and Macrostates

Given a room full of air, at a given instant in time each molecule has a certain
position and velocity, even if it is impossible to actuallymeasure all of them. In
statistical mechanics terminology, the particular collection of exact molecule
positions and velocities at a given instant is called the microstate of the whole
room at that instant. For a room full of air molecules randomly flying around,
the most probable type of microstate at a given time is that the air molecules
are spread uniformly around the room. The least probable type of microstate
is that the air molecules are all clumped together as closely as possible in
a single location, for example, the corner of the room. This seems simply
obvious, but Boltzmann noted that the reason for this is that there are many
more possible microstates of the system in which the air molecules are spread
around uniformly than there are microstates in which they all are clumped
together.
The situation is analogous to a slot machine with three rotating pictures

(figure 3.2). Suppose each of the three pictures can come up “apple,” “orange,”
“cherry,” “pear,” or “lemon.” Imagine you put in a quarter, and pull the handle
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figure 3.2. Slot machine with
three rotating fruit pictures,

illustrating the concepts
microstate and macrostate.

(Drawing by David Moser.)

to spin the pictures. It ismuchmore likely that the pictureswill all be different
(i.e., you lose your money) than that the pictures will all be the same (i.e.,
you win a jackpot). Now imagine such a slot machine with fifty quadrillion
pictures, and you can see that the probability of all coming up the same is
very close to zero, just like the probability of the air molecules ending up all
clumped together in the same location.
A type of microstate, for example, “pictures all the same—you win” versus

“pictures not all the same—you lose” or “molecules clumped together—we
can’t breathe” versus “molecules uniformly spread out—we can breathe,” is
called a macrostate of the system. A macrostate can correspond to many dif-
ferent microstates. In the slot machine, there are many different microstates
consisting of three nonidentical pictures, each of which corresponds to the sin-
gle “you lose” macrostate, and only a few microstates that correspond to the
“you win” macrostate. This is how casinos are sure to make money. Tempera-
ture is a macrostate—it corresponds to many different possible microstates
of molecules at different velocities that happen to average to the same
temperature.
Using these ideas, Boltzmann interpreted the second law of thermody-

namics as simply saying that an isolated system will more likely be in a more
probable macrostate than in a less probable one. To our ears this sounds like
a tautology but it was a rather revolutionary way of thinking about the point
back then, since it included the notion of probability. Boltzmann defined
the entropy of a macrostate as a function of the number of microstates that
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figure 3.3. Boltzmann’s tombstone, in Vienna. (Photograph
courtesy of Martin Roell.)

could give rise to that macrostate. For example, on the slot machine of figure
3.2, where each picture can come up “apple,” “orange,” “cherry,” “pear,” or
“lemon,” it turns out that there are a total of 125 possible combinations
(microstates), out of which five correspond to the macrostate “pictures all
the same—you win” and 120 correspond to the macrostate “pictures not all
the same—you lose.” The latter macrostate clearly has a higher Boltzmann
entropy than the former.
Boltzmann’s entropy obeys the second law of thermodynamics.Unlesswork

is done, Boltzmann’s entropy will always increase until it gets to a macrostate
with highest possible entropy. Boltzmann was able to show that, under many
conditions, his simple and intuitive definition of entropy is equivalent to the
original definition of Clausius.
The actual equation for Boltzmann’s entropy, now so fundamental to

physics, appears on Boltzmann’s tombstone in Vienna (figure 3.3).

Shannon Information

Many of the most basic scientific ideas are spurred by advances in tech-
nology. The nineteenth-century studies of thermodynamics were inspired
and driven by the challenge of improving steam engines. The studies of
information by mathematician Claude Shannon were likewise driven by the
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Claude Shannon, 1916–2001.
(Reprinted with permission of
Lucent Technologies Inc./Bell

Labs.)

twentieth-century revolution in communications—particularly the devel-
opment of the telegraph and telephone. In the 1940s, Shannon adapted
Boltzmann’s ideas to the more abstract realm of communications. Shannon
worked at Bell Labs, a part of the American Telephone and Telegraph Com-
pany (AT&T). One of the most important problems for AT&T was to figure
out how to transmit signals more quickly and reliably over telegraph and
telephone wires.
Shannon’s mathematical solution to this problem was the beginning of

what is now called information theory. In his 1948 paper “A Mathematical
Theory of Communication,” Shannon gave a narrow definition of information
and proved a very important theorem, which gave the maximum possible
transmission rate of information over a given channel (wire or other medium),
even if there are errors in transmission caused by noise on the channel. This
maximum transmission rate is called the channel capacity.
Shannon’s definition of information involves a source that sends messages to

a receiver. For example, figure 3.4 shows two examples of a source talking to a
receiver on the phone. Each word the source says can be considered a message
in the Shannon sense. Just as the telephone doesn’t understand the words
being said on it but only transmits the electrical pulses used to encode the
voice, Shannon’s definition of information completely ignores the meaning of
the messages and takes into account only how often the source sends each of
the possible different messages to the receiver.
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figure 3.4. Top: Information content (zero) of
Nicky’s conversation with Grandma. Bottom: Higher
information content of Jake’s conversation with
Grandma. (Drawings by David Moser.)
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Shannon asked, “Howmuch information is transmitted by a source sending
messages to a receiver?” In analogy with Boltzmann’s ideas, Shannon defined
the information of a macrostate (here, a source) as a function of the number
of possible microstates (here, ensembles of possible messages) that could be
sent by that source. When my son Nicky was barely a toddler, I would put
him on the phone to talk with Grandma. He loved to talk on the phone,
but could say only one word—“da.” His messages to Grandma were “da da
da da da….” In other words, the Nicky-macrostate had only one possible
microstate (sequences of “da”s), and although the macrostate was cute, the
information content was, well, zero. Grandma knew just what to expect. My
son Jake, two years older, also loved to talk on the phone but had a much
bigger vocabulary and would tell Grandma all about his activities, projects,
and adventures, constantly surprising her with his command of language.
Clearly the information content of the Jake-source was much higher, since
so many microstates—i.e., more different collections of messages—could be
produced.
Shannon’s definition of information content was nearly identical to

Boltzmann’s more general definition of entropy. In his classic 1948 paper,
Shannon defined the information content in terms of the entropy of themessage
source. (This notion of entropy is often called Shannon entropy to distinguish
it from the related definition of entropy given by Boltzmann.)
People have sometimes characterized Shannon’s definition of information

content as the “average amount of surprise” a receiver experiences on receiving
a message, in which “surprise” means something like the “degree of uncer-
tainty” the receiver had about what the source would send next. Grandma is
clearly more surprised at each word Jake says than at each word Nicky says,
since she already knows exactly what Nicky will say next but can’t as easily
predict what Jake will say next. Thus each word Jake says gives her a higher
average “information content” than each word Nicky says.
In general, in Shannon’s theory, a message can be any unit of communi-

cation, be it a letter, a word, a sentence, or even a single bit (a zero or a one).
Once again, the entropy (and thus information content) of a source is defined
in terms of message probabilities and is not concerned with the “meaning” of
a message.
Shannon’s results set the stage for applications inmany different fields. The

best-known applications are in the field of coding theory, which deals with
both data compression and the way codes need to be structured to be reliably
transmitted. Coding theory affects nearly all of our electronic communica-
tions; cell phones, computer networks, and the worldwide global positioning
system are a few examples.
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Information theory is also central in cryptography and in the relatively new
field of bioinformatics, in which entropy and other information theory mea-
sures are used to analyze patterns in gene sequences. It has also been applied
to analysis of language and music and in psychology, statistical inference,
and artificial intelligence, among many other fields. Although information
theory was inspired by notions of entropy in thermodynamics and statisti-
cal mechanics, it is controversial whether or not information theory has had
much of a reverse impact on those and other fields of physics. In 1961, com-
munications engineer and writer John Pierce quipped that “efforts to marry
communication theory and physics have been more interesting than fruitful.”
Some physicists would still agree with him. However, there are a number of
new approaches to physics based on concepts related to Shannon’s information
theory (e.g., quantum information theory and the physics of information) that
are beginning to be fruitful as well as interesting.
As you will see in subsequent chapters, information theoretic notions such

as entropy, information content, mutual information, information dynamics,
and others have played central though controversial roles in attempts to define
the notion of complexity and in characterizing different types of complex
systems.
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Computationchapter 4

Quo facto, quando orientur controversiae, non magis disputatione opus erit inter

duos philosophos, quam inter duos Computistas. Sufficiet enim calamos in manus

sumere sedereque ad abacos, et sibi mutuo dicere: Calculemus!

[If controversies were to arise, there would be no more need of disputation between

two philosophers than between two accountants. For it would suffice to take their

pencils in their hands, to sit down to their slates, and say to each other, “Let us

calculate.”]
—G. Leibniz (Trans. B. Russell)

People usually think of computation as the thing that a computer
does, such as calculations in spreadsheets, word processing, e-mail, and

the like. And they usually think of a computer as the machine on one’s desk
(or lap) that has electronic circuits inside, and usually a color monitor and
a mouse, and that in the distant past used old-fashioned technology such
as vacuum tubes. We also have a vague idea that our brains themselves are
roughly like computers, with logic, memory, input, and output.
However, if you peruse some of the scholarly literature or seminar titles

in complex systems, you will find the word computation used in some rather
unfamiliar contexts: a biology book on “computation in cells and tissues”;
a keynote lecture on “immune system computation”; an economics lecture
concerning “the nature and limits of distributed computation in markets”; an
article in a prestigious science journal on “emergent computation in plants.”
And this is just a small sampling of such usage.



The notion of computation has come a long way since the early days of
computers, and many scientists now view the phenomenon of computation
as being widespread in nature. It is clear that cells, tissues, plants, immune
systems, and financial markets do not work anything like the computer on
your desk, so what exactly do these people mean by computation, and why do
they call it that?
In order to set the stage for addressing this question in chapter 12, this

chapter gives an overview of the history of ideas about computation and what
can be computed, and describes basics of computational concepts used by
scientists to understand natural complex systems.

What Is Computation and What Can Be Computed?

Information, as narrowly defined by Shannon, concerns the predictability of a
message source. In the real world, however, information is something that is
analyzed for meaning, that is remembered and combined with other informa-
tion, and that produces results or actions. In short, information is processed via
computation.
Themeaning of computation has changed dramatically over the years. Before

the late 1940s, computing meant performing mathematical calculations by
hand (what nineteenth-century British schoolboys would have called “doing
sums”). Computers were people who did such calculations. One of my former
professors, Art Burks, used to tell us how he had married a “computer”—the
term used for women who were enlisted during World War II to hand-
calculate ballistic trajectories. Alice Burks was working as such a computer
when she met Art.
Nowadays computation is what computers of the electronic variety do

and what natural complex systems seem to do as well. But what exactly is
computation, and how much can it accomplish? Can a computer compute
anything, in principle, or does it have any limits? These are questions that
were answered only in the mid-twentieth century.

Hilbert’s Problems and Gödel’s Theorem

The study of the foundations and limitations of computation, which led to
the invention of electronic computers, was developed in response to a set of
seemingly abstract (and abstruse) math problems. These problems were posed
in the year 1900 at the International Congress of Mathematicians in Paris by
the German mathematician David Hilbert.
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David Hilbert, 1862–1943
(AIP Emilio Segre Visual

Archives, Lande Collection)

Hilbert’s lecture at this congress set out a list of mathematical New Year’s
resolutions for the new century in the form of twenty-three of themost impor-
tant unsolved problems in mathematics. Problems 2 and 10 ended upmaking
the biggest splash. Actually, these were not just problems in mathematics;
they were problems aboutmathematics itself and what can be proved by using
mathematics. Taken together, these problems can be stated in three parts as
follows:

1. Is mathematics complete? That is, can every mathematical statement be
proved or disproved from a given finite set of axioms?
For example, remember Euclid’s axioms from high-school geometry?
Remember using these axioms to prove statements such as “the angles
in a triangle sum to 180 degrees”? Hilbert’s question was this: Given
some fixed set of axioms, is there a proof for every true statement?

2. Is mathematics consistent? In other words, can only the true statements be
proved? The notion of what is meant by “true statement” is technical,
but I’ll leave it as intuitive. For example, if we could prove some false
statement, such as 1+ 1 = 3, mathematics would be inconsistent and
in big trouble.

3. Is every statement in mathematics decidable? That is, is there a definite
procedure that can be applied to every statement that will tell us in
finite time whether or not the statement is true or false? The idea here is
that you could come up with a mathematical statement such as, “Every
even integer greater than 2 can be expressed as the sum of two prime
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Kurt Gödel, 1906–1978
(Photograph courtesy of
Princeton University Library)

numbers,” hand it to a mathematician (or a computer), who would
apply a precise recipe (a “definite procedure”), which would yield the
correct answer “true” or “false” in finite time.

The last question is known by its German name as the Entscheidungsproblem
(“decision problem”), and goes back to the seventeenth-century mathemati-
cianGottfried Leibniz. Leibniz actually built his own calculatingmachine, and
believed that humans could eventually build a machine that could determine
the truth or falsity of any mathematical statement.
Up until 1930, these three problems remained unsolved, but Hilbert

expressed confidence that the answer would be “yes” in each case, and asserted
that “there is no such thing as an unsolvable problem.”
However, his optimism turned out to be short-lived. Very short-lived.

At the same meeting in 1930 at which Hilbert made his confident asser-
tion, a twenty-five-year-old mathematician named Kurt Gödel astounded the
mathematical world by presenting a proof of the so-called incompleteness the-
orem. This theorem stated that if the answer to question 2 above is “yes” (i.e.,
mathematics is consistent), then the answer to question 1 (is mathematics
complete?) has to be “no.”
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Gödel’s incompleteness theorem looked at arithmetic. He showed that
if arithmetic is consistent, then there are true statements in arithmetic that
cannot be proved—that is, arithmetic is incomplete. If arithmetic were incon-
sistent, then there would be false statements that could be proved, and all of
mathematics would come crashing down.
Gödel’s proof is complicated. However, intuitively, it can be explained

very easily. Gödel gave an example of a mathematical statement that can be
translated into English as: “This statement is not provable.”
Think about it for a minute. It’s a strange statement, since it talks about

itself—in fact, it asserts that it is not provable. Let’s call this statement
“Statement A.” Now, suppose Statement A could indeed be proved. But
then it would be false (since it states that it cannot be proved). That would
mean a false statement could be proved—arithmetic would be inconsistent.
Okay, let’s assume the opposite, that Statement A cannot be proved. That
would mean that Statement A is true (because it asserts that it cannot
be proved), but then there is a true statement that cannot be proved—
arithmetic would be incomplete. Ergo, arithmetic is either inconsistent or
incomplete.
It’s not easy to imagine how this statement gets translated into mathemat-

ics, but Gödel did it—therein lies the complexity and brilliance of Gödel’s
proof, which I won’t cover here.
This was a big blow for the large number of mathematicians and philoso-

phers who strongly believed that Hilbert’s questions would be answered
affirmatively. As the mathematician and writer Andrew Hodges notes: “This
was an amazing new turn in the enquiry, for Hilbert had thought of his pro-
gramme as one of tidying up loose ends. It was upsetting for those whowanted
to find in mathematics something that was perfect and unassailable. . . .”

Turing Machines and Uncomputability

While Gödel dispatched the first and second of Hilbert’s questions, the
British mathematician Alan Turing killed off the third.
In 1935 Alan Turing was a twenty-three-year-old graduate student at

Cambridge studying under the logician Max Newman. Newman introduced
Turing to Gödel’s recent incompleteness theorem. When he understood
Gödel’s result, Turing was able to see how to answer Hilbert’s third question,
the Entscheidungsproblem, and his answer, again, was “no.”
How did Turing show this? Remember that the Entscheidungsproblem asks

if there is always a “definite procedure” for deciding whether a statement is
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provable. What does “definite procedure” mean? Turing’s first step was to
define this notion. Following the intuition of Leibniz of more than two cen-
turies earlier, Turing formulated his definition by thinking about a powerful
calculating machine—one that could not only perform arithmetic but also
could manipulate symbols in order to prove mathematical statements. By
thinking about how humans might calculate, he constructed a mental design
of such a machine, which is now called a Turing machine. The Turing machine
turned out to be a blueprint for the invention of the electronic programmable
computer.

a quick introduction to turing machines

As illustrated in figure 4.1, a Turingmachine consists of three parts: (1)A tape,
divided into squares (or “cells”), on which symbols can be written and from
which symbols can be read. The tape is infinitely long in both directions.
(2) A movable read/write tape head that reads symbols from the tape and
writes symbols to the tape. At any time, the head is in one of a number of
states. (3) A set of rules that tell the head what to do next.
The head starts out at a particular tape cell and in a special start state. At

each time step, the head reads the symbol at its current tape cell. The head
then follows the rule that corresponds to that symbol and the head’s current
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figure 4.1. Illustration of a Turing machine.

state. The rule tells the head what symbol to write on the current tape cell
(replacing the previous symbol); whether the head should move to the right,
move to the left, or stay put; and what the head’s new state is. When the head
goes into a special halt state, the machine is done and stops.
The input to the machine is the set of symbols written on the tape before

the machine starts. The output from the machine is the set of symbols written
on the tape after the machine halts.

a simple example

A simple example will make all this clearer. To make things really simple,
assume that (like a real computer) the only possible symbols that can be
on a tape are 0, 1, and a blank symbol indicating a blank tape cell. Let’s
design a Turing Machine that reads a tape containing all blank cells except
for some number of 1s sandwiched between exactly two 0s (e.g., 011110) and
determines whether the number of 1s is even or odd. If even, then the final
output of the machine will be a single 0 (and all other cells blank) on the tape.
If odd, the final output will be a single 1 (and all other cells blank). Assume
the input always has exactly two 0s on the tape, with zero or more 1s between
them, and all blanks on either side of them.
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Our Turing machine’s head will have four possible states: start, even,
odd, and halt. The head will start on the left-most 0 and in the start state.
We will write rules that cause the head to move to the right, one cell at a
time, replacing the 0s and 1s it encounters with blanks. If the head reads a
1 in the current cell, the head goes into the odd state and moves one cell to
the right. If it reads a 1 again it goes into the even state and moves one cell
to the right, and so on, switching between the even and odd states as 1s are
read.
When the head reads a 0, it has come to the end of the input, and whatever

state it is in, odd or even, is the correct one. The machine will then write a
corresponding 0 or 1 in its current cell and go into the halt state.
Here are the rules for the tape head that implement this algorithm:

1. If you are in the start state and read a 0, then change to the even state,
replace the 0 with a blank (i.e., erase the 0), and move one cell to the
right.

2. If you are in the even state and read a 1, change to the odd state,
replace the 1 with a blank, and move one cell to the right.

3. If you are in the odd state and read a 1, change to the even state,
replace the 1 with a blank, and move one cell to the right.

4. If you are in the odd state and read a 0, replace that 0 with a 1 and
change to the halt state.

5. If you are in the even state and read a 0, replace that 0 with a 0 (i.e.,
don’t change it) and change to the halt state.

The process of starting with input symbols on the tape and letting the Tur-
ing machine serially process that input by using such rules is called “running
the Turing machine on the input.”

Definite Procedures Defined as Turing Machines

In the example above, assuming that the input is in the correct format of
zero or more 1s sandwiched between two 0s, running this Turing machine on
the input is guaranteed to produce a correct answer for any input (including
the special case of zero 1s, which is considered to be an even number). Even
though it seems kind of clunky, you have to admit that this process is a “def-
inite procedure”—a precise set of steps—for solving the even/odd problem.
Turing’s first goal was to make very concrete this notion of definite procedure.
The idea is that, given a particular problem to solve, you can construct a
definite procedure for solving it by designing a Turing machine that solves
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it. Turing machines were put forth as the definition of “definite procedure,”
hitherto a vague and ill-defined notion.
When formulating these ideas, Turing didn’t build any actual machines

(though he built significant ones later on). Instead, all his thinking about
Turing machines was done with pencil and paper alone.

Universal Turing Machines

Next, Turing proved an amazing fact about Turingmachines: one can design a
special universalTuringmachine (let’s call itU) that can emulate the workings
of any other Turing machine. For U to emulate a Turing machineM running
on an input I, U starts with part of its tape containing a sequence of 0s, 1s,
and blanks that encodes input I, and part of its tape containing a sequence of
0s, 1s, and blanks that encodes machineM. The concept of encoding a machine
M might not be familiar to you, but it is not hard. First, we recognize that
all rules (like the five given in the “simple example” above) can be written in
a shorthand that looks like

—Current State—Current Symbol—New State—New Symbol—Motion—

In this shorthand, Rule 1 above would be written as:

—start—0—even—blank—right—

(The separator ‘—’ is not actually needed, but makes the rule easier for
us to read.) Now to encode a rule, we simply assign different three-digit
binary numbers to each of the possible states: for example, start = 000,
even = 001, odd = 010, and halt = 100. Similarly, we can assign
three-digit binary numbers to each of the possible symbols: for example,
symbol ‘0’ = 000, symbol ‘1’ = 001, and symbol blank = 100. Any such
binary numbers will do, as long as each one represents only one symbol,
and we are consistent in using them. It’s okay that the same binary num-
ber is used for, say, start and ‘0’; since we know the structure of the rule
shorthand above, we will be able to tell what is being encoded from the
context.
Similarly, we could encode “move right” by 000, and “move left” by 111.

Finally, we could encode the ‘—’ separator symbol above as 111. Then we
could, for example, encode Rule 1 as the string

111000111000111001111100111000111

which just substitutes our codes for the states and symbols in the shorthand
above. The other rules would also be encoded in this way. Put the encoding
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strings all together, one after another, to form a single, long string, called
the code of Turing machine M. To have U emulate M running on input I,
U’s initial tape contains both input I andM’s code. At each step U reads the
current symbol in I from the input part of the tape, decodes the appropriate
rule from the M part of the tape, and carries it out on the input part, all the
while keeping track (on some other part of its tape) of what stateM would be
in if M were actually running on the given input.
When M would have reached the halt state, U also halts, with the input

(now output) part of its tape now containing the symbols M would have
on its tape after it was run on the given input I. Thus we can say that
“U runs M on I.” I am leaving out the actual states and rules of U, since
they are pretty complicated, but I assure you that such a Turing machine
can be designed. Moreover, what U does is precisely what a modern pro-
grammable computer does: it takes a programM that is stored in one part of
memory, and runs it on an input I that is stored in another part of mem-
ory. It is notable that the first programmable computers were developed
only ten years or so after Turing proved the existence of a universal Turing
machine.

Turing’s Solution to the Entscheidungsproblem

Recall the question of the Entscheidungsproblem: Is there always a definite
procedure that can decide whether or not a statement is true?
It was the existence of a universal Turing machine that enabled Turing to

prove that the answer is “no.” He realized that the input I to a Turingmachine
M could be the code of another Turing machine. This is equivalent to the
input of a computer program being the lines of another computer program.
For example, you might write a program using a word processor such as
Microsoft Word, save it to a file, and then run the “Word Count” program on
the file. Here, your program is an input to another program (Word Count),
and the output is the number of words in your program. The Word Count
program doesn’t run your program; it simply counts the words in it as it
would for any file of text.
Analogously, you could, without too much difficulty, design a Turing

machine M that counted the 1s in its input, and then run M on the code for
a second Turing machine M′. M would simply count the 1s in M′’s code.
Of course, the Universal Turing Machine U could have the code for M in
the “program” part of its tape, have the code for M′ in the “input” part of
its tape, and run M on M′. Just to be perverse, we could put the code for
M in both the “program” and “input” parts of U’s tape, and have M run on

computation 65



its own code! This would be like having the Word Count program run on
its own lines of code, counting the number of words it contains itself. No
problem!
All this may seem fairly pedestrian to your computer-sophisticated mind,

but at the time Turing was developing his proof, his essential insight—that
the very same string of 0s and 1s on a tape could be interpreted as either a
program or as input to another program—was truly novel.
Now we’re ready to outline Turing’s proof.
Turing proved that the answer to the Entscheidungsproblem is “no” by using

a mathematical technique called “proof by contradiction.” In this technique,
you first assume that the answer is “yes” and use further reasoning to show
that this assumption leads to a contradiction, and so cannot be the case.
Turing first assumed that the answer is “yes,” that is, there is always a

definite procedure that can decide whether or not a given statement is true.
Turing then proposed the following statement:

Turing Statement: Turing machine M, given input I, will reach the
halt state after a finite number of time steps.

By the first assumption, there is some definite procedure that, givenM and I
as input, will decide whether or not this particular statement is true. Turing’s
proof shows that this assumption leads to a contradiction.
It is important to note that there are some Turing machines that never

reach the halt state. For instance, consider a Turing machine similar to the
one in our example above but with only two rules:

1. If you are in the start state and read a 0 or a 1, change to the even state
and move one cell to the right.

2. If you are in the even state and read a 0 or a 1, change to the start state
and move one cell to the left.

This is a perfectly valid Turing machine, but it is one that will never
halt. In modern language we would describe its action as an “infinite loop”—
behavior that is usually the result of a programming bug. Infinite loops don’t
have to be so obvious; in fact, there are many very subtle ways to create an
infinite loop, whose presence is then very hard to detect.
Our assumption that there is a definite procedure that will decide the

Turing Statement is equivalent to saying that we can design a Turingmachine
that is an infinite loop detector.
More specifically, our assumption says thatwe can design aTuringmachine

H that, given the code for any machine M and any input I on its tape, will,
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in finite time, answer “yes” if M would halt on input I, and “no” ifM would
go into an infinite loop and never halt.
The problem of designingH is called the “Halting problem.” Note thatH

itself must always halt with either a “yes” or “no” answer. So H can’t simply
runM on I, since there would be some possibility thatM (and thus H) would
never halt. H has to do its job in some less straightforward way.
It’s not immediately clear how it would work, but nonetheless we have

assumed that our desired H exists. Let’s denote H(M, I) as the action of
runningH on inputM and I. The output is “yes” (e.g., a single 1 on the tape)
if M would halt on I and “no” (e.g., a single 0 on the tape) if M would not
halt on I.
Now, said Turing, we create a modified version of H, called H′, that takes

as input the code for some Turing machineM, and calculates H(M,M). That
is, H′ performs the same steps that H would to determine whether M would
halt on its own code M. However, make H′ different from H in what it does
after obtaining a “yes” or a “no”. H just halts, with the answer on its tape. H′
halts only if the answer is “No, M does not halt on code M.” If the answer is
“Yes, M does halt on code M,” H′ goes into an infinite loop and never halts.
Whew, this might be getting a bit confusing. I hope you are following

me so far. This is the point in every Theory of Computation course at which
students either throw up their hands and say “I can’t get my mind around
this stuff!” or clap their hands and say “I love this stuff!”
Needless to say, I was the second kind of student, even though I shared

the confusion of the first kind of student. Maybe you are the same. So take a
deep breath, and let’s go on.
Now for Turing’s big question:

What does H′ do when given as input the code for H′, namely,
its own code? Does it halt?

At this point, even the second kind of student starts to get a headache.
This is really hard to get your head around. But let’s try anyway.
First, suppose that H′ does not halt on input H′. But then we have a

problem. Recall thatH′, given as input the code for some Turing machineM,
goes into an infinite loop if and only if M does halt on M. So H′ not halting
on input M implies that M does halt on input M. See what’s coming? H′ not
halting on input H′ implies that H′ does halt on input H′. But H′ can’t both
halt and not halt, so we have a contradiction.
Therefore, our supposition that H′ does not halt on H′ was wrong, so H′

must halt on input H′. But now we have the opposite problem. H′ only halts
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on its input M if M does not halt on M. So H′ only halts on H′ if H′ does not
halt on H′. Another contradiction!
These contradictions show that H′ can neither halt on input H′ nor go

into an infinite loop on input H′. An actual machine has to do one or the
other, so H′ can’t exist. Since everything that H′ does is allowed for a Turing
machine, except possibly running H, we have shown that H itself cannot
exist.
Thus—and this is Turing’s big result—there can be no definite proce-

dure for solving the Halting problem. The Halting problem is an example
that proves that the answer to the Entscheidungsproblem is “no”; not every
mathematical statement has a definite procedure that can decide its truth
or falsity. With this, Turing put the final nail in the coffin for Hilbert’s
questions.
Turing’s proof of the uncomputability of the Halting problem, sketched

above, uses precisely the same core idea as Gödel’s incompleteness proof.
Gödel figured out a way to encode mathematical statements so that they
could talk about themselves. Turing figured out a way to encodemathematical
statements as Turing machines and thus run on one another.
At this point, I should summarize Turing’s momentous accomplishments.

First, he rigorously defined the notion of “definite procedure.” Second, his
definition, in the form of Turing machines, laid the groundwork for the
invention of electronic programmable computers. Third, he showed what few
people ever expected: there are limits to what can be computed.

The Paths of Gödel and Turing

The nineteenth century was a time of belief in infinite possibility in math-
ematics and science. Hilbert and others believed they were on the verge of
realizing Leibniz’s dream: discovering an automatic way to prove or disprove
any statement, thus showing that there is nothing mathematics could not
conquer. Similarly, as we saw in chapter 2, Laplace and others believed that,
using Newton’s laws, scientists could in principle predict everything in the
universe.
In contrast, the discoveries in mathematics and physics of the early to mid-

dle twentieth century showed that such infinite possibility did not in fact exist.
Just as quantum mechanics and chaos together quashed the hope of perfect
prediction, Gödel’s and Turing’s results quashed the hope of the unlimited
power of mathematics and computing. However, as a direct consequence of
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his negative answer to the Entscheidungsproblem, Turing set the stage for the
next great discovery, electronic programmable computers, which have since
changed almost everything about the way science is done and the way our
lives are lived.
After publishing their complementary proofs in the 1930s, Turing and

Gödel took rather different paths, though, like everyone else at that time, their
lives were deeply affected by the rise of Hitler and the Third Reich. Gödel, in
spite of suffering from on-and-off mental health problems, continued his work
on the foundations of mathematics in Vienna until 1940, when he moved to
the United States to avoid serving in the German army. (According to his
biographerHaoWang, while preparing for American citizenshipGödel found
a logical inconsistency in the U.S. Constitution, and his friend Albert Einstein
had to talk him out of discussing it at length during his official citizenship
interview.)
Gödel, like Einstein, was made a member of the prestigious Institute for

Advanced Study in Princeton and continued tomake important contributions
to mathematical logic. However, in the 1960s and 1970s, his mental health
deteriorated further. Toward the end of his life he became seriously paranoid
and was convinced that he was being poisoned. As a result, he refused to eat
and eventually starved to death.
Turing also visited the Institute for Advanced Study and was offered

a membership but decided to return to England. During World War II,
he became part of a top-secret effort by the British government to break
the so-called Enigma cipher that was being used by the German navy
to encrypt communications. Using his expertise in logic and statistics, as
well as progress in electronic computing, he took the lead in developing
code-breaking machines that were eventually able to decrypt almost all
Enigma communications. This gave Britain a great advantage in its fight
against Germany and arguably was a key factor in the eventual defeat of the
Nazis.
After the war, Turing participated in the development of one of the first

programmable electronic computers (stemming from the idea of his universal
Turing machine), at Manchester University. His interests returned to ques-
tions about how the brain and body “compute,” and he studied neurology and
physiology, did influential work on the theory of developmental biology, and
wrote about the possibility of intelligent computers. However, his personal
life presented a problem to the mores of the day: he did not attempt to hide
his homosexuality. Homosexuality was illegal in 1950s Britain; Turing was
arrested for actively pursuing relationships with men and was sentenced to
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drug “therapy” to treat his “condition.” He also lost his government security
clearance. These events may have contributed to his probable suicide in 1954.
Ironically, whereas Gödel starved himself to avoid being (as he believed)
poisoned, Turing died from eating a poisoned (cyanide-laced) apple. He
was only 41.
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Evolutionchapter 5

All great truths begin as blasphemies.

—George Bernard Shaw, Annajanska, The Bolshevik Empress

The second law of thermodynamics states that the total
entropy of an isolated system will always increase until it reaches its

maximum value. Everyone knows this instinctively—it happens not only in
our understanding of science, but also in our daily lives, and is ingrained
in humans’ conceptions of history and in our art, literature, and religions.
The Buddha tells us that “Subject to decay are all compounded things.” The
Old Testament prophet Isaiah foretells that “The earth shall wax old like a
garment.” Shakespeare asks,

O! how shall summer’s honey breath hold out,
Against the wrackful siege of battering days,
When rocks impregnable are not so stout,
Nor gates of steel so strong but Time decays?

It is a gloomy message, this inexorable march toward maximum entropy.
But nature gives us a singular counterexample: Life. By anyone’s measure, liv-
ing systems are complex—they exist somewhere in the middle ground between
order and disorder. According to our intuitions, over the long history of life,
living systems have become vastly more complex and intricate rather than
more disordered and entropic.



We know that to decrease entropy, work must be done. Who or what
is doing the work of creating and maintaining living systems and making
them more complex? Some of the world’s religions propose that a deity is
responsible, but in the mid-1800s, Charles Darwin proposed that instead,
the history of life has resulted from the invisible hand of evolution via natural
selection.
No idea in science has been more threatening to humans’ conceptions

about themselves than Darwin’s theory of evolution; it arguably has been the
most controversial idea in the history of science. But it is also one of the best
ideas. The philosopher Daniel Dennett strongly affirms this:

If I were to give an award for the single best idea anyone has ever had,
I’d give it to Darwin, ahead of Newton and Einstein and everyone else.
In a single stroke, the idea of evolution by natural selection unifies the
realm of life, meaning, and purpose with the realm of space and time,
cause and effect, mechanism and physical law.

This chapter sketches the history and main ideas of Darwinian evolution
and how it produces organization and adaptation. Concepts from evolution-
ary theory will come up again and again in the remainder of the book. In
chapter 18, I describe how some of these concepts are being radically modi-
fied in light of the unexpected results coming out of the molecular revolution
in biology and the results of complex systems ideas as applied to evolution.

Pre-Darwinian Notions of Evolution

Theword evolutionmeans “gradual change.” Biological evolution is the process
of gradual (and sometimes rapid) change in biological forms over the history of
life. Until the eighteenth century, the prevailing opinion was that biological
forms do not change over time; rather, all organisms were created by a deity
and have largely remained in their original form since their creation. Although
some ancient Greek and Indian philosophers had proposed that humans arose
via transmutation from other species, in the West the conception of divine
creation began to be widely questioned only in the eighteenth century.
In the mid-1700s, 100 years before Darwin proposed his theory, a French

zoologist named George Louis Leclerc de Buffon published a many-volume
work entitledHistorie Naturelle, in which he described the similarities between
different species. Buffon suggested that the earth is much older than the
Biblical 6,000 years and that all modern organisms evolved from a single
ancestor, though he did not propose a mechanism for this evolution. Buffon’s
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work in biology and geology was a significant break from the prevailing
creationist viewpoint. Not surprising, the Catholic Church in France burned
copies of his books.
Charles Darwin’s grandfather, Erasmus Darwin, was another prominent

eighteenth-century scientist who believed in the evolution of all species from
a single ancient ancestor. He proposed mechanisms for evolution that were
precursors to his grandson’s theory of natural selection. Erasmus Darwin
expressed his ideas both in scientific writing and in poetry:

Organic life beneath the shoreless waves
Was born and nurs’d in ocean’s pearly caves;
First forms minute, unseen by spheric glass,
Move on the mud, or pierce the watery mass;
These, as successive generations bloom,
New powers acquire and larger limbs assume;
Whence countless groups of vegetation spring,
And breathing realms of fin and feet and wing.

If only modern-day scientists were so eloquent! However, like the Catholics
in France, the Anglican Church didn’t much like these ideas.
The most famous pre-Darwinian evolutionist is Jean-Baptiste Lamarck. A

French aristocrat and botanist, Lamarck published a book in 1809, Philosophie
Zoologique, in which he proposed his theory of evolution: new types of organ-
isms are spontaneously generated from inanimate matter, and these species
evolve via the “inheritance of acquired characteristics.” The idea was that
organisms adapted to their environment during their lifetimes, and that these
acquired adaptationswere then passed directly to the organisms’ offspring.One
example in Lamarck’s book was the acquisition of long legs by wading birds,
such as storks. Such birds, he believed, originally had to stretch their legs in
order to keep their bodies out of the water. This continual stretching made
their legs longer, and the acquired trait of longer legs was passed on to the
birds’ offspring, who stretched their legs even longer, passing this trait on to
their own offspring, and so on. The result is the very long legs we now see on
wading birds.
Lamarck gave many other such examples. He also asserted that evolution

entails a “tendency to progression,” in which organisms evolve to be increas-
ingly “advanced,” with humans at the pinnacle of this process. Thus, changes
in organisms are predominately changes for the better, or at least, for the more
complex.
Lamarck’s ideas were rejected by almost all of his contemporaries—not

only by proponents of divine creation but also by people who believed in
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evolution. The evolutionists were not at all convinced by Lamarck’s examples
of evolution via inheritance of acquired characteristics, and indeed, his empir-
ical data were weak and were generally limited to his own speculations on
how certain traits of organisms came about.
However, it seems that Charles Darwin himself was, at least at first, favor-

ably impressed by Lamarck: “Lamarck…had few clear facts, but so bold and
many such profound judgment that he foreseeing consequence was endowed
with what may be called the prophetic spirit in science. The highest endow-
ment of lofty genius.” Darwin also believed that, in addition to natural
selection, the inheritance of acquired characteristics was one of the mech-
anisms of evolution (though this belief did not survive as part of what we now
call “Darwinism”).
Neither Lamarck nor Darwin had a good theory of how such inheritance

could take place. However, as the science of genetics became better under-
stood in the years after Darwin, the inheritance of acquired characteristics
seemed almost certain to be impossible. By the beginning of the twentieth
century, Lamarck’s theories were no longer taken seriously in evolutionary
biology, though several prominent psychologists still believed in them as
an explanation of some aspects of the mind, such as instinct. For example,
Sigmund Freud expressed the view that “if [the] instinctual life of animals
permits of any explanation at all, it can only be this: that they carry over
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into their new existence the experience of their kind; that is to say, that they
have preserved in their minds memories of what their ancestors experienced.”
I don’t think these beliefs remained in psychology much beyond the time
of Freud.

Origins of Darwin’s Theory

Charles Darwin should be an inspiration to youthful underachievers every-
where. As a child, he was a mediocre student in an overachieving family. (His
usually loving father, a successful country doctor, in a moment of frustration
complained bitterly to the teenaged Charles: “You care for nothing but shoot-
ing, dogs, and rat-catching, and you will be a disgrace to yourself and your
family!”) Underachieving as he might have been then, he went on to be the
most famous, and most important, biologist of all time.
In 1831, while trying to decide on his future career (country doctor or

country parson seemed to be the choices), Darwin was offered a dual job as
both “naturalist” and “captain’s dining companion” on a survey ship, the
H.M.S. Beagle. The ship’s captain was a “gentleman,” and a bit lonely, so he
wanted to dine with another gentleman rather than with the riff-raff of the
ship’s crew. Darwin was his man.
Darwin spent almost five years on the Beagle (1831–1836), much of the

time in South America, where, in addition to his dining duties, he collected
plants, animals, and fossils and did a lot of reading, thinking, and writing.

Charles Darwin, 1809–1882.
Photograph taken in 1854, a few
years before he published Origin of
Species. (Reproduced with
permission from John van Wyhe,
ed., The Complete Work of
Charles Darwin Online
[http://darwin-online.org.uk/].)
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Fortunately he wrote many letters and kept extensive notebooks full of his
observations, ideas, opinions, reactions to books, et cetera; his detailed record-
ing of his thoughts went on for the rest of his life. If Darwin were alive today,
he clearly would have been an obsessive blogger.
During and after the Beagle voyage, Darwin got a lot of ideas from his

reading of scientific books and articles from various disciplines. He was con-
vinced by Charles Lyell’s Principles of Geology (1830) that geological features
(mountains, canyons, rock formations) arise from gradual processes of ero-
sion, wind, myriad floods, volcanic eruptions, and earthquakes, rather than
from catastrophic events such as the biblical Noah’s flood. Such a view of
gradualism—that small causes, taken over long periods, can have very large
effects—was anathema to religious fundamentalists of the day, but Lyell’s
evidence was compelling to Darwin, especially as, on his voyage, he could see
for himself the results of different kinds of geological processes.
Thomas Malthus’s Essay on the Principle of Population (1798) drew Darwin’s

attention to the fact that population growth leads to competition for food
and other resources. Malthus’s essay was about human population growth,
but Darwin would adapt these ideas to explain the evolution of all living
organisms via a continual “struggle for existence.”
Darwin also read Adam Smith’s free-market manifesto, The Wealth of

Nations (1776). This book exposed him to Smith’s notion of the invisible
hand in economics, whereby a collection of individuals acting in their own
self-interest produces maximum benefit for the entire community.
From his own observations in South America and elsewhere, Darwin was

acutely struck by the tremendous variation among living beings and by the
apparent adaptation of different species to their environments. One of his
most famous examples is the finches of the Galápagos Islands, 600 miles off
the coast of Ecuador. Darwin observed that different species of these small
birds, although otherwise quite similar to one another, have wide variations
in beak size and shape. Darwin was eventually able to show that different
species of finches had common ancestors who had evidently migrated to indi-
vidual islands in the Galápagos chain. He also showed that the type of beak
was adapted to the individual species’ food sources, which differed among
the islands. Darwin hypothesized that the geographical isolation imposed
by the different islands, as well as the local environmental conditions, led
to the evolution of these many different species from a small number of
ancestors.
We can imagine Darwin with these ideas swirling in his head during his

voyage and afterward, back in England, trying tomake sense of the data he had
collected. Gradual change over long periods can produce very large effects.
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Population growth combined with limited resources creates a struggle for
existence. Collections of individuals acting in self-interested ways produce
global benefit. Life seems to allow almost infinite variation, and a species’
particular traits seem designed for the very environment in which the species
lives. Species branch out from common ancestors.
Over the years, it all came together in his mind as a coherent theory.

Individual organisms have more offspring than can survive, given limited
food resources. The offspring are not exact copies of the parents but have
some small amount of random variation in their traits. The traits that allow
some offspring to survive and reproduce will be passed on to further offspring,
thus spreading in the population. Very gradually, through reproduction with
random variation and individual struggles for existence, new species will be
formed with traits ideally adapted to their environments. Darwin called this
process evolution by natural selection.
For years after the development of his theories, Darwin shared his ideas

with only a few people (Charles Lyell and some others). In part, his reticence
was due to a desire for additional data to bolster his conclusions, but also
contributing was a deep concern that his theories would bring unhappiness
to religious people, in particular to his own wife, who was deeply religious.
Having once considered becoming a country parson himself, he expressed
discomfort with his main conclusion: “I am almost convinced (quite contrary
to the opinion I started with) that species are not (it is like confessing a
murder) immutable.”
However, Darwin’s notebooks of the time also revealed his understanding

of the philosophical implications of his work for the status of humans. He
wrote, “Plato…says in Phaedo that our ‘necessary ideas’ arise from the pre-
existence of the soul, are not derivable from experience—read monkeys for
preexistence.”
Competition is not only the centerpiece of evolution, but is also a great

motivator in science itself. Darwin’s hesitation to publish his work quickly
melted away when he discovered that he was about to be scooped. In 1858,
Darwin received a manuscript from another English naturalist, Alfred Russell
Wallace, entitled On the Tendency of Varieties to Depart Indefinitely from the
Original Type. Darwin was alarmed to find that Wallace had independently
come up with the same basic ideas of evolution by natural selection. Darwin
expressed his dismay in a letter to Lyell: “[A]ll my originality, whatever it
may amount to, will be smashed.” However, he generously offered to help
Wallace publish his essay, but requested that his own work also be published
at the same time, in spite of his worries about this request being “base and
paltry.”
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Lyell agreed that, in order to solve the priority problem, Darwin and
Wallace should publish their work together. This joint work was read to the
Linnean Society in the summer of 1858. By the end of 1859, Darwin had
published his 400-plus-page book On the Origin of Species.
It turns out that the priority issue was not fully solved. Unbeknown to

Darwin, twenty-eight years before the publication of theOrigin, a little-known
Scot named Patrick Matthew had published an obscure book with an equally
obscure title, On Naval Timber and Arboriculture, in whose appendix he pro-
posed something very much like Darwin’s evolution by natural selection. In
1860,Matthew read aboutDarwin’s ideas in the periodicalGardiner’s Chronicle
and wrote a letter to the publication citing his priority. Darwin, ever anxious
to do the right thing, responded with his own letter: “I freely acknowledge
that Mr. Matthew has anticipated by many years the explanation which I have
offered of the origin of species, under the name of natural selection…I can do
no more than offer my apologies to Mr. Matthew for my entire ignorance of
his publication.”
So who actually is responsible for the idea of evolution by natural selection?

Evidently, this is another example of an idea that was “in the air” at the time,
an idea that someone would inevitably come up with. Darwin’s colleague
Thomas Huxley realized this and chided himself: “How extremely stupid not
to have thought of that!”
Why does Darwin get all the credit? There are several reasons, includ-

ing the fact that he was at that time a more famous and respected scientist
than the others, but the most important reason is that Darwin’s book, unlike
the works of Wallace and Matthew, contained a more coherent set of ideas
and a tremendous amount of evidence supporting those ideas. Darwin was
the person who turned natural selection from an interesting and plausible
speculation into an extremely well-supported theory.
To summarize the major ideas of Darwin’s theory:

• Evolution has occurred; that is, all species descend from a common
ancestor. The history of life is a branching tree of species.

• Natural selection occurs when the number of births is greater than
existing resources can support so that individuals undergo
competition for resources.

• Traits of organisms are inherited with variation. The variation is in
some sense random—that is, there is no force or bias leading to
variations that increase fitness (though, as I mentioned previously,
Darwin himself accepted Lamarck’s view that there are such forces).
Variations that turn out to be adaptive in the current environment are
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likely to be selected, meaning that organisms with those variations are
more likely to survive and thus pass on the new traits to their
offspring, causing the number of organisms with those traits to
increase over subsequent generations.

• Evolutionary change is constant and gradual via the accumulation of
small, favorable variations.

According to this view, the result of evolution by natural selection is the
appearance of “design” but with no designer. The appearance of design comes
from chance, natural selection, and long periods of time. Entropy decreases
(living systems becomemore organized, seeminglymore designed) as a result of
the work done by natural selection. The energy for this work comes from the
ability of individual organisms to metabolize energy from their environments
(e.g., sunlight and food).

Mendel and the Mechanism of Heredity

A major issue not explained by Darwin’s theory was exactly how traits are
passed on from parent to offspring, and how variation in those traits—upon
which natural selection acts—comes about. The discovery that DNA is the
carrier of hereditary information did not take place until the 1940s. Many
theories of heredity were proposed in the 1800s, but none was widely accepted
until the “rediscovery” in 1900 of the work of Gregor Mendel.
Mendel was an Austrian monk and physics teacher with a strong inter-

est in nature. Having studied the theories of Lamarck on the inheritance
of acquired traits, Mendel performed a sequence of experiments, over a
period of eight years, on generations of related pea plants to see whether he
could verify Lamarck’s claims. His results not only disconfirmed Lamarck’s
speculations but also revealed some surprising facts about the nature of
heredity.
Mendel looked at several different traits of pea plants: smoothness and

color of seeds; shape of pea pod; color of pods and flowers; locations of flowers
on the plants; and height of stems. Each of these traits (or “characters”) could
have one of two distinct forms (e.g., the pod color could be green or yellow; the
stem height could be tall or dwarf ).
Mendel’s long years of experiments revealed several things that are still

considered roughly valid in modern-day genetics. First, he found that the
plants’ offspring did not take on any traits that were acquired by the parents
during their lifetimes. Thus, Lamarckian inheritance did not take place.
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Gregor Mendel, 1822–1884
(From the National Library of

Medicine)
[http://wwwils.nlm.nih.gov/

visibleproofs/galleries/
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Second, he found that heredity took place via discrete “factors” that are
contributed by the parents, one factor being contributed by each parent for
each trait (e.g., each parent contributes either a factor for tall stems or dwarf
stems). These factors roughly correspond towhatwewould call genes. Thus, the
medium of inheritance, whatever it was, seemed to be discrete, not continuous
as was proposed by Darwin and others. (Note that pea plants reproduce via
either self-pollination or cross-pollination with other pea plants.)
For each trait he was studying, Mendel found that each plant has a pair

of genes responsible for the trait. (For simplicity, I am using more modern
terminology; the term “gene” was not used inMendel’s time.) Each gene of the
pair encodes a “value” for the trait—for example, tall vs. dwarf. This value is
called an allele. For stem height there are three possibilities for the allele pairs
encoded by these two genes: both alleles the same (tall/tall or dwarf/dwarf )
or different (tall/dwarf, which is equivalent to dwarf/tall ).
Moreover, Mendel found that, for each trait, one allele is dominant (e.g., tall

is dominant for stem height) and the other recessive (e.g., dwarf is recessive for
stem height). A tall/tall individual will always be tall. A tall/dwarf individual
will also be tall since tall is dominant; only one copy of the dominant allele
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is needed. Only a dwarf/dwarf individual—with two copies of the recessive
allele—will be dwarf.
As an example, suppose you have two tall/dwarf individuals that cross-

pollinate. Both the parents are tall, but there is a 25% chance that both will
pass on their dwarf gene to the child, making it dwarf/dwarf.
Mendel used such reasoning and the laws of probability to predict,

very successfully, how many plants in a given generation will display the
dominant or recessive version of a given trait, respectively. Mendel’s exper-
iments contradicted the widely believed notion of “blending inheritance”—
that the offspring’s traits typically will be an average of the parents’
traits.
Mendel’s workwas the first to explain and quantitatively predict the results

of inheritance, even thoughMendel did not knowwhat substance his “factors”
were made out of, or how they recombined as a result of mating. Unfortu-
nately, his 1865 paper, “Experiments in Plant Hybridization,” was published
in a rather obscure journal and was not appreciated as being of great impor-
tance until 1900, after which several scientists had obtained similar results
in experiments.

The Modern Synthesis

You would think that the dissemination of Mendel’s results would be a
big boost for Darwinism, since it provided Darwin’s theory with an exper-
imentally tested mechanism of inheritance. But for decades, Mendel’s ideas
were considered to be opposed to Darwin’s. Darwin’s theory asserted that
evolution, and therefore variation, is continuous (i.e., organisms can differ
from one another in arbitrarily minute ways) and Mendel’s theory proposed
that variation is discrete (a pea plant is either tall or dwarf, but nothing
in between). Many early adherents to Mendel’s theories believed in muta-
tion theory—a proposal that variation in organisms is due to mutations in
offspring, possibly very large, which themselves drive evolution, with nat-
ural selection only a secondary mechanism for preserving (or deleting) such
mutations in a population. Darwin and his early followers were completely
against this idea; the cornerstones of Darwin’s theory were that individual
variations must be very small, natural selection on these tiny variations is
what drives evolution, and evolution is gradual. “Natura non facit saltum”
(Nature does not make leaps) was Darwin’s famous dismissal of mutation
theory.
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After many bitter arguments between the early Darwinists and
Mendelians, this false opposition was cleared up by the 1920s when it was dis-
covered that, unlike the traits of Mendel’s pea plants, most traits in organisms
are determined by many genes, each with several different alleles. The huge
number of possible combinations of these many different alleles can result
in seemingly continuous variation in an organism. Discrete variation in the
genes of an organism can result in continuous-seeming variation in the organ-
ism’s phenotype—the physical traits (e.g., height, skin color, etc.) resulting
from these genes. Darwinism andMendelism were finally recognized as being
complementary, not opposed.
One reason the early Darwinists and Mendelians disagreed so strongly is

that, although both sides had experimental evidence supporting their posi-
tion, neither side had the appropriate conceptual framework (i.e., multiple
genes controlling traits) or mathematics to understand how their respective
theories fit together. A whole new set of mathematical tools had to be devel-
oped to analyze the results of Mendelian inheritance with many interacting
genes operating under natural selection in amating population. The necessary
tools were developed in the 1920s and 1930s, largely as a result of the work
of the mathematical biologist Ronald Fisher.
Fisher, along with Francis Galton, was a founder of the field of modern

statistics. He was originally spurred by real-world problems in agriculture
and animal breeding. Fisher’s work, along with that of J.B.S. Haldane and
Sewall Wright, showed that Darwin’s theories were indeed compatible with
Mendel’s. Moreover, the combined work of Fisher, Haldane, andWright pro-
vided a mathematical framework—population genetics—for understanding the
dynamics of alleles in an evolving population undergoing Mendelian inher-
itance and natural selection. This unification of Darwinism and Mendelism,
alongwith the framework of population genetics, was later called “theModern
Synthesis.”
Fisher,Wright, andHaldane are known as the three founders of theModern

Synthesis. There were many strong disagreements among the three, partic-
ularly a bitter fight between Fisher and Wright over the relative roles of
natural selection and “random genetic drift.” In the latter process, certain alle-
les become dominant in a population merely as a chance event. For instance,
suppose that in a population of pea plants, neither the dwarf nor tall alleles
really affect the fitness of the plants as a whole. Also suppose that at some
point the dwarf allele, just by chance, appears in a higher fraction of plants
than the tall allele. Then, if each dwarf and tall plant has about the same
number of offspring plants, the dwarf allele will likely be even more frequent
in the next generation, simply because there were more parent plants with the
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dwarf allele. In general, if there is no selective advantage of either trait, one
or the other trait will eventually be found in 100% of the individuals in the
population. Drift is a stronger force in small rather than large populations,
because in large populations, the small fluctuations that eventually result in
drift tend to cancel one another out.
Wright believed that random genetic drift played a significant role in

evolutionary change and the origin of new species, whereas in Fisher’s view,
drift played only an insignificant role at best.
These are both reasonable and interesting speculations. One would think

that Fisher andWright would have had lots of heated but friendly discussions
about it over beer (that is, when the Briton, Fisher, and theAmerican,Wright,
were on the same continent). However, what started as a very productive and
stimulating interchange between them ended upwith Fisher andWright each
publishing papers that offended the other, to the point that communication
between them basically ended by 1934. The debate over the respective roles
of natural selection versus drift was almost as bitter as the earlier one between
the Mendelians and the Darwinists—ironic, since it was largely the work of
Fisher and Wright that showed that these two sides actually need not have
disagreed.
The Modern Synthesis was further developed in the 1930s and 1940s and

was solidified into a set of principles of evolution that were almost universally
accepted by biologists for the following fifty years:

• Natural selection is the major mechanism of evolutionary change and
adaptation.

• Evolution is a gradual process, occurring via natural selection on very
small random variations in individuals. Variation of this sort is highly
abundant in populations and is not biased in any direction (e.g., it
does not intrinsically lead to “improvement,” as believed by Lamarck).
The source of individual variation is random genetic mutations and
recombinations.

• Macroscale phenomena, such as the origin of new species, can be
explained by the microscopic process of gene variation and natural
selection.

The original architects of the Modern Synthesis believed they had solved
the major problems of explaining evolution, even though they still did not
know the molecular basis of genes or by what mechanism variation arises.
As the evolutionist Ian Tattersall relates, “Nobody could ever again look at
the evolutionary process without very consciously standing on the edifice of
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the Synthesis. And this edifice was not only one of magnificent elegance
and persuasiveness; it had also brought together practitioners of all the
major branches of organismic biology, ending decades of infighting, mutual
incomprehension, and wasted energies.”

Challenges to the Modern Synthesis

Serious challenges to the validity of the Modern Synthesis began brewing
in the 1960s and 1970s. Perhaps the most prominent of the challengers
were paleontologists Stephen Jay Gould and Niles Eldredge, who pointed
out some discrepancies between what the Modern Synthesis predicted and
what the actual fossil record showed. Gould went on to be simultaneously
the best-known proponent and expositor of Darwinian evolution (through
his many books and articles for nonscientists) and the most vociferous critic
of the tenets of the Synthesis.
One major discrepancy is the prediction of the Modern Synthesis for grad-

ual change in the morphology of organisms as compared with what Gould,
Eldredge, and others claimed was the actual pattern in the fossil record: long
periods of no change in the morphology of organisms (and no new species

Stephen Jay Gould,
1941–2002. (Jon Chase/Harvard
News Office, © 1997 President
and Fellows of Harvard College,

reproduced by permission.)

84 background and history



Niles Eldredge (Courtesy of Niles Eldredge.)

emerging) punctuated by (relatively) short periods of large change inmorphol-
ogy, resulting in the emergence of new species. This pattern became labeled
punctuated equilibria. Others defended theModern Synthesis, asserting that the
fossil recordwas too incomplete for scientists tomake such an inference. (Some
detractors of punctuated equilibria nicknamed the theory “evolution by jerks.”
Gould countered that the proponents of gradualism supported “evolution by
creeps.”) Punctuated equilibria have also been widely observed in laboratory
experiments that test evolution and in simplified computer simulations of
evolution.
Thus Gould and his collaborators asserted that the “gradualism” pillar

of the Modern Synthesis is wrong. They also believed that the other two
pillars—the primacy of natural selection and small gene variations to explain
the history of life—were not backed up by evidence.
Although Gould agreed that natural selection is an important mechanism

of evolutionary change, he asserted that the roles of historical contingency and
biological constraints are at least as important as that of natural selection.

Historical contingency refers to all the random accidents, large and small, that
have contributed to the shaping of organisms. One example is the impact of
large meteors wiping out habitats and causing extinction of groups of species,
thus allowing other species to emerge.Other examples are the unknownquirks
of fate that gave carnivorousmammals an advantage over the carnivorous birds
that once rivaled them in numbers but which are now extinct.
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Gould’s metaphor for the role of contingency is an imaginary “tape of
life”—a kind of time-lapsemovie covering all of evolution since the beginning
of life onEarth.Gould asks,Whatwould happen if the tapewere restartedwith
slightly different initial conditions? Would we see anything like the array of
organisms that evolved during the first playing of the tape? The answer of
the Modern Synthesis would presumably be “yes”—natural selection would
again shape organisms to be optimally adapted to the environment, so they
would look much the same as what we have now. Gould’s answer is that the
role played by historical contingency would make the replayed tape much
different.
Biological constraints refer to the limitations on what natural selection can

create. Clearly natural selection can’t defy the laws of physics—it can’t create
a flying creature that does not obey the laws of gravity or a perpetual-motion
animal that needs no food. Gould and many others have argued that there are
biological constraints as well as physical constraints that limit what kind of
organisms can evolve.
This view naturally leads to the conclusion that not all traits of organisms

are explainable as “adaptations.” Clearly traits such as hunger and sex drive
lead us to survival and reproduction. But some traits may have arisen by
accident, or as side effects of adaptive traits or developmental constraints.
Gould has been quite critical of evolutionists he calls “strict adaptationists”—
those who insist that natural selection is the only possible explanation for
complex organization in biology.
Furthermore, Gould and his colleagues attacked the third pillar of the

Synthesis by proposing that some of the large-scale phenomena of evolution
cannot be explained in terms of the microscopic process of gene variation
and natural selection, but instead require natural selection to work on levels
higher than genes and individuals—perhaps entire species.
Some evidence for Gould’s doubts about the Modern Synthesis came from

work in molecular evolution. In the 1960s, Motoo Kimura proposed a the-
ory of “neutral evolution,” based on observations of protein evolution, that
challenged the central role of natural selection in evolutionary change. In the
1970s, chemists Manfred Eigen and Peter Schuster observed behavior analo-
gous to punctuated equilibria in evolution of viruses made up of RNA, and
developed an explanatory theory in which the unit of evolution was not an
individual virus, but a collective of viruses—a quasi-species—that consisted of
mutated copies of an original virus.
These, and other challenges to the Modern Synthesis were by no means

accepted by all evolutionists, and, as in the early days of Darwinism, debates
among rival views often became rancorous. In 1980, Gould wrote that “[T]he
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synthetic theory…is effectively dead, despite its persistence as textbook ortho-
doxy.” Going even further, Niles Eldredge and Ian Tattersall contended that
the view of evolution due to the Modern Synthesis “is one of the greatest
myths of twentieth-century biology.” On the other side, the eminent evolu-
tionary biologists Ernst Mayr and Richard Dawkins strongly defended the
tenets of the Synthesis. Mayr wrote, “I am of the opinion that nothing is
seriously wrong with the achievements of the evolutionary synthesis and that
it does not need to be replaced.” Dawkins wrote, “The theory of evolution by
cumulative natural selection is the only theory we know of that is in principle
capable of explaining the existence of organized complexity.” Many people
still hold to this view, but, as I describe in chapter 18, the idea that gradual
change via natural selection is the major, if not the only force in shaping life
is coming under increasing skepticism as new technologies have allowed the
field of genetics to explode with unexpected discoveries, profoundly changing
how people think about evolution.
It must be said that althoughGould, Eldredge, and others have challenged

the tenets of the Modern Synthesis, they, like virtually all biologists, still
strongly embrace the basic ideas of Darwinism: that evolution has occurred
over the last four billion years of life and continues to occur; that all modern
species have originated from a single ancestor; that natural selection has played
an important role in evolution; and that there is no “intelligent” force directing
evolution or the design of organisms.
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Genetics, Simplifiedchapter 6

Some of the challenges to theModern Synthesis have found sup-
port in the last several decades in results coming from molecular biology,

which have changed most biologists’ views of how evolution takes place.
In chapter 18, I describe some of these results and their impact on genet-

ics and evolutionary theory. As background for this and other discussions
throughout the book, I give here a brief review of the basics of genetics. If
you are already familiar with this subject, this chapter can be skipped.
It has been known since the early 1800s that all living organisms are

composed of tiny cells. In the later 1800s, it was discovered that the nucleus
of every cell contains large, elongated molecules that were dubbed chromo-
somes (“colored bodies,” since they could be stained so easily in experiments),
but their function was not known. It also was discovered that an individ-
ual cell reproduces itself by dividing into two identical cells, during which
process (dubbed mitosis) the chromosomes make identical copies of them-
selves. Many cells in our bodies undergo mitosis every few hours or so—it
is an integral process of growth, repair, and general maintenance of the
body.

Meiosis, discovered about the same time, is the process in diploid organ-
isms by which eggs and sperm are created. Diploid organisms, including
most mammals and many other classes of organisms, are those in which chro-
mosomes in all cells (except sperm and egg, or germ cells) are found in pairs
(twenty-three pairs in humans). During meiosis, one diploid cell becomes
four germ cells, each of which has half the number of chromosomes as the
original cell. Each chromosome pair in the original cell is cut into parts,
which recombine to form chromosomes for the four new germ cells. During



fertilization, the chromosomes in two germ cells fuse together to create the
correct number of chromosome pairs.
The result is that the genes on a child’s chromosome are amixed-up version

of its parents’ chromosomes. This is a major source of variation in organisms
with sexual reproduction. In organisms with no sexual reproduction the child
looks pretty identical to the parent.
All this is quite complicated, so it is no surprise that biologists took a long

time to unravel how it all works. But this was just the beginning.
The first suggestion that chromosomes are the carriers of heredity was

made by Walter Sutton in 1902, two years after Mendel’s work came to be
widely known. Sutton hypothesized that chromosomes are composed of units
(“genes”) that correspond toMendelian factors, and showed that meiosis gives
amechanism forMendelian inheritance. Sutton’s hypothesis was verified a few
years later by Thomas Hunt Morgan via experiments on that hero of genetics,
the fruit fly. However, the molecular makeup of genes, or how they produced
physical traits in organisms, was still not known.
By the late 1920s, chemists had discovered both ribonucleic acid (RNA)

and deoxyribonucleic acid (DNA), but the connection with genes was not dis-
covered for several more years. It became known that chromosomes contained
DNA, and some people suspected that this DNA might be the substrate of
genes. Others thought that the substrate consisted of proteins found in the
cell nucleus. DNA of course turned out to be the right answer, and this was
finally determined experimentally by the mid-1940s.
But several big questions remained. How exactly does an organism’s DNA

cause the organism to have particular traits, such as tall or dwarf stems? How
does DNA create a near-exact copy of itself during cell division (mitosis)?
And how does the variation, on which natural selection works, come about at
the DNA level?
These questions were all answered, at least in part, within the next ten

years. The biggest break came when, in 1953, James Watson and Francis
Crick figured out that the structure of DNA is a double helix. In the early
1960s, the combined work of several scientists succeeded in breaking the
genetic code—how the parts of DNA encode the amino acids that make up
proteins. A gene—a concept that had been around since Mendel without any
understanding of itsmolecular substrate—could now be defined as a substring
of DNA that codes for a particular protein. Soon after this, it was worked out
how the code was translated by the cell into proteins, how DNA makes
copies of itself, and how variation arises via copying errors, externally caused
mutations, and sexual recombination. This was clearly a “tipping point” in
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genetics research. The science of genetics was on a roll, and hasn’t stopped
rolling yet.

The Mechanics of DNA

The collection of all of an organism’s physical traits—its phenotype—comes
about largely due to the character of and interactions between proteins in
cells. Proteins are long chains of molecules called amino acids.
Every cell in your body contains almost exactly the same complete

DNA sequence, which is made up of a string of chemicals called nucleotides.
Nucleotides contain chemicals called bases, which come in four varieties, called
(for short) A, C, G, and T. In humans, strings of DNA are actually double
strands of paired A, C, G, and T molecules. Due to chemical affinities, A
always pairs with T, and C always pairs with G.
Sequences are usually written with one line of letters on the top, and the

paired letters (base pairs) on the bottom, for example,

T C C G A T T . . .

A G G C T A A . . .

In a DNA molecule, these double strands weave around one another in a
double helix (figure 6.1).
Subsequences of DNA form genes. Roughly, each gene codes for a particular

protein. It does that by coding for each of the amino acids that make up the
protein. The way amino acids are coded is called the genetic code. The code is
the same for almost every organism on Earth. Each amino acid corresponds to
a triple of nucleotide bases. For example, the DNA triplet A A G corresponds
to the amino acid phenylalanine, and the DNA triplet C A C corresponds to
the amino acid valine. These triplets are called codons.
So how do proteins actually get formed by genes? Each cell has a complex

set ofmolecularmachinery that performs this task. The first step is transcription
(figure 6.2), which happens in the cell nucleus. From a single strand of the
DNA, an enzyme (an active protein) called RNA polymerase unwinds a small
part of the DNA from its double helix. This enzyme then uses one of the
DNA strands to create a messenger RNA (or mRNA) molecule that is a letter-
for-letter copy of the section of DNA. Actually, it is an anticopy: in every place
where the gene has C, the mRNA has G, and in every place where the gene
has A, the mRNA has U (its version of T). The original can be reconstructed
from the anticopy.
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figure 6.1. Illustration of the
double helix structure of DNA.
(From the National Human
Genome Research Institute,
Talking Glossary of Genetic Terms
[http://www.genome.gov/glossary.cfm.])

figure 6.2. Illustration of transcription of DNA into messenger RNA. Note that
the letter U is RNA’s version of DNA’s letter T.

The process of transcription continues until the gene is completely
transcribed as mRNA.
The second step is translation (figure 6.3), which happens in the cell cyto-

plasm. The newly created mRNA strand moves from the nucleus to the
cytoplasm, where it is read, one codon at a time, by a cytoplasmic struc-
ture called a ribosome. In the ribosome, each codon is brought together with a
corresponding anticodon residing on a molecule of transferRNA (tRNA). The
anticodon consists of the complementary bases. For example, in figure 6.3,
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figure 6.3. Illustration of translation of messenger RNA into amino acids.

the mRNA codon being translated is U AG, and the anticodon is the comple-
mentary bases A U C. A tRNA molecule that has that anticodon will attach
to the mRNA codon, as shown in the figure. It just so happens that every
tRNA molecule has attached to it both an anticodon and the corresponding
amino acid (the codon A U C happens to code for the amino acid isoleucine
in case you were interested). Douglas Hofstadter has called tRNA “the cell’s
flash cards.”
The ribosome cuts off the amino acids from the tRNAmolecules and hooks

them up into a protein. When a stop-codon is read, the ribosome gets the
signal to stop, and releases the protein into the cytoplasm, where it will go
off and perform whatever function it is supposed to do.
The transcription and translation of a gene is called the gene’s expression

and a gene is being expressed at a given time if it is being transcribed and
translated.
All this happens continually and simultaneously in thousands of sites in

each cell, and in all of the trillions of cells in your body. It’s amazing how little
energy this takes—if you sit around watching TV, say, all this subcellular
activity will burn up fewer than 100 calories per hour. That’s because these
processes are in part fueled by the random motion and collisions of huge
numbers of molecules, which get their energy from the “ambient heat bath”
(e.g., your warm living room).
The paired nature of nucleotide bases, A with T and C with G, is also the

key to the replication of DNA. Before mitosis, enzymes unwind and separate
strands of DNA. For each strand, other enzymes read the nucleotides in the
DNA strand, and to each one attach a new nucleotide (new nucleotides are
continually manufactured in chemical processes going on in the cell), with
A attached to T, and C attached to G, as usual. In this way, each strand of
the original two-stranded piece of DNA becomes a new two-stranded piece of
DNA, and each cell that is the product of mitosis gets one of these complete
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two-stranded DNA molecules. There are many complicated processes in the
cell that keep this replication process on track. Occasionally (about once
every 100 billion nucleotides), errors will occur (e.g., a wrong base will be
attached), resulting in mutations.
It is important to note that there is a wonderful self-reference here: All this

complex cellular machinery—the mRNA, tRNA, ribosomes, polymerases,
and so forth—that effect the transcription, translation, and replication of
DNA are themselves encoded in that very DNA. As Hofstadter remarks:
“The DNA contains coded versions of its own decoders!” It also contains
coded versions of all the proteins that go into synthesizing the nucleotides
the DNA is made up of. It’s a self-referential circularity that would no doubt
have pleased Turing, had he lived to see it explained.
The processes sketched above were understood in their basic form by the

mid-1960s in a heroic effort by geneticists to make sense of this incredi-
bly complex system. The effort also brought about a new understanding of
evolution at the molecular level.
In 1962, Crick, Watson, and biologist Maurice Wilkins jointly received

the Nobel prize in medicine for their discoveries about the structure of
DNA. In 1968, Har Gobind Korana, Robert Holley, and Marshall Niren-
berg received the same prize for their work on cracking the genetic code. By
this time, it finally seemed that the major mysteries of evolution and inher-
itance had been mostly worked out. However, as we see in chapter 18, it is
turning out to be a lot more complicated than anyone ever thought.
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Defining and Measuring Complexitychapter 7

This book is about complexity, but so far I haven’t defined
this term rigorously or given any clear way to answer questions such

as these: Is a human brain more complex than an ant brain? Is the human
genome more complex than the genome of yeast? Did complexity in biologi-
cal organisms increase over the last four billion years of evolution? Intuitively,
the answer to these questions would seem to be “of course.” However, it has
been surprisingly difficult to come up with a universally accepted definition
of complexity that can help answer these kinds of questions.
In 2004 I organized a panel discussion on complexity at the Santa Fe

Institute’s annual Complex Systems Summer School. It was a special year:
2004 marked the twentieth anniversary of the founding of the institute. The
panel consisted of some of the most prominent members of the SFI faculty,
including Doyne Farmer, Jim Crutchfield, Stephanie Forrest, Eric Smith,
John Miller, Alfred Hübler, and Bob Eisenstein—all well-known scientists
in fields such as physics, computer science, biology, economics, and deci-
sion theory. The students at the school—young scientists at the graduate or
postdoctoral level—were given the opportunity to ask any question of the
panel. The first question was, “How do you define complexity?” Everyone on
the panel laughed, because the question was at once so straightforward, so
expected, and yet so difficult to answer. Each panel member then proceeded
to give a different definition of the term. A few arguments even broke out
betweenmembers of the faculty over their respective definitions. The students
were a bit shocked and frustrated. If the faculty of the Santa Fe Institute—
the most famous institution in the world devoted to research on complex
systems—could not agree on what was meant by complexity, then how can
there even begin to be a science of complexity?



The answer is that there is not yet a single science of complexity but
rather several different sciences of complexity with different notions of what
complexity means. Some of these notions are quite formal, and some are still
very informal. If the sciences of complexity are to become a unified science of
complexity, then people are going to have to figure out how these diverse
notions—formal and informal—are related to one another, and how to most
usefully refine the overly complex notion of complexity.This is work that largely
remains to be done, perhaps by those shocked and frustrated students as they
take over from the older generation of scientists.
I don’t think the students should have been shocked and frustrated. Any

perusal of the history of sciencewill show that the lack of a universally accepted
definition of a central term is more common than not. Isaac Newton did not
have a good definition of force, and in fact, was not happy about the concept
since it seemed to require a kind of magical “action at a distance,” which was
not allowed inmechanistic explanations of nature.While genetics is one of the
largest and fastest growing fields of biology, geneticists still do not agree on
precisely what the term gene refers to at the molecular level. Astronomers have
discovered that about 95% of the universe is made up of “dark matter” and
“dark energy” but have no clear idea what these two things actually consist of.
Psychologists don’t have precise definitions for idea or concept, or know what
these correspond to in the brain. These are just a few examples. Science often
makes progress by inventing new terms to describe incompletely understood
phenomena; these terms are gradually refined as the science matures and the
phenomena becomemore completely understood. For example, physicists now
understand all forces in nature to be combinations of four different kinds of
fundamental forces: electromagnetic, strong, weak, and gravitational. Physi-
cists have also theorized that the seeming “action at a distance” arises from the
interaction of elementary particles. Developing a single theory that describes
these four fundamental forces in terms of quantum mechanics remains one of
the biggest open problems in all of physics. Perhaps in the future we will be
able to isolate the different fundamental aspects of “complexity” and eventu-
ally unify all these aspects in some overall understanding of what we now call
complex phenomena.
The physicist Seth Lloyd published a paper in 2001 proposing three dif-

ferent dimensions along which to measure the complexity of an object or
process:

How hard is it to describe?

How hard is it to create?

What is its degree of organization?
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Lloyd then listed about forty measures of complexity that had been pro-
posed by different people, each of which addressed one or more of these three
questions using concepts from dynamical systems, thermodynamics, infor-
mation theory, and computation. Now that we have covered the background
for these concepts, I can sketch some of these proposed definitions.
To illustrate these definitions, let’s use the example of comparing the

complexity of the human genome with the yeast genome. The human genome
contains approximately three billion base pairs (i.e., pairs of nucleotides). It
has been estimated that humans have about 25,000 genes—that is, regions
that code for proteins. Surprisingly, only about 2% of base pairs are actually
parts of genes; the nongene parts of the genome are called noncoding regions.
The noncoding regions have several functions: some of them help keep their
chromosomes from falling apart; some help control the workings of actual
genes; some may just be “junk” that doesn’t really serve any purpose, or has
some function yet to be discovered.
I’m sure you’ve heard of the Human Genome project, but you may not

know that there was also a Yeast Genome Project, in which the complete
DNA sequences of several varieties of yeast were determined. The first variety
that was sequenced turned out to have approximately twelve million base
pairs and six thousand genes.

Complexity as Size

One simple measure of complexity is size. By this measure, humans are about
250 times as complex as yeast if we compare the number of base pairs, but
only about four times as complex if we count genes.
Since 250 is a pretty big number, you may now be feeling rather complex,

at least as compared with yeast. However, disappointingly, it turns out that
the amoeba, another type of single-celledmicroorganism, has about 225 times
as many base pairs as humans do, and a mustard plant called Arabidopsis has
about the same number of genes that we do.
Humans are obviously more complex than amoebae or mustard plants, or

at least I would like to think so. Thismeans that genome size is not a very good
measure of complexity; our complexity must come from something deeper
than our absolute number of base pairs or genes (See figure 7.1).

Complexity as Entropy

Another proposed measure of the complexity of an object is simply its
Shannon entropy, defined in chapter 3 to be the average information
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figure 7.1. Clockwise from top left: Yeast, an amoeba, a human, and Arabidopsis.
Which is the most complex? If you used genome length as the measure of
complexity, then the amoeba would win hands down (if only it had hands). (Yeast
photograph from NASA, [http://www.nasa.gov/mission_pages/station/
science/experiments/Yeast-GAP.html]; amoeba photograph from NASA
[http://ares.jsc.nasa.gov/astrobiology/biomarkers/_images/amoeba.jpg];
Arabidopsis photograph courtesy of Kirsten Bomblies; Darwin photograph
reproduced with permission from John van Wyhe, ed., The Complete Work of
Charles Darwin Online [http://darwin-online.org.uk/].)

content or “amount of surprise” a message source has for a receiver. In our
example, we could define a message to be one of the symbols A, C, G, or T.
A highly ordered and very easy-to-describe sequence such as “A A A A A A
A . . . A” has entropy equal to zero. A completely random sequence has the
maximum possible entropy.
There are a few problems with using Shannon entropy as a measure of

complexity. First, the object or process in question has to be put in the
form of “messages” of some kind, as we did above. This isn’t always easy or
straightforward—how, for example, would we measure the entropy of the
human brain? Second, the highest entropy is achieved by a random set of
messages. We could make up an artificial genome by choosing a bunch of
random As, Cs, Gs, and Ts. Using entropy as the measure of complexity, this
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random, almost certainly nonfunctional genome would be considered more
complex than the human genome. Of course one of the things that makes
humans complex, in the intuitive sense, is precisely that our genomes aren’t
random but have been evolved over long periods to encode genes useful to our
survival, such as the ones that control the development of eyes and muscles.
The most complex entities are not the most ordered or random ones but
somewhere in between. Simple Shannon entropy doesn’t capture our intuitive
concept of complexity.

Complexity as Algorithmic Information Content

Many people have proposed alternatives to simple entropy as a measure
of complexity. Most notably Andrey Kolmogorov, and independently both
Gregory Chaitin and Ray Solomonoff, proposed that the complexity of an
object is the size of the shortest computer program that could generate a
complete description of the object. This is called the algorithmic information
content of the object. For example, think of a very short (artificial) string
of DNA:

A C A C A C A C A C A C A C A C A C A C (string 1).

A very short computer program, “Print A C ten times,” would spit out this
pattern. Thus the string has low algorithmic information content. In contrast,
here is a string I generated using a pseudo-random number generator:

A T C T G T C A A G A C G G A A C A T (string 2)

Assuming my random number generator is a good one, this string has no
discernible overall pattern to it, and would require a longer program, namely
“Print the exact string A T C T G T C A A A A C G G A A C A T.”
The idea is that string 1 is compressible, but string 2 is not, so contains
more algorithmic information. Like entropy, algorithmic information content
assigns higher information content to random objects than ones we would
intuitively consider to be complex.
The physicist Murray Gell-Mann proposed a related measure he called

“effective complexity” that accords better with our intuitions about complex-
ity. Gell-Mann proposed that any given entity is composed of a combination
of regularity and randomness. For example, string 1 above has a very sim-
ple regularity: the repeating A C motif. String 2 has no regularities, since
it was generated at random. In contrast, the DNA of a living organism
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has some regularities (e.g., important correlations among different parts
of the genome) probably combined with some randomness (e.g., true junk
DNA).
To calculate the effective complexity, first one figures out the best descrip-

tion of the regularities of the entity; the effective complexity is defined as the
amount of information contained in that description, or equivalently, the
algorithmic information content of the set of regularities.
String 1 above has the regularity that it is A C repeated over and over. The

amount of information needed to describe this regularity is the algorithmic
information content of this regularity: the length of the program “Print A C
some number of times.” Thus, entities with very predictable structure have
low effective complexity.
In the other extreme, string 2, being random, has no regularities. Thus

there is no information needed to describe its regularities, and while the algo-
rithmic information content of the string itself is maximal, the algorithmic
information content of the string’s regularities—its effective complexity—is
zero. In short, as we would wish, both very ordered and very random entities
have low effective complexity.
TheDNA of a viable organism, havingmany independent and interdepen-

dent regularities, would have high effective complexity because its regularities
presumably require considerable information to describe.
The problem here, of course, is how do we figure out what the regularities

are? And what happens if, for a given system, various observers do not agree
on what the regularities are?
Gell-Mannmakes an analogy with scientific theory formation, which is, in

fact, a process of finding regularities about natural phenomena. For any given
phenomenon, there are many possible theories that express its regularities,
but clearly some theories—the simpler and more elegant ones—are better
than others. Gell-Mann knows a lot about this kind of thing—he shared the
1969 Nobel prize in Physics for his wonderfully elegant theory that finally
made sense of the (then) confusing mess of elementary particle types and their
interactions.
In a similar way, given different proposed sets of regularities that fit an

entity, we can determine which is best by using the test called Occam’s Razor.
The best set of regularities is the smallest one that describes the entity in
question and at the same time minimizes the remaining random component
of that entity. For example, biologists today have found many regularities
in the human genome, such as genes, regulatory interactions among genes,
and so on, but these regularities still leave a lot of seemingly random aspects
that don’t obey any regularities—namely, all that so-called junk DNA. If the
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Murray Gell-Mann of biology were to come along, he or she might find a
better set of regularities that is simpler than that which biologists have so far
identified and that is obeyed by more of the genome.
Effective complexity is a compelling idea, though likemost of the proposed

measures of complexity, it is hard to actuallymeasure. Critics also have pointed
out that the subjectivity of its definition remains a problem.

Complexity as Logical Depth

In order to get closer to our intuitions about complexity, in the early 1980s
the mathematician Charles Bennett proposed the notion of logical depth. The
logical depth of an object is a measure of how difficult that object is to
construct. A highly ordered sequence of A, C, G, T (e.g., string 1, mentioned
previously) is obviously easy to construct. Likewise, if I asked you to give me
a random sequence of A, C, G, and T, that would be pretty easy for you to do,
especially with the help of a coin you could flip or dice you could roll. But if I
asked you to give me a DNA sequence that would produce a viable organism,
you (or any biologist) would be very hard-pressed to do so without cheating
by looking up already-sequenced genomes.
In Bennett’s words, “Logically deep objects . . . contain internal evidence

of having been the result of a long computation or slow-to-simulate dynamical
process, and could not plausibly have originated otherwise.” Or as Seth Lloyd
says, “It is an appealing idea to identify the complexity of a thing with
the amount of information processed in the most plausible method of its
creation.”
To define logical depth more precisely, Bennett equated the construction of

an object with the computation of a string of 0s and 1s encoding that object.
For our example, we could assign to each nucleotide letter a two-digit code:
A = 00, C = 01, G = 10, and T = 11. Using this code, we could turn any
sequence ofA,C,G, and T into a string of 0s and 1s. The logical depth is then
defined as the number of steps that it would take for a properly programmed
Turing machine, starting from a blank tape, to construct the desired sequence
as its output.
Since, in general, there are different “properly programmed” Turing

machines that could all produce the desired sequence in different amounts
of time, Bennett had to specify which Turing machine should be used. He
proposed that the shortest of these (i.e., the one with the least number of
states and rules) should be chosen, in accordance with the above-mentioned
Occam’s Razor.
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Logical depth has very nice theoretical properties that match our intu-
itions, but it does not give a practical way of measuring the complexity of any
natural object of interest, since there is typically no practical way of finding
the smallest Turing machine that could have generated a given object, not to
mention determining how long that machine would take to generate it. And
this doesn’t even take into account the difficulty, in general, of describing a
given object as a string of 0s and 1s.

Complexity as Thermodynamic Depth

In the late 1980s, Seth Lloyd and Heinz Pagels proposed a new measure
of complexity, thermodynamic depth. Lloyd and Pagels’ intuition was simi-
lar to Bennett’s: more complex objects are harder to construct. However,
instead of measuring the number of steps of the Turing machine needed
to construct the description of an object, thermodynamic depth starts by
determining “the most plausible scientifically determined sequence of events
that lead to the thing itself,” and measures “the total amount of thermo-
dynamic and informational resources required by the physical construction
process.”
For example, to determine the thermodynamic depth of the human

genome, we might start with the genome of the very first creature that
ever lived and list all the evolutionary genetic events (random mutations,
recombinations, gene duplications, etc.) that led to modern humans. Pre-
sumably, since humans evolved billions of years later than amoebas, their
thermodynamic depth is much greater.
Like logical depth, thermodynamic depth is appealing in theory, but in

practice has some problems as a method for measuring complexity. First,
there is the assumption that we can, in practice, list all the events that lead
to the creation of a particular object. Second, as pointed out by some crit-
ics, it’s not clear from Seth Lloyd and Heinz Pagels’ definition just how to
define “an event.” Should a genetic mutation be considered a single event or a
group of millions of events involving all the interactions between atoms and
subatomic particles that cause the molecular-level event to occur? Should a
genetic recombination between two ancestor organisms be considered a single
event, or should we include all the microscale events that cause the two organ-
isms to end up meeting, mating, and forming offspring? In more technical
language, it’s not clear how to “coarse-grain” the states of the system—
that is, how to determine what are the relevant macrostates when listing
events.
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Complexity as Computational Capacity

If complex systems—both natural and human-constructed—can perform
computation, then we might want to measure their complexity in terms of
the sophistication of what they can compute. The physicist StephenWolfram,
for example, has proposed that systems are complex if their computational
abilities are equivalent to those of a universal Turing machine. However, as
Charles Bennett and others have argued, the ability to perform universal com-
putation doesn’t mean that a system by itself is complex; rather, we should
measure the complexity of the behavior of the system coupled with its inputs.
For example, a universal Turing machine alone isn’t complex, but together
with a machine code and input that produces a sophisticated computation, it
creates complex behavior.

Statistical Complexity

Physicists Jim Crutchfield and Karl Young defined a different quantity,
called statistical complexity, which measures the minimum amount of infor-
mation about the past behavior of a system that is needed to optimally
predict the statistical behavior of the system in the future. (The physicist
Peter Grassberger independently defined a closely related concept called effec-
tive measure complexity.) Statistical complexity is related to Shannon’s entropy
in that a system is thought of as a “message source” and its behavior is
somehow quantified as discrete “messages.” Here, predicting the statis-
tical behavior consists of constructing a model of the system, based on
observations of the messages the system produces, such that the model’s
behavior is statistically indistinguishable from the behavior of the system
itself.
For example, a model of the message source of string 1 above could be

very simple: “repeat A C”; thus its statistical complexity is low. However,
in contrast to what could be done with entropy or algorithmic information
content, a simplemodel could also be built of themessage source that generates
string 2: “choose at random from A, C, G, or T.” The latter is possible because
models of statistical complexity are permitted to include random choices. The
quantitative value of statistical complexity is the information content of the
simplest such model that predicts the system’s behavior. Thus, like effective
complexity, statistical complexity is low for both highly ordered and random
systems, and is high for systems in between—those that we would intuitively
consider to be complex.
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Like the other measures described above, it is typically not easy to mea-
sure statistical complexity if the system in question does not have a ready
interpretation as a message source. However, Crutchfield, Young, and their
colleagues have actually measured the statistical complexity of a number of
real-world phenomena, such as the atomic structure of complicated crystals
and the firing patterns of neurons.

Complexity as Fractal Dimension

So far all the complexity measures I have discussed have been based on infor-
mation or computation theoretic concepts. However, these are not the only
possible sources of measures of complexity. Other people have proposed con-
cepts from dynamical systems theory to measure the complexity of an object
or process. One such measure is the fractal dimension of an object. To explain
this measure, I must first explain what a fractal is.
The classic example of a fractal is a coastline. If you view a coastline from

an airplane, it typically looks rugged rather than straight, with many inlets,
bays, prominences, and peninsulas (Figure 7.2, top). If you then view the
same coastline from your car on the coast highway, it still appears to have the
exact same kind of ruggedness, but on a smaller scale (Figure 7.2, bottom).
Ditto for the close-up view when you stand on the beach and even for the
ultra close-up view of a snail as it crawls on individual rocks. The similarity
of the shape of the coastline at different scales is called “self-similarity.”
The term fractal was coined by the French mathematician Benoit Man-

delbrot, who was one of the first people to point out that the world is full of
fractals—that is, many real-world objects have a rugged self-similar structure.
Coastlines, mountain ranges, snowflakes, and trees are often-cited examples.
Mandelbrot even proposed that the universe is fractal-like in terms of the
distribution of galaxies, clusters of galaxies, clusters of clusters, et cetera.
Figure 7.3 illustrates some examples of self-similarity in nature.
Although the term fractal is sometimes used to mean different things by

different people, in general a fractal is a geometric shape that has “fine structure
at every scale.” Many fractals of interest have the self-similarity property seen
in the coastline example given above. The logistic-map bifurcation diagram
from chapter 2 (figure 2.6) also has some degree of self-similarity; in fact the
chaotic region of this (R greater than 3.57 or so) and many other systems are
sometimes called fractal attractors.
Mandelbrot and othermathematicians have designedmanydifferentmath-

ematical models of fractals in nature. One famous model is the so-called Koch
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figure 7.2. Top: Large-scale aerial view of Ireland, whose coastline has
self-similar (fractal) properties. Bottom: Smaller-scale view of part of the
Irish coastline. Its rugged structure at this scale resembles the rugged
structure at the larger scale. (Top photograph from NASA Visible Earth
[http://visibleearth.nasa.gov/]. Bottom photograph by Andreas Borchet,
licensed under Creative Commons [http://creativecommons.org/
licenses/by/3.0/].)
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figure 7.3. Other examples of
fractal-like structures in nature:
A tree, a snowflake
(microscopically enlarged), a
cluster of galaxies. (Tree
photograph from the National
Oceanic and Atmospheric
Administration Photo Library.
Snowflake photograph from
[http://www.SnowCrystals.
com], courtesy of Kenneth
Libbrecht. Galaxy cluster
photograph from NASA Space
Telescope Science Institute.)

curve (Koch, pronounced “Coke,” is the name of the Swedish mathematician
who proposed this fractal). The Koch curve is created by repeated application
of a rule, as follows.

1. Start with a single line.
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2. Apply the Koch curve rule: “For each line segment, replace its middle
third by two sides of a triangle, each of length 1/3 of the original
segment.” Here there is only one line segment; applying the rule to it
yields:

3. Apply the Koch curve rule to the resulting figure. Keep doing this
forever. For example, here are the results from a second, third, and
fourth application of the rule:

This last figure looks a bit like an idealized coastline. (In fact, if you turn
the page 90 degrees to the left and squint really hard, it looks just like the west
coast of Alaska.) Notice that it has true self-similarity: all of the subshapes,
and their subshapes, and so on, have the same shape as the overall curve. If we
applied the Koch curve rule an infinite number of times, the figure would be
self-similar at an infinite number of scales—a perfect fractal. A real coastline
of course does not have true self-similarity. If you look at a small section of
the coastline, it does not have exactly the same shape as the entire coastline,
but is visually similar in many ways (e.g., curved and rugged). Furthermore,
in real-world objects, self-similarity does not go all the way to infinitely small
scales. Real-world structures such as coastlines are often called “fractal” as a
shorthand, but it is more accurate to call them “fractal-like,” especially if a
mathematician is in hearing range.
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Fractals wreak havoc with our familiar notion of spatial dimension. A
line is one-dimensional, a surface is two-dimensional, and a solid is three-
dimensional. What about the Koch curve?
First, let’s look at what exactly dimension means for regular geometric

objects such as lines, squares, and cubes.
Start with our familiar line segment. Bisect it (i.e., cut it in half). Then

bisect the resulting line segments, continuing at each level to bisect each line
segment:

Each level is made up of two half-sized copies of the previous level.
Now start with a square. Bisect each side. Then bisect the sides of the

resulting squares, continuing at each level to bisect every side:

Each level is made up of four one-quarter-sized copies of the previous level.
Now, you guessed it, take a cube and bisect all the sides. Keep bisecting

the sides of the resulting cubes:

Each level is made up of eight one-eighth-sized copies of the previous
level.
This sequence gives a meaning of the term dimension. In general, each level

is made up of smaller copies of the previous level, where the number of copies
is 2 raised to the power of the dimension (2dimension). For the line, we get
21 = 2 copies at each level; for the square we get 22 = 4 copies at each level,
and for the cube we get 23 = 8 copies at each level. Similarly, if you trisect
instead of bisect the lengths of the line segments at each level, then each level
is made up of 3dimension copies of the previous level. I’ll state this as a general
formula:

Create a geometric structure from an original object by repeatedly
dividing the length of its sides by a number x. Then each level is made
up of xdimension copies of the previous level.
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Indeed, according to this definition of dimension, a line is one-
dimensional, a square two-dimensional and a cube three-dimensional. All
good and well.
Let’s apply an analogous definition to the object created by the Koch rule.

At each level, the line segments of the object are three times smaller than
before, and each level consists of four copies of the previous level. By our defi-
nition above, itmust be true that 3dimension is equal to 4.What is the dimension?
To figure it out, I’ll do a calculation out of your sight (but detailed in the
notes), and attest that according to our formula, the dimension is approxi-
mately 1.26. That is, the Koch curve is neither one- nor two-dimensional, but
in between. Amazingly enough, fractal dimensions are not integers. That’s
what makes fractals so strange.
In short, the fractal dimension quantifies the number of copies of a self-

similar object at each level ofmagnification of that object. Equivalently, fractal
dimension quantifies how the total size (or area, or volume) of an object will
change as the magnification level changes. For example, if you measure the
total length of the Koch curve each time the rule is applied, you will find that
each time the length has increased by 4/3. Only perfect fractals—those whose
levels of magnification extend to infinity—have precise fractal dimension. For
real-world finite fractal-like objects such as coastlines, we can measure only
an approximate fractal dimension.
I have seen many attempts at intuitive descriptions of what fractal dimen-

sionmeans. For example, it has been said that fractal dimension represents the
“roughness,” “ruggedness,” “jaggedness,” or “complicatedness” of an object;
an object’s degree of “fragmentation”; and how “dense the structure” of the
object is. As an example, compare the coastline of Ireland (figure 7.2) with
that of South Africa (figure 7.4). The former has higher fractal dimension than
the latter.
One description I like a lot is the rather poetic notion that fractal dimension

“quantifies the cascade of detail” in an object. That is, it quantifies how much
detail you see at all scales as you dive deeper and deeper into the infinite cascade
of self-similarity. For structures that aren’t fractals, such as a smooth round
marble, if you keep looking at the structure with increasing magnification,
eventually there is a level with no interesting details. Fractals, on the other
hand, have interesting details at all levels, and fractal dimension in some
sense quantifies how interesting that detail is as a function of how much
magnification you have to do at each level to see it.
This is why people have been attracted to fractal dimension as a way

of measuring complexity, and many scientists have applied this measure to
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figure 7.4. Coastline of South Africa. (Photograph from NASA
Visible Earth [http://visibleearth.nasa.gov].)

real-world phenomena. However, ruggedness or cascades of detail are far from
the only kind of complexity we would like to measure.

Complexity as Degree of Hierarchy

In Herbert Simon’s famous 1962 paper “The Architecture of Complexity”
Simon proposed that the complexity of a system can be characterized in terms
of its degree of hierarchy: “the complex system being composed of subsys-
tems that, in turn, have their own subsystems, and so on.” Simon was a
distinguished political scientist, economist, and psychologist (among other
things); in short, a brilliant polymath who probably deserves a chapter of his
own in this book.
Simon proposed that the most important common attributes of complex

systems are hierarchy and near-decomposibility. Simon lists a number of complex
systems that are structured hierarchically—e.g., the body is composed of
organs, which are in turn composed of cells, which are in turn composed of
celluar subsystems, and so on. In a way, this notion is similar to fractals in
the idea that there are self-similar patterns at all scales.
Near-decomposibility refers to the fact that, in hierarchical complex sys-

tems, there are many more strong interactions within a subsystem than
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between subsystems. As an example, each cell in a living organism has a
metabolic network that consists of a huge number of interactions among
substrates, many more than take place between two different cells.
Simon contends that evolution can design complex systems in nature only

if they can be put together like building blocks—that is, only if they are
hierachical and nearly decomposible; a cell can evolve and then become a
building block for a higher-level organ, which itself can become a building
block for an even higher-level organ, and so forth. Simon suggests that what
the study of complex systems needs is “a theory of hierarchy.”
Many others have explored the notion of hierarchy as a possible way tomea-

sure complexity. As one example, the evolutionary biologist Daniel McShea,
who has long been trying to make sense of the notion that the complexity
of organisms increases over evolutionary time, has proposed a hierarchy scale
that can be used to measure the degree of hierarchy of biological organisms.
McShea’s scale is defined in terms of levels of nestedness: a higher-level entity
contains as parts entities from the next lower level. McShea proposes the
following biological example of nestedness:

Level 1: Prokaryotic cells (the simplest cells, such as bacteria)

Level 2: Aggregates of level 1 organisms, such as eukaryotic cells (more
complex cells whose evolutionary ancestors originated from the fusion
of prokaryotic cells)

Level 3: Aggregates of level 2 organisms, namely all multicellular
organisms

Level 4: Aggregates of level 3 organisms, such as insect colonies and
“colonial organisms” such as the Portuguese man o’ war.

Each level can be said to be more complex than the previous level, at least
as far as nestedness goes. Of course, as McShea points out, nestedness only
describes the structure of an organism, not any of its functions.
McShea used data both from fossils andmodern organisms to show that the

maximum hierarchy seen in organisms increases over evolutionary time. Thus
this is one way in which complexity seems to have quantifiably increased with
evolution, although measuring the degree of hierarchy in actual organisms
can involve some subjectivity in determining what counts as a “part” or even
a “level.”
There are many other measures of complexity that I don’t have space to

cover here. Each of these measures captures something about our notion of
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complexity but all have both theoretical and practical limitations, and have so
far rarely been useful for characterizing any real-world system. The diversity
of measures that have been proposed indicates that the notions of complexity
that we’re trying to get at have many different interacting dimensions and
probably can’t be captured by a single measurement scale.
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part ii
Life and Evolution
in Computers

Nature proceeds little by little from things lifeless to animal life in such a way that

it is impossible to determine the exact line of demarcation.

—Aristotle, History of Animals

[W]e all know intuitively what life is: it is edible, lovable, or lethal.

—James Lovelock, The Ages of Gaia
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Self-Reproducing Computer Programschapter 8

What Is Life?

Chapter 5 described some of the history of ideas about
how life has evolved. But a couple of things were missing, such as, how

did life originate in the first place? And what exactly constitutes being alive?
As you can imagine, both questions are highly contentious in the scientific
world, and no one yet has definitive answers. Although I do not address the first
question here, there has been some fascinating research on it in the complex
systems community.
The second question—what is life, exactly?—has been on the minds of

people probably for as long as “people” have existed. There is still no good
agreement among either scientists or the general public on the definition of
life. Questions such as “When does life begin?” or “What form could life
take on other planets?” are still the subject of lively, and sometimes vitriolic,
debate.
The idea of creating artificial life is also very old, going back at least two

millennia to legends of the Golem and of Ovid’s Pygmalion, continuing in
the nineteenth-century story of Frankenstein’s monster, all the way to the
present era of movies such as Blade Runner and The Matrix, and computer
games such as “Sim Life.”
These works of fiction both presage and celebrate a new, technological

version of the “What is life?” question: Is it possible for computers or robots
to be considered “alive”? This question links the previously separate topics of
computation and of life and evolution.



You can ask ten biologists what are the ten key requisites for life and
you’ll get a different list each time. Most are likely to include autonomy,
metabolism, self-reproduction, survival instinct, and evolution and adapta-
tion. As a start, can we understand these processesmechanistically and capture
them in computers?
Many people have argued a vehement “no” for the following reasons:

Autonomy: A computer can’t do anything on its own; it can do only what
humans program it to do.

Metabolism: Computers can’t create or gather their own energy from
their environment like living organisms do; they have to be fed energy
(e.g., electricity) by humans.

Self-reproduction: A computer can’t reproduce itself; to do so it would
have to contain a description of itself, and that description would have
to contain a description of itself, and so on ad infinitum.

Survival instinct: Computers don’t care whether they survive or not and
they don’t care how successful they are. (For example, in a lecture I
attended by a prominent psychologist, the speaker, discussing the
success of computer chess programs, asserted that “Deep Blue may have
beat Kasparov, but it didn’t get any joy out of it.”)

Evolution and adaptation: A computer can’t evolve or adapt on its own; it
is restricted to change only in ways specified ahead of time by its
programmer.

Although these arguments are still believed by many people, all of them
have been claimed to be disproven in one way or another in the field of artificial
life, whose purview is the simulation and “creation” of life on computers.
In this chapter and the next I focus on those issues most closely related to
Darwinism—self-reproduction and evolution.

Self-Reproduction in Computers

The self-reproduction argument is the most mathematical one: it states that
self-reproduction in a computer would lead to an infinite regress.
Let’s investigate this issue via the simplest version of the computer self-

reproduction problem: write a computer program that prints out an exact
copy of itself and nothing else.
I’ve written the following programs in a simple computer language that

even nonprogrammers should be able to understand. (It’s actually a pseudo
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language, with a few commands that most real languages wouldn’t have, but
still plausible and thrown in to make things simpler.)
Here’s a first attempt. I start out with the name of the program:

program copy

Now I need to add an instruction to print out the name of the program:

program copy

print("program copy")

The print command simply prints on the computer screen the characters
between the first and last quotationmarks, followed by a carriage return. Now
I need to add an instruction to print out that second line:

program copy

print("program copy")

print(" print("program copy")")

Note that, since I want the program to print out an exact copy of itself, the
second print command has to include the four spaces of indentation I put
before the first print command, plus the two quotation marks, which are
now themselves being quoted (the print command prints anything, includ-
ing quotation marks, between the outermost quotation marks). Now I need
another line to print out that third line:

program copy

print("program copy")

print(" print("program copy")")

print(" print(" print("program copy")")")

and so forth. By now you can probably see how this strategy, in which each
commandprints an exact copy of the commandpreceding it, leads to an infinite
regress. How can this be avoided? Before reading on, you might spend a few
moments trying to solve this puzzle.
This simple-sounding problem turns out to have echos in the work of Kurt

Gödel and Alan Turing, which I described in chapter 4. The solution also
contains an essentialmeans bywhich biological systems themselves get around
the infinite regress. The solution was originally found, in the context of a more
complicated problem, by the twentieth-century Hungarian mathematician
John von Neumann.
Von Neumann was a pioneer in fields ranging from quantum mechanics

to economics and a designer of one of the earliest electronic computers. His
design consisted of a central processing unit that communicateswith a random
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figure 8.1. A simplified
picture of computer

memory, with numbered
locations 1–5 and beyond,
four of which contain lines

of a program. The
instruction pointer points
to the instruction currently

being executed by the
computer. The lines

sometimes contain leading
spaces, which are ignored
when the instruction is

executed.

access memory in which both programs and data can be stored. It remains the
basic design of all standard computers today.VonNeumannwas also one of the
first scientists who thought deeply about connections between computation
and biology. He dedicated the last years of his life to solving the problem of
how a machine might be able to reproduce itself; his solution was the first
complete design for a self-reproducing machine. The self-copying computer
program I will show you was inspired by his “self-reproducing automaton”
and illustrates its fundamental principle in a simplified way.
Before showing you the self-copying program, I need to explain a fewmore

things about the programming language I will be using.
Consider the picture of computer memory given in figure 8.1. Computer

memory, in our highly simplified case, consists of numbered locations or
“addresses,” here numbered 1–5 and beyond. Each location contains some
text. These lines of text can be interpreted by the computer as commands in
a program or as data to be used by a program. The program currently stored
in memory, when executed, will print

Hello, world!

Goodbye.

To accomplish this, the computer has an “instruction pointer”—a number
also stored in memory, which always is equal to the memory location of
the instruction currently being executed by the computer. The instruction
pointer—let’s call it ip for short—is initially set to the memory location
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containing the program’s first line. We say it “points to” that instruction. At
each step in the computation the instruction pointed to by ip is carried out,
and ip is increased by 1.
For example, in figure 8.1, the value of ip is 2, and we say that ip is

pointing to the line print("Hello, world!").
We call ip a variable since its value changes (“varies”) as the computation

is carried out.
We also can define another variable, line[n], as equal to the string of char-

acters in memory location n. For example, the command print(line[2])

will print

print("Hello, world!")

Finally, our language contains a loop command. For example, the
following lines of computer code,

x = 0

loop until x = 4

{

print("Hello, world!")

x = x + 1

}

will print

Hello, world!

Hello, world!

Hello, world!

Hello, world!

The commands inside the two curly brackets get repeated until the loop
condition (here x = 4) is true. The variable x is used as a counter—it starts
off at zero and is increased by 1 each time the loop is performed.When it gets
to 4, the loop stops.
Now we are ready for the self-copying program, which appears in its

entirety in figure 8.2. The best way to understand a computer program is to
hand-simulate it; that is, to go through it line by line keeping track of what
it does.
Suppose this program has been loaded into computer memory as shown

in figure 8.2, and suppose a user comes along and types selfcopy on the
computer’s command line. This signals the computer to start interpret-
ing the program called selfcopy. The interpreter—part of the computer’s
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figure 8.2. A self-copying
program.

operating system—sets the instruction pointer to 1, which points to the
name of the program. The ip then moves down, line by line, executing each
instruction.
In memory location 2 a variable L is set to ip−1. Recall that ip is the

location of the instruction currently being executed. So when line 2 is exe-
cuted, ip is set to 2 and L is set to 2−1 = 1. (Note that Lwill now stay equal
to 1 until it is reset, even though ip changes as each instruction is executed.)
Next, a loop is entered, which will be iterated until line[L] is equal to

the character string end. Remember that line[L] is equal to the string
located in memory location L. Right now, L is set to 1, so line[L] is
equal to the string program selfcopy. This is not equal to the string end,
so the loop is continued. In the loop, line[L] is printed and L is incre-
mented. First, with L = 1, program selfcopy is printed; then L is set
to 2.
Now, line[L] is the second line of the program, namely L = ip - 1.

Again, this string is not equal to end, so the loop is continued. In this way,
each line of the program is printed out. A particularly interesting line is line 5:
when line 5 is being executed with L = 5, the instruction print(line[L])

prints itself out. When L = 9 and line[L] is equal to end, the loop ends.
At this point, lines 1–8 have been printed. The instruction pointer moves
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to line 8 (the instruction immediately following the loop), which, when
executed, prints out the string “end,” completing the self-copying.
The essence of self-copying in this program is to use the same information

stored in memory in two ways: first as instructions to be executed, and second
as data to be used (i.e., printed) by those instructions. This dual use of infor-
mation is what allows us to avoid an infinite regress of the kind illustrated
earlier by my first attempt at a self-copying program.

The Deeper Meaning of the Self-Reproducing

Computer Program

The dual use of information is also at the heart of Gödel’s paradox, embodied
by his self-referential sentence “This statement is not provable.”
This is a bit tricky to understand. First, let’s note that this sentence,

like any other English sentence, can be looked at in two ways: (1) as the
literal string of letters, spaces, and punctuation contained in the sentence,
and (2) as the meaning of that literal string, as interpreted by an English
speaker.
To be very clear, let’s call the literal string of characters S. That is,

S = “This statement is not provable.” We can now state facts about S: for
example, it contains twenty-six letters, four spaces, and one period.
Let’s call the meaning of the sentence M. We can rewrite M as follows:

“Statement S is not provable.” In a way, you can think of M as a “command”
and of S as the “data” for that command. The weird (and wonderful) thing is
that the data S is the same thing as the commandM. The chief reason Gödel
was able to translate his English sentence into a paradox in mathematics was
that he was able to phraseM as a mathematical statement and S as a number
that encoded the string of characters of that mathematical statement.
This is all very tricky. This kind of distinction between literal strings

of characters and the meaning of those strings, and the paradoxes that
self-reference can produce, are discussed in a detailed and very entertain-
ing way in Douglas Hofstadter’s book Gödel, Escher, Bach: an Eternal Golden
Braid.
Similarly, this kind of dual use of information is key to Turing’s proof

of the undecidability of the Halting problem. Remember H and H′ from
chapter 4? Do you recall how H′ ran on its own code? That is, just like our
self-reproducing computer program above, H′ was used in two ways: as an
interpreted program and as the input for that program.
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Self-Replication in DNA

At this point you may be groaning that we’re back in the abstract realm of
logical headaches. But give me a minute to bring us back to reality. The really
amazing thing is that this dual use of information is key to the way DNA
replicates itself. As I described in chapter 6, DNA is made up of strings of
nucleotides. Certain substrings (genes) encode amino acidsmaking up proteins,
including the enzymes (special kinds of proteins) that effect the splitting of
the double helix and the copying of each strand via messenger RNA, transfer
RNA, ribosomes, et cetera. In a very crude analogy, theDNA strings encoding
the enzymes that perform the copying roughly correspond to the lines of code
in the self-copying program. These “lines of code” in DNA are executed when
the enzymes are created and act on the DNA itself, interpreting it as data to
be split up and copied.
However, you may have noticed something I have so far swept under

the rug. There is a major difference between my self-copying program and
DNA self-reproduction. The self-copying program required an interpreter to
execute it: an instruction pointer to move down the lines of computer code
and a computer operating system to carry them out (e.g., actually perform the
storing and retrieving of internal variables such as ip and L, actually print
strings of characters, and so on). The interpreter is completely external to the
program itself.
In contrast, in the case of DNA, the instructions for building the

“interpreter”—the messenger RNA, transfer RNA, ribosomes, and all the
other machinery of protein synthesis—are encoded along with everything else
in the DNA. That is, DNA not only contains the code for its self-replicating
“program” (i.e., the enzymes that perform the splitting and copying of DNA)
but also it encodes its own interpreter (the cellular machinery that translates
DNA into those very enzymes).

Von Neumann’s Self-Reproducing Automaton

Von Neumann’s original self-reproducing automaton (described mathemat-
ically but not actually built by von Neumann) similarly contained not
only a self-copying program but also the machinery needed for its own
interpretation. Thus it was truly a self-reproducing machine. This explains
why von Neumann’s construction was considerably more complicated than
my simple self-copying program. That it was formulated in the 1950s, before
the details of biological self-reproduction were well understood, is testament
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John von Neumann, 1903–1957
(AIP Emilio Segre Visual Archives)

to von Neumann’s insight. Von Neumann’s design of this automaton and
mathematical proof of its correctness were mostly completed when he died
in 1957, at the age of 53, of cancer possibly caused by his exposure to radi-
ation during his work on the atomic bomb. The proof was completed by
von Neumann’s colleague, Arthur Burks. The complete work was eventually
published in 1966 as a book, Theory of Self-Reproducing Automata, edited by
Burks.
Von Neumann’s design for a self-reproducing automaton was one of

the first real advances in the science of artificial life, demonstrating that
self-reproduction by machine was indeed possible in principle, and provid-
ing a “logic” of self-reproduction that turned out to have some remarkable
similarities to the one used by living systems.
Von Neumann recognized that these results could have profound con-

sequences. He worried about public perception of the possibilities of self-
reproducing machines, and said that he did not want any mention of the
“reproductive potentialities of the machines of the future” made to the mass
media. It took a while, but the mass media eventually caught up. In 1999,
computer scientists Ray Kurzweil and Hans Moravec celebrated the possibil-
ity of super-intelligent self-reproducing robots, which they believe will be
built in the near future, in their respective nonfiction (but rather far-fetched)
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books The Age of Spiritual Machines and Robot. In 2000 some of the possi-
ble perils of self-reproducing nano-machines were decried by Bill Joy, one
of the founders of Sun Microsystems, in a now famous article in Wired
magazine called “Why the Future Doesn’t Need Us.” So far none of these
predictions has come to pass. However, complex self-reproducing machines
may soon be a reality: some simple self-reproducing robots have already
been constructed by roboticist Hod Lipson and his colleagues at Cornell
University.

John von Neumann

It is worth saying a few words about von Neumann himself, one of the most
important and interesting figures in science and mathematics in the twen-
tieth century. He is someone you should know about if you don’t already.
Von Neumann was, by anyone’s measure, a true genius. During his relatively
short life he made fundamental contributions to at least six fields: mathe-
matics, physics, computer science, economics, biology, and neuroscience. He
is the type of genius whom people tell stories about, shaking their heads
and wondering whether someone that smart could really be a member of the
human species. I like these stories so much, I want to retell a few of them here.
Unlike Einstein and Darwin, whose genius took a while to develop,

Hungarian born “Johnny” von Neumann was a child prodigy. He supposedly
could divide eight-digit numbers in his head at the age of six. (It evidently
took him a while to notice that not everyone could do this; as reported in one
of his biographies, “When his mother once stared rather aimlessly in front
of her, six-year-old Johnny asked: ‘What are you calculating?’ ”) At the same
age he also could converse with his father in ancient Greek.
At the age of eighteen von Neumann went to university, first in Budapest,

then in Germany and Switzerland. He first took the “practical” course of
studying chemical engineering but couldn’t be kept away from mathemat-
ics. He received a doctorate in math at the age of twenty-three, after doing
fundamental work in both mathematical logic and quantum mechanics. His
work was so good that just five years later he was given the best academic job
in the world—a professorship (with Einstein and Gödel) at the newly formed
Institute for Advanced Study (IAS) in Princeton.
The institute didn’t go wrong in their bet on von Neumann. During the

next ten years, von Neumann went on to invent the field of game theory
(producing what has been called “the greatest paper on mathematical eco-
nomics ever written”), design the conceptual framework of one of the first
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programmable computers (the EDVAC, for which he wrote what has been
called “the most important document ever written about computing and
computers”), and make central contributions to the development of the first
atomic and hydrogen bombs. This was all before his work on self-reproducing
automata and his exploration of the relationships between the logic of com-
puters and the workings of the brain. VonNeumann also was active in politics
(his positions were very conservative, driven by strong anti-communist views)
and eventually became a member of the Atomic Energy Commission, which
advised the U.S. president on nuclear weapons policy.
Von Neumann was part of what has been called the “Hungarian phe-

nomenon,” a group of several Hungarians of similar age who went on to
become world-famous scientists. This group also included Leo Szilard, whom
we heard about in chapter 3, the physicists Eugene Wigner, Edward Teller,
and Denis Gabor, and the mathematicians Paul Erdös, John Kemeny, and
Peter Lax. Many people have speculated on the causes of this improbable clus-
ter of incredible talent. But as related by von Neumann biographer Norman
MacRae, “Five of Hungary’s six Nobel Prize winners were Jews born between
1875 and1905, and onewas askedwhyHungary in his generationhadbrought
forth so many geniuses. Nobel laureateWigner replied that he did not under-
stand the question. Hungary in that time had produced only one genius,
Johnny von Neumann.”
Von Neumann was in many ways ahead of his time. His goal was,

like Turing’s, to develop a general theory of information processing that
would encompass both biology and technology. His work on self-reproducing
automata was part of this program. Von Neumann also was closely linked to
the so-called cybernetics community—an interdisciplinary group of scien-
tists and engineers seeking commonalities among complex, adaptive systems
in both natural and artificial realms. What we now call “complex systems”
can trace its ancestry to cybernetics and the related field of systems science. I
explore these connections further in the final chapter.
Von Neumann’s interest in computation was not always well received at

the elite Institute for Advanced Study. After completing his work on the
EDVAC, von Neumann brought several computing experts to the IAS to
work with him on designing and building an improved successor to EDVAC.
This system was called the “IAS computer”; its design was a basis for the early
computers built by IBM. Some of the “pure” scientists and mathematicians
at IAS were uncomfortable with so practical a project taking place in their
ivory tower, and perhaps even more uncomfortable with von Neumann’s first
application of this computer, namelyweather prediction, forwhich he brought
a team of meteorologists to the IAS. Some of the purists didn’t think this
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kind of activity fit in with the institute’s theoretical charter. As IAS physicist
Freeman Dyson put it, “The [IAS] School of Mathematics has a permanent
establishment which is divided into three groups, one consisting of pure
mathematics, one consisting of theoretical physicists, and one consisting of
Professor von Neumann.” After von Neumann’s death, the IAS computer
project was shut down, and the IAS faculty passed a motion “to have no
experimental science, no laboratories of any kind at the Institute.” Freeman
Dyson described this as, “The snobs took revenge.”
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Genetic Algorithmschapter 9

After he answered the question “Can a machine reproduce
itself?” in the affirmative, von Neumann wanted to take the next logical

step and have computers (or computer programs) reproduce themselves with
mutations and compete for resources to survive in some environment. This
would counter the “survival instinct” and “evolution and adaptation” argu-
ments mentioned above. However, von Neumann died before he was able to
work on the evolution problem.
Others quickly took upwhere he left off. By the early 1960s, several groups

of researchers were experimenting with evolution in computers. Such work
has come to be known collectively as evolutionary computation. The most widely
known of these efforts today is the work on genetic algorithms done by John
Holland and his students and colleagues at the University of Michigan.
John Holland is, in some sense, the academic grandchild of John von

Neumann. Holland’s own Ph.D. advisor was Arthur Burks, the philoso-
pher, logician, and computer engineer who assisted von Neumann on the
EDVAC computer and who completed von Neumann’s unfinished work on
self-reproducing automata. After his work on the EDVAC, Burks obtained
a faculty position in philosophy at the University of Michigan and started
the Logic of Computers group, a loose-knit collection of faculty and students
who were interested in the foundations of computers and of information pro-
cessing in general. Holland joined the University of Michigan as a Ph.D.
student, starting in mathematics and later switching to a brand-new pro-
gram called “communication sciences” (later “computer and communication
sciences”), which was arguably the first real computer science department
in the world. A few years later, Holland became the program’s first Ph.D.



John Holland. (Photograph
copyright © by the Santa Fe

Institute. Reprinted by permission.)

recipient, giving him the distinction of having received the world’s first
Ph.D. in computer science. He was quickly hired as a professor in that same
department.
Holland got hooked on Darwinian evolution when he read Ronald Fisher’s

famous book, The Genetical Theory of Natural Selection. Like Fisher (and
Darwin), Holland was struck by analogies between evolution and animal
breeding. But he looked at the analogy from his own computer science per-
spective: “That’s where genetic algorithms came from. I began to wonder if
you could breed programs the way people would say, breed good horses and
breed good corn.”
Holland’s major interest was in the phenomenon of adaptation—how liv-

ing systems evolve or otherwise change in response to other organisms or
to a changing environment, and how computer systems might use similar
principles to be adaptive as well. His 1975 book, Adaptation in Natural and
Artificial Systems, laid out a set of general principles for adaptation, including
a proposal for genetic algorithms.
My own first exposure to genetic algorithms was in graduate school at

Michigan, when I took a class taught by Holland that was based on his book.
I was instantly enthralled by the idea of “evolving” computer programs. (Like
ThomasHuxley,my reactionwas, “How extremely stupid not to have thought
of that!”)
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A Recipe for a Genetic Algorithm

The term algorithm is used these days to mean what Turing meant by definite
procedure and what cooks mean by recipe: a series of steps by which an input is
transformed to an output.
In a genetic algorithm (GA), the desired output is a solution to some prob-

lem. Say, for example, that you are assigned to write a computer program
that controls a robot janitor that picks up trash around your office building.
You decide that this assignment will take up too much of your time, so you
want to employ a genetic algorithm to evolve the program for you. Thus, the
desired output from the GA is a robot-janitor control program that allows
the robot to do a good job of collecting trash.
The input to the GA has two parts: a population of candidate programs,

and a fitness function that takes a candidate program and assigns to it a
fitness value that measures how well that program works on the desired
task.
Candidate programs can be represented as strings of bits, numbers, or

symbols. Later in this chapter I give an example of representing a robot-
control program as a string of numbers.
In the case of the robot janitor, the fitness of a candidate program could

be defined as the square footage of the building that is covered by the robot,
when controlled by that program, in a set amount of time. The more the
better.
Here is the recipe for the GA.
Repeat the following steps for some number of generations:

1. Generate an initial population of candidate solutions. The simplest way
to create the initial population is just to generate a bunch of random
programs (strings), called “individuals.”

2. Calculate the fitness of each individual in the current population.
3. Select some number of the individuals with highest fitness to be the

parents of the next generation.
4. Pair up the selected parents. Each pair produces offspring by

recombining parts of the parents, with some chance of random
mutations, and the offspring enter the new population. The selected
parents continue creating offspring until the new population is full (i.e.,
has the same number of individuals as the initial population). The new
population now becomes the current population.

5. Go to step 2.
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Genetic Algorithms in the Real World

The GA described above is simple indeed, but versions of it have been used
to solve hard problems in many scientific and engineering areas, as well as in
art, architecture, and music.
Just to give you a flavor of these problems: GAs have been used at the

General Electric Company for automating parts of aircraft design, Los Alamos
National Lab for analyzing satellite images, the John Deere company for
automating assembly line scheduling, and Texas Instruments for computer
chip design. GAswere used for generating realistic computer-animated horses
in the 2003 movie The Lord of the Rings: The Return of the King, and realistic
computer-animated stunt doubles for actors in the movie Troy. A number of
pharmaceutical companies are using GAs to aid in the discovery of new drugs.
GAs have been used by several financial organizations for various tasks: detect-
ing fraudulent trades (London Stock Exchange), analysis of credit card data
(Capital One), and forecasting financial markets and portfolio optimization
(First Quadrant). In the 1990s, collections of artwork created by an interactive
genetic algorithm were exhibited at several museums, including the Georges
Pompidou Center in Paris. These examples are just a small sampling of ways
in which GAs are being used.

Evolving Robby, the Soda-Can-Collecting Robot

To introduce you in more detail to the main ideas of GAs, I take you through
a simple extended example. I have a robot named “Robby” who lives in a
(computer simulated, but messy) two-dimensional world that is strewn with
empty soda cans. I am going to use a genetic algorithm to evolve a “brain”
(that is, a control strategy) for Robby.
Robby’s job is to clean up his world by collecting the empty soda cans.

Robby’s world, illustrated in figure 9.1, consists of 100 squares (sites) laid out
in a 10× 10 grid. You can see Robby in site 0,0. Let’s imagine that there is a
wall around the boundary of the entire grid. Various sites have been littered
with soda cans (but with no more than one can per site).
Robby isn’t very intelligent, and his eyesight isn’t that great. From wher-

ever he is, he can see the contents of one adjacent site in the north, south,
east, and west directions, as well as the contents of the site he occupies. A site
can be empty, contain a can, or be a wall. For example, in figure 9.1, Robby,
at site 0,0, sees that his current site is empty (i.e., contains no soda cans), the
“sites” to the north and west are walls, the site to the south is empty, and the
site to the east contains a can.
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figure 9.1. Robby’s world. A 10 x 10 array, strewn
with soda cans.

For each cleaning session, Robby can perform exactly 200 actions. Each
action consists of one of the following seven choices: move to the north, move
to the south, move to the east, move to the west, choose a random direction to
move in, stay put, or bend down to pick up a can. Each action may generate
a reward or a punishment. If Robby is in the same site as a can and picks it
up, he gets a reward of ten points. However, if he bends down to pick up a
can in a site where there is no can, he is fined one point. If he crashes into a
wall, he is fined five points and bounces back into the current site.
Clearly, Robby’s reward is maximized when he picks up as many cans as

possible, without crashing into any walls or bending down to pick up a can
if no can is there.
Since this is a simple problem, it would probably be pretty easy for a

human to figure out a good strategy for Robby to follow. However, the point
of genetic algorithms is that humans, being intrinsically lazy, don’t have to
figure out anything; we just let computer evolution figure it out for us. Let’s
use a genetic algorithm to evolve a good strategy for Robby.
The first step is to figure out exactly what we are evolving; that is, what

exactly constitutes a strategy? In general, a strategy is a set of rules that gives,
for any situation, the action you should take in that situation. For Robby, a
“situation” is simply what he can see: the contents of his current site plus the
contents of the north, south, east, and west sites. For the question “what to
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do in each situation,” Robby has seven possible things he can do: move north,
south, east, or west; move in a random direction; stay put; or pick up a can.
Therefore, a strategy for Robby can be written simply as a list of all the

possible situations he could encounter, and for each possible situation, which
of the seven possible actions he should perform.
Howmany possible situations are there? Robby looks at five different sites

(current, north, south, east, west), and each of those sites can be labeled as
empty, contains can, or wall. This means that there are 243 different possible
situations (see the notes for an explanation of how I calculated this). Actu-
ally, there aren’t really that many, since Robby will never face a situation in
which his current site is a wall, or one in which north, south, east, and west
are all walls. There are other “impossible” situations as well. Again, being
lazy, we don’t want to figure out what all the impossible situations are, so
we’ll just list all 243 situations, and know that some of them will never be
encountered.
Table 9.1 is an example of a strategy—actually, only part of a strategy,

since an entire strategy would be too long to list here.
Robby’s situation in figure 9.1 is

North South East West Current Site
Wall Empty Can Wall Empty

To decidewhat to do next, Robby simply looks up this situation in his strategy
table, and finds that the corresponding action is MoveWest. So he moves
west. And crashes into a wall.
I never said this was a good strategy. Finding a good strategy isn’t our job;

it’s the job of the genetic algorithm.

table 9-1

Situation Action

North South East West Current Site

Empty Empty Empty Empty Empty MoveNorth
Empty Empty Empty Empty Can MoveEast
Empty Empty Empty Empty Wall MoveRandom
Empty Empty Empty Can Empty PickUpCan
...

...
...

...
...

...
Wall Empty Can Wall Empty MoveWest
...

...
...

...
...

...
Wall Wall Wall Wall Wall StayPut
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I wrote the code for a genetic algorithm to evolve strategies for Robby.
In my GA, each individual in the population is a strategy—a listing of the
actions that correspond to each possible situation. That is, given a strategy
such as the one in table 9.1, an individual to be evolved by the GA is just a
listing of the 243 actions in the rightmost column, in the order given:

MoveNorth MoveEast MoveRandom PickUpCan … MoveWest … StayPut

The GA remembers that the first action in the string (here MoveNorth)
goes with the first situation (“Empty Empty Empty Empty Empty”), the
second action (here MoveEast) goes with the second situation (“Empty Empty
Empty Empty Can”), and so on. In other words, I don’t have to explicitly list
the situations corresponding to these actions; instead the GA remembers the
order in which they are listed. For example, suppose Robby happened to
observe that he was in the following situation:

North South East West Current Site
Empty Empty Empty Empty Can

I build into theGA the knowledge that this is situation number 2. It would
look at the strategy table and see that the action in position 2 is MoveEast.
Robby moves east, and then observes his next situation; the GA again looks
up the corresponding action in the table, and so forth.
My GA is written in the programming language C. I won’t include the

actual program here, but this is how it works.

1. Generate the initial population. The GA starts with an initial
population of 200 random individuals (strategies).
A random population is illustrated in figure 9.2. Each individual

strategy is a list of 243 “genes.” Each gene is a number between 0 and 6,
which stands for an action (0 = MoveNorth, 1 = MoveSouth, 2 =
MoveEast, 3 = MoveWest, 4 = StayPut, 5 = PickUp, and 6 =
RandomMove). In the initial population, these numbers are filled in at
random. For this (and all other probabilistic or random choices), the GA
uses a pseudo-random-number generator.
Repeat the following for 1,000 generations:

2. Calculate the fitness of each individual in the population. In my
program, the fitness of a strategy is determined by seeing how well the
strategy lets Robby do on 100 different cleaning sessions. A cleaning
session consists of putting Robby at site 0, 0, and throwing down a
bunch of cans at random (each site can contain at most one can; the
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figure 9.2. Random initial population. Each individual consists of 243
numbers, each of which is between 0 and 6, and each of which encodes an
action. The location of a number in a string indicates to which situation the
action corresponds.

probability of a given site containing a can is 50%). Robby then follows
the strategy for 200 actions in each session. The score of the strategy in
each session is the number of reward points Robby accumulates minus
the total fines he incurs. The strategy’s fitness is its average score over
100 different cleaning sessions, each of which has a different
configuration of cans.

3. Apply evolution to the current population of strategies to create a new
population. That is, repeat the following until the new population has
200 individuals:

(a) Choose two parent individuals from the current population
probabilistically based on fitness. That is, the higher a strategy’s
fitness, the more chance it has to be chosen as a parent.
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(b) Mate the two parents to create two children. That is, randomly
choose a position at which to split the two number strings; form one
child by taking the numbers before that position from parent A and
after that position from parent B, and vice versa to form the second
child.

(c) With a small probability, mutate numbers in each child. That is,
with a small probability, choose one or more numbers and replace
them each with a randomly generated number between 0 and 6.

(d) Put the two children in the new population.

4. Once the new population has 200 individuals, return to step 2 with this
new generation.

Themagic is that, starting from a set of 200 random strategies, the genetic
algorithm creates strategies that allow Robby to perform very well on his
cleaning task.
The numbers I used for the population size (200), the number of genera-

tions (1,000), the number of actions Robby can take in a session (200), and
the number of cleaning sessions to calculate fitness (100) were chosen by me,
somewhat arbitrarily. Other numbers can be used and can also produce good
strategies.
I’m sure you are now on the edge of your seat waiting to find out what

happened when I ran this genetic algorithm. But first, I have to admit that
before I ran it, I overcame my laziness and constructed my own “smart”
strategy, so I could see how well the GA could do compared with me. My
strategy forRobby is: “If there is a can in the current site, pick it up.Otherwise,
if there is a can in one of the adjacent sites, move to that site. (If there are
multiple adjacent sites with cans, I just specify the one to which Robby
moves.) Otherwise, choose a random direction to move in.”
This strategy actually isn’t as smart as it could be; in fact, it can make

Robby get stuck cycling around empty sites and never making it to some of
the sites with cans.
I testedmy strategy on 10,000 cleaning sessions, and found that its average

(per-session) score was approximately 346.Given that at the beginning of each
session, about 50%, or 50, of the sites contain cans, the maximum possible
score for any strategy is approximately 500, so my strategy is not very close
to optimal.
Can the GA do as well or better than this? I ran it to see. I took the highest-

fitness individual in the final generation, and also tested it on 10,000 new and
different cleaning sessions. Its average (per-session) score was approximately
483—that is, nearly optimal!
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How Does the GA-Evolved Strategy Solve the Problem?

Now the question is, what is this strategy doing, and why does it do better
than my strategy? Also, how did the GA evolve it?
Let’s call my strategyM and the GA’s strategy G. Below is each strategy’s

genome.

M: 65635365625235325265635365615135315125235325215135315165635365

62523532526563536560503530502523532520503530501513531512523532

5215135315105035305025235325205035305065635356252353252656353

656151353151252353252151353151656353656252353252656353454

G: 25435515325623525105635546115133615415103415611055015005203025

62561322523503251120523330540552312550513361541506652641502665

06012264453605631520256431054354632404350334153250253251352352

045150130156213436252353223135051260513356201524514343432

Staring at the genome of a strategy doesn’t help us too much in under-
standing how that strategy works. We can see a few genes that make sense,
such as the important situations in which Robby’s current site contains a can,
such as the second situation (“Empty Empty Empty Empty Can”), which has
action 5 (PickUp) in both strategies. Such situations always have action 5 in
M, but only most of the time inG. For example, I managed to determine that
the following situation

North South East West Current Site
Empty Can Empty Can Can

has action 3 (MoveWest), which means Robby doesn’t pick up the can in his
current site. This seems like a bad idea, yet G does better than M overall!
The key, it turns out, is not these isolated genes, but the way different genes
interact, just as has been found in real genetics. And just as in real genetics, it’s
very difficult to figure out how these various interactions lead to the overall
behavior or fitness.
It makes more sense to look at the actual behavior of each strategy—its

phenotype—rather than its genome. I wrote a graphics program to display
Robby’s moves when using a given strategy, and spent some time watching
the behavior of Robby when he used strategy M and when he used strat-
egy G. Although the two strategies behave similarly in many situations, I
found that strategy G employs two tricks that cause it to perform better than
strategy M.
First, consider a situation in which Robby does not sense a can in his

current site or in any of his neighboring sites. If Robby is following strategy
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figure 9.3. Robby in a "no-can" wilderness. The dotted lines show
the paths he took in my simulation when he was following strategies
M (top) and G (bottom).

M, he chooses a random move to make. However, if he is following strategy
G, Robby moves to the east until he either finds a can or reaches a wall. He
then moves north, and continues to circle the edge of the grid in a counter-
clockwise direction until a can is encountered or sensed. This is illustrated in
figure 9.3 by the path Robby takes under each strategy (dotted line).
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figure 9.4. Robby in a cluster of cans, using strategy M over four time steps.

Not only does this circle-the-perimeter strategy preventRobby fromcrash-
ing into walls (a possibility underMwhenever a randommove is made), but it
also turns out that circling the perimeter is a more efficient way to encounter
cans than simply moving at random.
Second, with G the genetic algorithm discovered a neat trick by having

Robby not pick up a can in his current site in certain situations.
For example, consider the situation illustrated in figure 9.4a. Given this

situation, if Robby is following M, he will pick up the can in his current
site, move west, and then pick up the can in his new site (pictures b–d).
Because Robby can see only immediately adjacent sites, he now cannot see
the remaining cluster of cans. He will have to move around at random until
he encounters another can by chance.
In contrast, consider the same starting situation with G, illustrated in

figure 9.5a. Robby doesn’t pick up the can in his current site; instead he
moves west (figure 9.5b). He then picks up the western-most can of the cluster
(figure 9.5c). The can he didn’t pick up on the last move acts as a marker so
Robby can “remember” that there are cans on the other side of it. He goes on
to pick up all of the remaining cans in the cluster (figure 9.5d–9.5k).
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figure 9.5. Robby in the same cluster of cans, using strategy G over eleven
time steps. (Continued on next page)
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figure 9.5. (Continued )

I knew that my strategy wasn’t perfect, but this little trick never occurred
to me. Evolution can be pretty clever. GAs often come up with things we
humans don’t consider.
Geneticists often test their theories about gene function by doing “knock-

out mutations,” in which they use genetic engineering techniques to prevent
the genes in question from being transcribed and see what effect that has on
the organism. I can do the same thing here. In particular, I did an experiment
in which I “knocked out” the genes in G that made this trick possible: I
changed genes such that each gene that corresponds to a “can in current site”
situation has the action PickUp. This lowered the average score of G from its
original 483 to 443, which supports my hypothesis that this trick is partly
responsible for G’s success.

How Did the GA Evolve a Good Strategy?

The next question is, how did the GA, starting with a random population,
manage to evolve such a good strategy as G?
To answer this question, let’s look at how strategies improved over gener-

ations. In figure 9.6, I plot the fitness of the best strategy in each generation
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figure 9.6. Plot of best fitness in the population versus generation
for the run of the GA in which strategy G was evolved.

in my run of the GA. You can see that the best fitness starts out way below
zero, rises very quickly until about generation 300, and then improves more
slowly for the rest of the run.
The first generation consists of 200 randomly generated strategies. As you

might expect, all of them are very, very bad. The best one has fitness of only
−81 and the worst one has fitness −825.
I looked at the behavior of Robby when using the worst strategy of this

generation, on several sessions, each starting with a different environment
(configuration of cans). In some environments, Robbymakes a fewmoves, then
gets stuck, executing action StayPut again and again, for the entire session. In
others he spends the session crashing into a wall over and over again. In others
he spends his whole time trying to pick up a nonexistent can in his current
site. No surprise that evolution weeded out this strategy quite early on.
I also looked at the behavior of Robby using the best strategy of this

generation, which is still a pretty bad one that gets stuck in ways similar to
those in the worst strategy. However, it has a couple of advantages over the
worst one: it is less likely to continually crash into a wall, and it occasionally
moves into a site with a can and actually picks up the can! This being the
best strategy of its generation, it has an excellent chance of being selected to
reproduce. When it indeed is selected, its children inherit these good traits
(along with lots of bad traits).
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By the tenth generation, the fitness of the best strategy in the population
has risen all the way to zero. This strategy usually gets stuck in a StayPut
loop, occasionally getting stuck in a cycle moving back and forth between
two sites. Very occasionally it crashes into walls. And like its ancestor from
the first generation, it very occasionally picks up cans.
The GA continues its gradual improvement in best fitness. By generation

200 the best strategy has discovered the all-important trait of moving to
sites with cans and then picking up those cans—at least a lot of the time.
However, when stranded in a no-can wilderness, it wastes a lot of time by
making random moves, similar to strategy M. By generation 250 a strategy
equal in quality to M has been found, and by generation 400, the fitness is
up beyond the 400 level, with a strategy that would be as good as G if only it
made fewer randommoves. By generation 800 theGAhas discovered the trick
of leaving cans as markers for adjacent cans, and by generation 900 the trick
of finding and then moving around the perimeter of the world has been nearly
perfected, requiring only a few tweaks to get it right by generation 1,000.
Although Robby the robot is a relatively simple example for teaching

people about GAs, it is not all that different from the way GAs are used in
the real world. And as in the example of Robby, in real-world applications,
the GA will often evolve a solution that works, but it’s hard to see why it
works. That is often because GAs find good solutions that are quite different
from the ones humans would come up with. Jason Lohn, a genetic algorithms
expert from the National Astronautical and Space Administration (NASA),
emphasizes this point: “Evolutionary algorithms are a great tool for exploring
the dark corners of design space. You show [your designs] to people with 25
years’ experience in the industry and they say ‘Wow, does that really work?’….
We frequently see evolved designs that are completely unintelligible.”
In Lohn’s case, unintelligible as it might be, it does indeed work. In 2005

Lohn and his colleagues won a “Human Competitive” award for their GA’s
design of a novel antenna for NASA spacecraft, reflecting the fact that the
GA’s design was an improvement over that of human engineers.
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part iii
Computation
Writ Large

The proper domain of computer science is information processing writ large across

all of nature.

—Chris Langton (Quoted in Roger Lewin, Complexity: Life
at the Edge of Chaos)
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Cellular Automata, Life,
and the Universe

chapter 10

Computation in Nature

A recent article in Science magazine, called “Getting the Behavior of Social
Insects to Compute,” described the work of a group of entomologists who
characterize the behavior of ant colonies as “computer algorithms,” with each
individual ant running a simple program that allows the colony as a whole to
perform a complex computation, such as reaching a consensus on when and
where to move the colony’s nest.
This would be an easy computation for me to program on my computer:

I could just appoint one (virtual) ant as leader and decision maker. All the
other ants would simply observe the leader’s decision and follow it. However,
as we have seen, in ant colonies there is no leader; the ant-colony “computer”
consists of millions of autonomous ants, each of which can base its decisions
and actions only on the small fraction of other ants it happens to interact
with. This leads to a kind of computation very different from the kind our
desktop computers perform with a central processing unit and random-access
memory.
Along the same lines, a 1994 article by three prominent brain researchers

asked, “Is the brain a computer?” and answered, “If we embrace a broader
concept of computation, then the answer is a definite Yes.” Like ant colonies,
it is clear that the way the brain computes—with billions of neurons working
in parallel without central control—is very different from the way current-day
digital computers work.



In the previous two chapters we explored the notion of life and evolution
occurring in computers. In this part of the book, we look at the opposite
notion; the extent to which computation itself occurs in nature. In what sense
do natural systems “compute”? At a very general level, one might say that
computation is what a complex system does with information in order to succeed
or adapt in its environment. But can we make this statement more precise?
Where is the information, and what exactly does the complex system do
with it?
In order to make questions like this more amenable to study, scientists

generally will idealize the problem—that is, simplify it as much as possible
while still retaining the features that make the problem interesting.
In this spirit of simplification, many people have studied computation in

nature via an idealized model of a complex system called a cellular automaton.

Cellular Automata

Recall from chapter 4 that Turing machines provide a way of formalizing
the notion of “definite procedure”—that is, computation. A computation is
the transformation of the input initially on a Turing machine’s tape, via the
machine’s set of rules, to the output on its tape after the halt state is reached.
This abstractmachine inspired the design of all subsequent digital computers.
Because of John von Neumann’s contribution to this design, our current-day
computers are called “von-Neumann-style architectures.”
The von-Neumann-style architecture consists of a random access memory

(RAM) that stores both program instructions and data, and a central process-
ing unit (CPU) that fetches instructions and data from memory and executes
the instructions on the data. As you probably know, although programmers
write instructions in high-level programming languages, instructions and
data are actually stored in the computer as strings of 1s and 0s. Instruc-
tions are executed by translating such bit strings into simple logic operations
applied to the data, which are then computed by the CPU. Only a few types
of simple logic operators are needed to perform any computation, and today’s
CPUs can compute billions of these logic operations per second.
A cellular automaton, being an idealized version of a complex system,

has a very different kind of architecture. Imagine a grid of battery-powered
lightbulbs, as shown in figure 10.1. Each lightbulb is connected to all of its
neighboring lightbulbs in the north, south, east, west, and diagonal direc-
tions. In the figure, these connections are shown for only one of the lightbulbs,
but imagine that all the other ones have corresponding connections.
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figure 10.1. An array of lightbulbs, each of which is
connected to its neighbors in the north, south, east, west,
and diagonal directions, as is illustrated for one of the
lightbulbs. Each lightbulb can either be in state on or state
off. Imagine that all four edges wrap around in a circular
fashion—for example, the upper left bulb has the upper
right bulb as its western neighbor and the lower left bulb as
its northern neighbor.

In figure 10.2 (left box), some of the lightbulbs have been turned on (to
make the figure simpler, I didn’t draw the connections). After this initial
configuration of on and off lightbulbs has been set up, each lightbulb will
run a clock that tells it when to “update its state”— that is, turn on or off;
and all the clocks are synchronized so all lightbulbs update their states at
the same time, over and over again. You can think of the grid as a model of
fireflies flashing or turning off in response to the flashes of nearby fireflies, or
of neurons firing or being inhibited by the actions of close-by neurons, or, if
you prefer, simply as a work of abstract art.
How does a lightbulb “decide” whether to turn on or off at each time step?

Each bulb follows a rule that is a function of the states in its neighborhood—that
is, its own state (i.e., on or off) and those of the eight neighbors to which it
is connected.
For example, let’s say that the rule followed by each lightbulb is, “If the

majority of bulbs in my neighborhood (including myself) are on, turn on (or
stay on, if already on), otherwise turn off (or stay off, if already off).” That is,
for each neighborhood of nine bulbs, if five or more of them are on, then the
middle one is on at the next time step. Let’s look at what the lightbulb grid
does after one time step.
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figure 10.2. Left: The same array of lightbulbs as in figure 10.1, set up in an
initial configuration of on and off states. Connections between lightbulbs are not
shown. Right: each bulb’s state has been updated according to the rule “take on
whichever state is a majority in my local neighborhood.”

As explained in the caption to figure 10.1, tomake sure that each lightbulb
indeed has eight neighbors, we will give the grid circular boundaries. Imagine
that the top edge is folded over and touches the bottom edge, and the left
edge is folded over and touches the right edge, forming a donut shape. This
gives every lightbulb eight neighbors.
Now let’s go back to the rule defined above. Figure 10.2 shows the initial

grid and its configuration after following the rule for one time step.
I could have defined a more complicated rule, such as, “If at least two but

no more than seven bulbs in my neighborhood are on, then turn on, otherwise
turn off,” and the updated grid would have looked different. Or “if exactly
one bulb is off or exactly four bulbs are on in my neighborhood, turn off,
otherwise turn on.” There are lots of possibilities.
Exactly howmany possible different rules could be defined? “Lots” is really

understating it. The answer is “two raised to the power 512” (2512), a huge
number, many times larger than the number of atoms in the universe. (See
the notes to find out how this answer was derived.)
This grid of lightbulbs is a cellular automaton. More generally, a cellular

automaton is a grid (or lattice) of cells, where a cell is a simple unit that turns
on or off in response to the states in its local neighborhood. (In general,
cells can be defined with any number of states, but here we’ll just talk about
the on/off kind.) A cellular automaton rule—also called a cell update rule—is
simply the identical rule followed by each cell, which tells the cell what its
state should be at the next time step as a function of the current states in its
local neighborhood.
Why do I say that such a simple system is an idealized model of a com-

plex system? Like complex systems in nature, cellular automata are composed

148 computation writ large



of large numbers of simple components (i.e., cells), with no central con-
troller, each of which communicates with only a small fraction of the other
components. Moreover, cellular automata can exhibit very complex behavior
that is difficult or impossible to predict from the cell update rule.
Cellular automatawere invented—like somany other good ideas—by John

von Neumann, back in the 1940s, based on a suggestion by his colleague, the
mathematician Stan Ulam. (This is a great irony of computer science, since
cellular automata are often referred to as non-von-Neumann-style architectures,
to contrast with the von-Neumann-style architectures that von Neumann also
invented.) As I described in chapter 8, von Neumann was trying to formalize
the logic of self-reproduction in machines, and he chose cellular automata as
a way to approach this problem. In short, he was able to design a cellular
automaton rule, in his case with twenty-nine states per cell instead of just
two, that would create a perfect reproduction of any initial pattern placed on
the cellular automaton lattice.
Von Neumann also was able to show that his cellular automaton was

equivalent to a universal Turing machine (cf. chapter 4). The cell update
rule plays the role of the rules for the Turing machine tape head, and the
configuration of states plays the role of the Turing machine tape—that is,
it encodes the program and data for the universal machine to run. The step-
by-step updates of the cells correspond to the step-by-step iteration of the
universal Turing machine. Systems that are equivalent in power to universal
Turingmachines (i.e., can compute anything that a universal Turingmachine
can) are more generally called universal computers, or are said to be capable of
universal computation or to support universal computation.

The Game of Life

Von Neumann’s cellular automaton rule was rather complicated; a much
simpler, two-state cellular automaton also capable of universal computation
was invented in 1970 by the mathematician John Conway. He called his
invention the “Game of Life.” I’m not sure where the “game” part comes in,
but the “life” part comes from the way in which Conway phrased the rule.
Denoting on cells as alive and off cells as dead, Conway defined the rule in
terms of four life processes: birth, a dead cell with exactly three live neighbors
becomes alive at the next time step; survival, a live cell with exactly two
or three live neighbors stays alive; loneliness, a live cell with fewer than two
neighbors dies and a dead cell with fewer than three neighbors stays dead;
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figure 10.3. Close-up picture of a glider in the Game of Life. After
four time steps, the original glider configuration has moved in the
southeast direction.

and overcrowding, a live or dead cell with more than three live neighbors dies
or stays dead.
Conway came up with this cellular automaton rule when looking for a rule

that would create interesting (or perhaps life-like) behavior. Indeed the Game
of Life has plenty of interesting behavior and there is a whole community
of Life aficionados whose main hobby is to discover initial patterns that will
create such behavior.
One simple pattern with interesting behavior is the glider, illustrated in

figure 10.3. Here, instead of lightbulbs, I simply represent on (live) states
by black squares and off (dead) states by white squares. The figure shows a
glider “moving” in a southeast direction from its initial position. Of course,
it’s not the cells that move; they are all fixed in place. The moving entities are
on states that form a coherent, persisting shape. Since, as I mentioned earlier,
the cellular automaton’s boundaries wrap around to create a donut shape, the
glider will continue moving around and around the lattice forever.
Other intricate patterns that have been discovered by enthusiasts include

the spaceship, a fancier type of glider, and the glider gun, which continually
shoots out new gliders. Conway showed how to simulate Turing machines in
Life by having the changing on/off patterns of states simulate a tape head
that reads and writes on a simulated tape.
John Conway also sketched a proof (later refined by others) that Life could

simulate a universal computer. This means that given an initial configuration
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ofon andoff states that encodes a programand the input data for that program,
Life will run that program on that data, producing a pattern that represents
the program’s output.
Conway’s proof consisted of showing how glider guns, gliders, and other

structures could be assembled so as to carry out the logical operations and, or,
and not. It has long been known that any machine that has the capacity to
put together all possible combinations of these logic operations is capable of
universal computation. Conway’s proof demonstrated that, in principle, all
such combinations of logical operations are possible in the Game of Life.
It’s fascinating to see that something as simple to define as the Life cellular

automaton can, in principle, run any program that can be run on a standard
computer. However, in practice, any nontrivial computation will require a
large collection of logic operations, interacting in specific ways, and it is
very difficult, if not impossible, to design initial configurations that will
achieve nontrivial computations. And even if it were possible, the ensuing
computation would be achingly slow, not to mention wasteful, since the
huge parallel, non-von-Neumann-style computing resources of the cellular
automaton would be used to simulate, in a very slow manner, a traditional
von-Neumann-style computer.
For these reasons, people don’t use Life (or other “universal” cellular

automata) to perform real-world computations or even to model natural
systems.What we really want from cellular automata is to harness their paral-
lelism and ability to form complex patterns in order to achieve computations
in a nontraditional way. The first step is to characterize the kinds of patterns
that cellular automata can form.

The Four Classes

In the early 1980s, Stephen Wolfram, a physicist working at the Institute
for Advanced Study in Princeton, became fascinated with cellular automata
and the patterns they make. Wolfram is one of those legendary former child
prodigies whom people like to tell stories about. Born in London in 1959,
Wolfram published his first physics paper at age 15. Two years later, in the
summer after his first year at Oxford, a time when typical college students
get jobs as lifeguards or hitchhike around Europe with a backpack, Wolfram
wrote a paper in the field of “quantum chromodynamics” that caught the
attention of Nobel prize–winning physicist Murray Gell-Mann, who invited
Wolfram to join his group atCaltech (California Institute ofTechnology). Two
years later, at age twenty, Wolfram received a Ph.D. in theoretical physics.
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Stephen Wolfram. (Photograph courtesy of Wolfram Research, Inc.)

(Most students take at least five years to get a Ph.D., after graduating from
college.) He then joined the Caltech faculty, and was soon awarded one of the
first MacArthur Foundation “genius” grants. A couple of years later, he was
invited to join the faculty at the Institute for Advanced Study in Princeton.
Whew. With all that fame, funding, and the freedom to do whatever he

wanted, Wolfram chose to study the dynamics of cellular automata.
In the spirit of good theoretical physics, Wolfram set out to study the

behavior of cellular automata in the simplest form possible—using one-
dimensional, two-state cellular automata in which each cell is connected only
to its two nearest neighbors (figure 10.4a). Wolfram termed these “elemen-
tary cellular automata.” He figured that if he couldn’t understand what was
going on in these seemingly ultra-simple systems, there was no chance of
understanding more complex (e.g., two-dimensional or multistate) cellular
automata.
Figure 10.4 illustrates one particular elementary cellular automaton rule.

Figure 10.4a shows the lattice—now just a line of cells, each connected to its
nearest neighbor on either side. As before, a cell is represented by a square—
black for on, and white for off. The edges of the lattice wrap around to make a
circle. Figure 10.4b shows the rule that each cell follows: for each of the eight
possible state configurations for a three-cell neighborhood, the update state
for the center cell is given. For example, whenever a three-cell neighborhood
consists of all off states, the center cell should stay off at the next time step.
Likewise, whenever a three-cell neighborhood has the configuration off-off-
on, the center cell should change its state to on at the next time step.Note that
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figure 10.4. (a) An illustration of a one-dimensional lattice whose ends
wrap around in a circle; (b) A particular elementary cellular automaton rule
(Rule 110) expressed as a list of three-cell configurations and corresponding
update states for the configuration’s center cell; (c) A space-time diagram,
showing four successive configurations of the cellular automaton.

the term rule refers to the entire list of configurations and update states, not to
the individual lines in the list. Figure 10.4c shows a space-time diagram for
this cellular automaton. The top row of cells is the one-dimensional lattice set
up with a particular initial configuration of on and off states. Each successive
row going down is the updated lattice at the next time step. Such plots are
called space-time diagrams because they track the spatial configuration of a
cellular automaton over a number of time steps.
Since there are only eight possible configurations of states for a three-cell

neighborhood (cf. figure 10.4b) and only two possible ways to fill in the update
state (on or off) for each of these eight configurations, there are only 256 (28)
possible rules for elementary cellular automata. By the 1980s, computers were
powerful enough for Wolfram to thoroughly investigate every single one of
them by looking at their behavior starting from many different initial lattice
configurations.
Wolfram assigned an identifying number to each elementary cellular

automaton rule as illustrated in figure 10.5. He called the on state “1” and
the off state “0,” and wrote the rule’s update states as a string of 1s and 0s,
starting with the update state for the all on neighborhood and ending with
the update state for the all off neighborhood. As shown, the rule given in
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figure 10.5. An illustration of the numbering system for
elementary cellular automata used by Stephen Wolfram.

figure 10.6. Rule 110
space-time diagram. The
one-dimensional cellular

automaton lattice has 200 cells,
which are shown starting with a
random initial configuration of
states, and updating over 200

time steps.

figure 10.4 is written as 0 1 1 0 1 1 1 0. Wolfram then interpreted this string
as a number written in binary (i.e., base 2). The string 0 1 1 0 1 1 1 0 in binary
is equal to the number 110 in decimal. This rule is thus called “Rule 110.”
As another example, the rule with update states 0 0 0 1 1 1 1 0 is “Rule 30.”
(See the notes for a review on how to convert base 2 numbers to decimal.)
Wolfram and his colleagues developed a special programming language,

called Mathematica, designed in part to make it easy to simulate cellular
automata. Using Mathematica, Wolfram programmed his computer to run
elementary cellular automata and to display space-time diagrams that show
their behavior. For example, figures 10.6 and 10.7 are plots like that given in
figure 10.4, just on a larger scale. The top horizontal row of figure 10.6 is a
random initial configuration of 200 black and white cells, and each successive
row is the result of applying Rule 110 to each cell in the previous row, for
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figure 10.7. Rule 30
space-time diagram, with an
initial configuration of random
states.

200 time steps. The plot in figure 10.7 shows the pattern created by Rule 30,
starting from a random initial configuration.
Looking at figures 10.6 and 10.7, perhaps you can sense why Wolfram

got so excited about elementary cellular automata. How, exactly, did these
complex patterns emerge from the very simple cellular automaton rules that
created them?
Seeing such complexity emerge from simple rules was evidently an

epiphany for Wolfram. He later said, “The Rule 30 automaton is the most
surprising thing I’ve ever seen in science…. It took me several years to absorb
how important this was. But in the end, I realized that this one picture con-
tains the clue to what’s perhaps the most long-standing mystery in all of
science: where, in the end, the complexity of the natural world comes from.”
In fact, Wolfram was so impressed by Rule 30 that he patented its use as part
of a pseudo-random number generator.
In Wolfram’s exhaustive survey of all 256 elementary cellular automata,

he viewed the behavior over time of each one starting from many different
initial configurations. For each elementary cellular automaton and each ini-
tial configuration, he applied the cellular automaton rule to the lattice for a
number of time steps—until the cellular automaton exhibited a stable type
of behavior. He observed the behavior to fall into four classes:

Class 1: Almost all initial configurations settle down to the same
uniform final pattern. Rule 8 is an example of this class; for all initial
configurations, all cells in the lattice quickly switch to the off state and
stay that way.

cellular automata, life, and the universe 155



Class 2: Almost all initial configurations settle down to either a uniform
final pattern or a cycling between a few final patterns. Here, the specific
final pattern or patterns depends on the initial configuration.

Class 3: Most initial configurations produce random-looking behavior,
although triangles or other regular structures are present. Rule 30
(figure 10.7) is an example of this class.

Class 4: The most interesting class. As described by Wolfram: “class 4
involves a mixture of order and randomness: localized structures are
produced which on their own are fairly simple, but these structures
move around and interact with each other in very complicated ways.”
Rule 110 (figure 10.6) is an example of this class.

Wolfram speculated that, because of this complexity of patterns and inter-
actions, all class 4 rules are capable of universal computation. However,
in general it is hard to prove that a particular cellular automaton, Turing
machine, or any other device is universal. Turing’s proof that there exists a
universal Turing machine was a triumph, as was von Neumann’s proof that
his self-replicating automaton was also a universal computer. Since then sev-
eral researchers have proved that simple cellular automata (such as the Game
of Life) are universal. In the 1990s, Matthew Cook, one ofWolfram’s research
assistants, finally proved that Rule 110 was indeed universal, and is perhaps
the simplest known example of a universal computer.

Wolfram’s “New Kind of Science”

I first heard about Cook’s result in 1998 when he spoke at a workshop at
the Santa Fe Institute. My own reaction, like that of many of my colleagues,
was “Very cool! Very ingenious! But not of much practical or scientific sig-
nificance.” Like the Game of Life, Rule 110 is an example of a very simple
deterministic system that can create unpredictable complex behavior. But in
practice it would be very difficult to design an initial configuration that would
result in a desired nontrivial computation. Moreover, Rule 110 would be an
even slower computer than the Game of Life.
Wolfram’s view of the result is very different. In his 2002 book, A New

Kind of Science, Wolfram interprets the universality of Rule 110 as strong
evidence for “a new law of nature,” namely, his Principle of Computational
Equivalence. Wolfram’s proposed principle consists of four parts:

1. The proper way to think about processes in nature is that they are
computing.
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2. Since even very simple rules (or “programs”) such as Rule 110 can
support universal computation, the ability to support universal
computation is very common in nature.

3. Universal computation is an upper limit on the complexity of
computations in nature. That is, no natural system or process can
produce behavior that is “noncomputable.”

4. The computations done by different processes in nature are almost
always equivalent in sophistication.

Got that? I admit, it’s kind of hard to figure out what this principle
means, and a major purpose of Wolfram’s 1,200-page book is to explicate
this principle and show how it applies in very diverse areas of science. I read
the whole book, and I still don’t completely understand what Wolfram is
getting at here. However, I’ll give my best gloss on it.
WhatWolframmeans by “processes in nature are computing” is something

like what you see in figures 10.6 and 10.7. At any given time a cellular
automaton possesses information—the configuration of states—and processes
information by applying its rule to its current configuration.Wolframbelieves
that natural systemsworkmuch the sameway—that they contain information
and process that information according to simple rules. InANewKind of Science
(or “NKS” as it is called by the cognoscenti), Wolfram discusses scientific
topics such as quantum physics, evolutionary and developmental biology,
and economics, to name a few, and he attempts to show how each of these
can best be described in terms of computation via simple rules. In essence,
his “new kind of science” refers to the idea that the universe, and everything
in it, can be explained by such simple programs. This is computation writ
large, very large.
Now, according toWolfram, since extremely simple rules such asRule 110

can support universal computation, then most natural systems—presumably
more complicated than Rule 110—can probably support universal compu-
tation too. And, Wolfram believes, there is nothing more complex than
what can be computed by a universal computer, given the right input.
Thus there is an upper limit on the complexity of possible computations
in nature.
As I described in chapter 4, Alan Turing showed that universal com-

puters can in principle compute anything that is “computable.” However,
some computations are simpler than others. Even though they both could
run on the same computer, the program “calculate 1 + 1” would result
in a less complicated computational process than a program that simulates
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the earth’s climate, correct? But Wolfram’s principle in fact asserts that, in
nature, the “sophistication” of all computations actually being performed is
equivalent.
Does any of this make sense? Wolfram’s theories are far from being gener-

ally accepted. I’ll give you my own evaluation. As for points 1 and 2, I think
Wolfram is on the right track in proposing that simple computer models
and experiments can lead to much progress in science, as shown in exam-
ples throughout this book. As I’ll describe in chapter 12, I think that one
can interpret the behavior of many natural systems in terms of information
processing. I also find it plausible that many such systems can support uni-
versal computation, though the significance of this for science hasn’t been
demonstrated yet.
Regarding point 3, the jury is also still out on whether there are processes

in nature that are more powerful than universal computers (i.e., can compute
“uncomputable” things). It has been proved that if you could build truly
nondigital computers (i.e., that can computewith numbers that have infinitely
many decimal places) then you would be able to build such a computer to
solve the halting problem, Turing’s uncomputable problem that we saw in
chapter 4. Some people, includingWolfram, don’t believe that numbers with
infinitely many decimal places actually exist in nature—that is, they think
nature is fundamentally digital. There’s no really convincing evidence on
either side.
Point 4 makes no sense to me. I find it plausible that my brain can support

universal computation (at least as far as my limited memory capacity allows)
and that the brain of the worm C. elegans is also (approximately) universal, but
I don’t buy the idea that the actual computations we engage in, respectively,
are equivalent in sophistication.
Wolfram goes even further in his speculations, and predicts that there is

a single, simple cellular automaton-like rule that is the “definite ultimate
model for the universe,” the primordial cellular automaton whose computa-
tions are the source for everything that exists. How long is this rule? “I’m
guessing it’s really very short,” says Wolfram. But how long? “I don’t know.
In Mathematica, for example, perhaps three, four lines of code.” Computation
writ small.
NKS made a big splash when it was published in 2002—it started out as

Amazon.com’s number one bestseller, and remained on the bestseller list for
months. Its publication was followed by a large publicity campaign launched
by Wolfram Media, the company Wolfram formed to publish his book.
Reactions to the book were bipolar: some readers thought it brilliant and
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revolutionary, others found it self-aggrandizing, arrogant, and lacking in sub-
stance and originality (for example, critics pointed out that physicists Konrad
Zuse and Edward Fredkin had both theorized that the universe is a cellular
automaton as early as the 1960s). However, whatever its other merits might
be, we cellular-automata addicts can all agree that NKS provided a lot of
welcome publicity for our obscure passion.

cellular automata, life, and the universe 159



Computing with Particleschapter 11

In 1989 I happened to read an art icle by the physicist
Norman Packard on using genetic algorithms to automatically design cel-

lular automaton rules. I was immediately hooked and wanted to try it myself.
Other things got in the way (like finishing my Ph.D. thesis), but working on
this idea was always in the back of my mind. A few years later, with thesis
finished and a research job at the Santa Fe Institute, I finally had the time
to delve into it. A young undergraduate student named Peter Hraber was
hanging around the institute at that time, looking for something to work on,
so I recruited him to help me with this project. We were soon after joined
by a graduate student named Rajarshi Das, who had independently started a
similar project.
Like Packard, we used a genetic algorithm to evolve cellular automaton

rules to perform a specific task called “majority classification.” The task is
simple: the cellular automatonmust computewhether its initial configuration
contains a majority of on or off states. If on states are in the majority, the
cellular automaton should signal this fact by turning all the cells on. Similarly,
if off has an initial majority, the cellular automaton should turn all cells off.
(If the number of initial on and off states is equal, there is no answer, but this
possibility can be avoided by using a cellular automaton with an odd number
of cells.) The majority classification task is sort of like having to predict which
of two candidates will win an election in your city when all you can see are
the political signs on your close neighbors’ front lawns.
The majority classification task would be trivial for a von-Neumann-style

computer. Simply have the central processing unit count the respective num-
bers of on and off states in the initial configuration, storing the count at each
step in memory. When done counting, retrieve the two totals from memory,



determine which one is larger, and reset the configuration to all on or all
off depending on this comparison. A von-Neumann-style computer can do
this easily because it has random access memory in which to store the initial
configuration and intermediate sums, and a central processing unit to do the
counting, the final comparison, and the resetting of the states.
In contrast, a cellular automaton has no random access memory and no

central unit to do any counting. It has only individual cells, each of which
has information only about its own state and the states of its neighbors. This
situation is an idealized version of many real-world systems. For example, a
neuron, with only a limited number of connections to other neurons, must
decide whether and at what rate to fire so that the overall firing pattern over
large numbers of neurons represents a particular sensory input. Similarly, as
I describe in chapter 12, an ant must decide what job it should take on at
a given time—in order to benefit the colony as a whole—based only on its
interactions with a relatively small number of other ants.
The bottom line is that it is in general difficult to design cellular automata

to perform tasks that require collective decision making among all the cells.
Peter and I were interested in how a genetic algorithmmight solve this design
problem.
UsingNormanPackard’s work as a starting point, we coded up simulations

of one-dimensional cellular automata in which each cell is connected to three
cells on either side—that is, the size of each cell’s neighborhood (including
the cell itself) is seven cells.
Think for a minute how you might design a rule for a cellular automaton

like this to perform the majority classification task.
One reasonable first guess for a rule might be: “Each cell should update to

the state that is currently a majority in its local neighborhood.” This would
be like basing your election prediction on which candidate is supported by
the majority of yard signs among you and your local neighbors. However, this
“local majority vote” cellular automaton doesn’t work, as illustrated by the
space-time diagram in figure 11.1. The initial configuration has a majority of
black cells, and each cell updates its state according to the local majority vote
rule over 200 time steps. You can see that the lattice quickly settles into a
stable pattern of black and white regions. The boundaries between regions are
at locations where majority black neighborhoods overlap with majority white
neighborhoods. The final configuration, containing both white and black
cells, does not give the desired answer to the majority classification task. The
problem is that there is no way, using this rule, for one black region, say, to
communicate its length to the other black regions, so that collectively they
can determine whether or not they are in the majority.
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figure 11.1. Space-time
behavior of the “local majority

vote” cellular automaton
starting from a majority black
initial configuration. (Figure
adapted from Mitchell, M.,

Crutchfield, J. P., and Das, R.,
Evolving cellular automata to

perform computations: A review
of recent work. In Proceedings of

the First International Conference on
Evolutionary Computation and Its

Applications (EvCA ’96).
Moscow, Russia: Russian

Academy of Sciences, 1996.)

It’s not immediately obvious how to design a rule for this task, so in the
spirit of Robby the Robot from chapter 9 we ran a genetic algorithm in order
to see if it could produce a successful rule on its own.
In our genetic algorithm, cellular automaton rules are encoded as strings

of 0s and 1s. These bits give the state-update values for each possible
neighborhood configuration (figure 11.2).
The genetic algorithm starts out with a population of randomly generated

cellular automaton rules. To calculate the fitness of a rule, the GA tests it on
many different initial lattice configurations. The rule’s fitness is the fraction
of times it produces the correct final configuration: all cells on for initial
majority on or all cells off for initial majority off (figure 11.3). We ran the
GA for many generations, and by the end of the run the GA had designed
some rules that could do this task fairly well.
As we saw with Robby the Robot, a solution evolved by the genetic algo-

rithm is typically impossible to understand at the level of its “genome.” The
cellular automata that we evolved for the majority classification task were
no different. The genome of one of the highest-performing cellular automata
designed by the GA is the following (split into two lines of text):

0000010100000110000101011000011100000111000001000001010101010111
0110010001110111000001010000000101111101111111111011011101111111

Recall that the first bit is the update state for the center cell in the all 0s
neighborhood, the second bit is the update state for center cell in the neigh-
borhood 0000001, and so forth. Since there are 128 possible neighborhoods,
this genome consists of 128 bits. Looking at this bit string, there is nothing
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figure 11.2. Illustration of how a cellular automaton rule is encoded as
an individual in the genetic algorithm’s population. The 128 possible
neighborhood configurations are listed in a fixed order. The update state
for the center cell of each neighborhood configuration is encoded as a 0
(off) or a 1 (on). An individual in the genetic algorithm’s population is a
string of 128 bits, encoding the update states in their fixed ordering.

figure 11.3. To calculate its fitness, each rule is tested on many random
initial configurations. The fitness of a rule is the fraction of initial
configurations on which the rule produces the correct answer within some
number of time steps.
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obvious that gives us a hint as to how this rule will behave, or why it obtained
high fitness on the majority classification task.
Figure 11.4 gives two space-time diagrams that display the behavior of

this rule on two different initial configurations: with (a) a majority of black
cells and (b) a majority of white cells. You can see that in both cases the
final behavior is correct—all black in (a) and all white in (b). In the time
between the initial and final configurations, the cells somehow collectively
process information in order to arrive at a correct final configuration. Some
interesting patterns form during these intermediate steps, but what do they
mean?
It took a lot of staring at pictures like figure 11.4 for us to figure out what

was going on. Luckily for us, Jim Crutchfield, a physicist from Berkeley,
happened to visit the Santa Fe Institute and became interested in our effort.
It turned out that Jim and his colleagues had earlier developed exactly the
right conceptual tools to help us understand how these patterns implement
the computation.

figure 11.4. Space-time behavior of one of the best-performing evolved
cellular automaton rules for the majority classification task. In (a), the
initial configuration contains a majority of black cells and the cellular
automaton iterates to a fixed configuration of all black. In (b), the initial
configuration contains a majority of white cells and the cellular automaton
iterates to a fixed configuration of all white. (Figure adapted from
Mitchell, M., Crutchfield, J. P., and Das, R., Evolving cellular automata
to perform computations: A review of recent work. In Proceedings of the
First International Conference on Evolutionary Computation and Its Applications
(EvCA ’96). Moscow, Russia: Russian Academy of Sciences, 1996.)
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Three types of patterns can be seen in figure 11.4: all black, all white, and
a checkerboard-like region of alternating black and white states (this appears
as a grayish region in the low-resolution figure 11.4). It is this checkerboard
pattern that transfers information about the density of black or white cells in
local regions.
Like the strategy the genetic algorithm evolved for Robby the Robot,

the cellular automaton’s strategy is quite clever. Take a look at figure 11.5,
which is a version of figure 11.4a that I have marked up. Regions in which
the initial configuration is either mostly white or mostly black converge in a
few time steps to regions that are all white or all black. Notice that whenever
a black region on the left meets a white region on the right, there is always
a vertical boundary between them. However, whenever a white region on
the left meets a black region on the right, a checkerboard triangle forms,
composed of alternating black and white cells. You can see the effect of the
circular lattice on the triangle as it wraps around the edges.
Sides A andB of the growing checkerboard region travel at the same velocity

(i.e., distance covered over time). Side A travels southwest until it collides
with the vertical boundary. Side B just misses colliding with the vertical
boundary on the other side. This means that side A had a shorter distance to
travel. That is, the white region bordered by side A is smaller than the black

figure 11.5. The space-time diagram of figure 11.4 (a) with
important features marked.
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region bordered by side B. At the collision point, side A disappears, and the
black region is allowed to grow. At the triangle’s bottom point, sides B and C
disappear, and the entire lattice becomes black, the correct final configuration.
If we try to understand these patterns as carrying out a computation, then

the vertical boundary and the checkerboard region can be thought of as signals.
These signals are created and propagated by local interactions among cells.
The signals are what allow the cellular automaton as a whole to determine
the relative sizes of the larger-scale adjacent black and white regions, cut off
the smaller ones, and allow the larger ones to grow in size.
These signals are the major difference between the local majority voting

cellular automaton of figure 11.1 and the cellular automaton of figure 11.5.
As I mentioned above, in the former there is no way for separated black or
white regions to communicate with one another to figure out which has the
majority of cells. In the latter, the signals created by the checkerboard region
and the vertical boundary carry out this communication, and the interaction
among signals allows the communicated information to be processed so that
the answer can be determined.
Jim Crutchfield had earlier invented a technique for detecting what he

called “information processing structures” in the behavior of dynamical sys-
tems and he suggested that we apply this technique to the cellular automata
evolved by the GA. Crutchfield’s idea was that the boundaries between simple
regions (e.g., sides A, B, C, and the vertical boundary in figure 11.5) are carri-
ers of information and information is processed when these boundaries collide.
Figure 11.6 shows the space-time diagram of figure 11.5, but with the black,
white, and checkerboard regions filtered out (i.e., colored white), leaving only
the boundaries, so we can see themmore clearly. The picture looks something
like a trace of elementary particles in an old physics device called a bubble
chamber. Adopting that metaphor, Jim called these boundaries “particles.”
Traditionally in physics particles are denoted with Greek letters, and we

have done the same here. This cellular automaton produces six different types
of particles: γ (gamma), µ (mu), η (eta), δ (delta), β (beta), and α (alpha, a
short-lived particle that decays into γ and µ). Each corresponds to a different
kind of boundary—for example, η corresponds to boundaries between black
and checkerboard regions. There are five types of particle collisions, three of
which (β + γ , µ + β, and η + δ) create a new particle, and two of which
(η + µ and γ + δ) are “annihilations,” in which both particles disappear.
Casting the behavior of the cellular automaton in terms of particles helps us

understand how it is encoding information and performing its computation.
For example, the α and β particles encode different types of information
about the initial configuration. The α particle decays into γ and µ. The
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figure 11.6. The space-time diagram of figure 11.4
(a), with regions of “simple patterns” filtered out,
leaving the boundaries between these regions
(“particles”). (Figure adapted from Mitchell, M.,
Crutchfield, J. P., and Das, R., Evolving cellular
automata to perform computations: A review of
recent work. In Proceedings of the First International
Conference on Evolutionary Computation and Its
Applications (EvCA ’96). Moscow, Russia: Russian
Academy of Sciences, 1996.)

γ particle carries the information that it borders a white region; similarly,
the µ particle carries the information that it borders a black region. When
γ collides with β before µ does, the information contained in β and γ is
combined to deduce that the large initial white region was smaller than the
large initial black region it bordered. This new information is encoded in a
newly created particle η, whose job is to catch up with and annihilate the µ

(and itself).
We were able to apply this kind of analysis to several different cellular

automata evolved to perform the majority classification task as well as other
tasks. This analysis allowed us to predict things such as the fitness of a given
cellular automaton (without having to run the cellular automaton itself, but
using only its “particle” description). It also allowed us to understand why
one cellular automaton had higher fitness than another and how to describe
the mistakes that were made by different cellular automata in performing
computations.
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Particles give us something we could not get by looking at the cellular
automaton rule or the cellular automaton’s space-time behavior alone: they
allowus to explain, in information-processing terms, how a cellular automaton
performs a computation.Note that particles are a description imposed by us (the
scientists) rather than anything explicit taking place in a cellular automaton or
used by the genetic algorithm to evolve cellular automata. But somehow the
genetic algorithm managed to evolve a rule whose behavior can be explained
in terms of information-processing particles. Indeed, the language of particles
and their interactions form an explanatory vocabulary for decentralized com-
putation in the context of one-dimensional cellular automata. Something like
this language may be what Stephen Wolfram was looking for when he posed
the last of his “Twenty Problems in the Theory of Cellular Automata”: “What
higher-level descriptions of information processing in cellular automata can
be given?”
All this is relatively recent work and needs to be developed much further.

I believe that this approach to understanding computation, albeit unconven-
tional, will turn out to be useful in other contexts in which computation is
distributed among simple componentswith no central control. For example, it
is still amystery how high-level information about sensory data is encoded and
processed in the brain. Perhaps the explanation will turn out to be something
close to particle-like or, given the brain’s three dimensions, wave-like com-
putation, where neurons are the scaffolding for information-carrying waves of
activity and their information-processing interactions.
Brain computation is of course a long jump from one-dimensional cellular

automata. However, there is one natural system that might be explained by
something very much like our particles: the stomata networks of plants. Every
leafy plant’s leaves are covered with stomata—small apertures that open or
close in response to light and humidity.When open, the stomata let in carbon
dioxide, which is used in photosynthesis. However, open stomata cause water
to evaporate from the plant’s fluid stores. BotanistKeithMott, physicistDavid
Peak, and their colleagues at Utah State University have long been observing
the patterns of opening and closing of stomata on leaves, and believe that
the stomata constitute a network that is something like a two-dimensional
cellular automaton. They also observe that the temporal patterns of opening
and closing on the leaves looks very much like two-dimensional versions
of interacting particles. They hypothesize that plants perform a distributed,
decentralized computation via their stomata—namely, how to optimally open
and close stomata in order to best balance carbon dioxide gain and water
loss—and that the computation may be explainable in terms of such particles.
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Information Processing
in Living Systems

chapter 12

Ever since Szilard’s insight that information might be the
savior of the second law of thermodynamics from the attack of Maxwell’s

demon, information and its cousin computation have increasingly infiltrated
science. In many people’s minds information has taken on an ontologi-
cal status equal to that of mass and energy—namely, as a third primitive
component of reality. In biology in particular, the description of living sys-
tems as information processing networks has become commonplace. In fact, the
term information processing is so widely used that one would think it has a
well-understood, agreed-upon meaning, perhaps built on Shannon’s formal
definition of information.However, like several other central terms of complex
systems science, the concept of information processing tends to be ill-defined;
it’s often hard to glean what is meant by information processing or computation
when they are taken out of the precise formal context defined by Turing
machines and von Neumann-style computers. The work described in the pre-
vious chapter was an attempt to address this issue in the context of cellular
automata.
The purpose of this chapter is to explore the notion of information pro-

cessing or computation in living systems. I describe three different natural
systems in which information processing seems to play a leading role—the
immune system, ant colonies, and cellular metabolism—and attempt to illu-
minate the role of information and computation in each. At the end I attempt
to articulate some common qualitative principles of information processing
in these and other decentralized systems.



What Is Information Processing?

Let me quote myself from chapter 10: “In what sense do natural systems
‘compute’? At a very general level, one might say that computation is what
a complex system does with information in order to succeed or adapt in its
environment. But can we make this statement more precise? Where is the
information, and what exactly does the complex system do with it?” These
questions may seem straightforward, but exploring themwill quickly force us
to dip our feet into some of the murkiest waters in complex systems science.
When we say a system is processing information or computing (terms which,

for now, I will use synonymously), we need to answer the following:

• What plays the role of “information” in this system?
• How is it communicated and processed?
• How does this information acquire meaning? And to whom? (Some
will disagree with me that computation requires meaning of some sort,
but I will go out on a limb and claim it does.)

information processing in traditional computers

As we saw in chapter 4, the notion of computation was formalized in the
1930s by Alan Turing as the steps carried out by a Turing machine on a
particular input. Ever since then, Turing’s formulation has been the basis
for designing traditional von-Neumann-style programmable computers. For
these computers, questions about information have straightforward answers.
We can say that the role of information is played by the tape symbols and
possible states of the tape head. Information is communicated andprocessed by
the tape head’s actions of reading from and writing to the tape, and changing
state. This is all done by following the rules, which constitute the program.
We can view all programs written for traditional computers at (at least)

two levels of description: a machine-code level and a programming level. The
machine-code level is the set of specific, step-by-step low-level instructions
for themachine (e.g., “move the contents ofmemory location n toCPU register
j,” “perform an or logic operation on the contents of CPU registers j and i and
store the result in memory location m,” and so on. The programming level
is the set of instructions in a high-level language, such as BASIC or Java, that
is more understandable to humans (e.g., “multiply the value of the variable
half_of_total by 2 and store the result in the variable total,” etc.). Typically
a single high-level instruction corresponds to several low-level instructions,
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which may be different on different computers. Thus a given high-level pro-
gram can be implemented in different ways in machine code; it is a more
abstract description of information processing.
The meaning of the input and output information in a Turing machine

comes from its interpretation by humans (programmers and users). Themean-
ing of the information created in intermediate steps in the computation also
comes from its interpretation (or design) by humans, who understand the steps
in terms of commands in a high-level programming language. This higher
level of description allows us to understand computations in a human-friendly
way that is abstracted from particular details of machine code and hardware.

information processing in cellular automata

For non-von-Neumann-style computers such as cellular automata, the answers
are not as straightforward. Consider, for example, the cellular automaton
described in the previous chapter that was evolved by a genetic algorithm to
performmajority classification. Drawing an analogy with traditional comput-
ers, we could say that information in this cellular automaton is located in the
configurations of states in the lattice at each time step. The input is the initial
configuration, the output is the final configuration, and at each intermediate
time step information is communicated and processed within each neighbor-
hood of cells via the actions of the cellular automaton rule. Meaning comes
from the human knowledge of the task being performed and interpretation of
the mapping from the input to the output (e.g., “the final lattice is all white;
that means that the initial configuration had a majority of white cells”).
Describing information processing at this level, analogous to “machine

code,” does not give us a human-friendly understanding of how the computa-
tion is accomplished. As in the case of von-Neumann-style computation, we
need a higher-level language to make sense of the intermediate steps in the
computation and to abstract from particular details of the underlying cellular
automaton.
In the previous chapter I proposed that particles and their interactions are

one approach toward such a high-level language for describing how informa-
tion processing is done in cellular automata. Information is communicated via
themovement of particles, and information is processed via collisions between
particles. In this way, the intermediate steps of information processing acquire
“meaning” via the human interpretation of the actions of the particles.
One thing that makes von-Neumann-style computation easier to describe

is that there is a clear, unambiguous way to translate from the programming
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level to the machine code level and vice versa, precisely because these comput-
ers were designed to allow such easy translation. Computer science has given
us automatic compilers and decompilers that do the translation, allowing us
to understand how a particular program is processing information.
For cellular automata, no such compilers or decompilers exist, at least

not yet, and there is still no practical and general way to design high-level
“programs.” Relatively new ideas such as particles as high-level information-
processing structures in cellular automata are still far from constituting a
theoretical framework for computation in such systems.
The difficulties for understanding information processing in cellular

automata arise in spades when we try to understand information processing in
actual living systems. My original question, “In what sense do natural systems
‘compute’?” is still largely unanswered, and remains a subject of confusion
and thorny debate among scientists, engineers, and philosophers. However,
it is a tremendously important question for complex systems science, because
a high-level description of information processing in living systems would
allow us not only to understand in new and more comprehensive ways the
mechanisms by which particular systems operate, but also to abstract general
principles that transcend the overwhelming details of individual systems.
In essence, such a description would provide a “high-level language” for
biology.
The rest of this chapter tries to make sense of these ideas by looking at

real examples.

The Immune System

I gave a quick description of the immune system way back in chapter 1. Now
let’s look a bitmore in depth at how it processes information in order to protect
the body from pathogens—viruses, bacteria, parasites, and other unwelcome
intruders.
To recap my quick description, the immune system consists of trillions

of different cells and molecules circulating in the body, communicating with
one another through various kinds of signals.
Of the many many different types of cells in the immune system, the one

I focus on here is the lymphocyte (a type of white blood cell; see figure 12.1).
Lymphocytes are created in the bone marrow. Two of the most important
types of lymphocytes are B cells, which release antibodies to fight viruses and
bacteria, and T cells, which both kill invaders and regulate the response of
other cells.
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figure 12.1. A human
lymphocyte, whose surface
is covered with receptors
that can bind to certain
shapes of molecules that
the cell might encounter.
(Photograph from National
Cancer Institute
[http://visualsonline.cancer.
gov/details.cfm?
imageid=1944].)

figure 12.2. An
illustration of a
lymphocyte (here a B cell)
receptor binding to an
antigen.

Each cell in the body has molecules on its surface called receptors. As the
name implies, these molecules are a means by which cells receive information.
The information is in the form of other molecules that chemically bind to the
receptor molecules. Whether or not a receptor binds to a particular molecule
depends on whether their physical shapes match sufficiently.
A lymphocyte’s surface is covered with identical receptors that bind to a

particular range of molecular shapes. If a lymphocyte happens by chance to
encounter a special pathogen molecule (called an “antigen”) whose shape fits
the lymphocyte’s receptors, then themolecule binds to one of the lymphocyte’s
receptors, and the lymphocyte is said to have “recognized” that antigen—
the first step in killing off pathogens. The binding can be strong or weak,
depending on how closely the molecule’s shape fits the receptor. This process
is illustrated in figure 12.2.
Themain problem facing the immune system is that it doesn’t know ahead

of time what pathogens will invade the body, so it can’t “predesign” a set of
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lymphocytes with receptors that will bind strongly to just the right shapes.
What’s more, there are an astronomical number of possible pathogens, so the
immune system will never be able to generate enough lymphocytes at any
one time to take care of every eventuality. Even with all the many millions
of different lymphocytes the body generates per day, the world of pathogens
that the system will be likely to encounter is much bigger.
Here’s how the immune system solves this problem. In order to “cover” the

huge space of possible pathogen shapes in a reasonable way, the population
of lymphocytes in the body at any given time is enormously diverse. The
immune system employs randomness to allow each individual lymphocyte to
recognize a range of shapes that differs from the range recognized by other
lymphocytes in the population.
In particular, when a lymphocyte is born, a novel set of identical receptors is

created via a complicated random shuffling process in the lymphocyte’s DNA.
Because of continual turnover of the lymphocyte population (about tenmillion
new lymphocytes are born each day), the body is continually introducing
lymphocytes with novel receptor shapes. For any pathogen that enters the
body, it will just be a short time before the body produces a lymphocyte that
binds to that pathogen’s particular marker molecules (i.e., antigens), though
the binding might be fairly weak.
Once such a binding event takes place, the immune system has to figure

out whether it is indicative of a real threat or is just a nonthreatening situation
that can be ignored. Pathogens are harmful, of course, because once they enter
the body they start to make copies of themselves in large numbers. However,
launching an immune system attack can cause inflammation and other harm
to the body, and too strong an attack can be lethal. The immune system as a
whole has to determine whether the threat is real and severe enough to warrant
the risk of an immune response harming the body. The immune system will
go into high-gear attack mode only if it starts picking up a lot of sufficiently
strong binding events.
The two types of lymphocytes, B and T cells, work together to determine

whether an attack is warranted. If the number of strongly bound receptors on
a B cell exceeds some threshold, and in the same time frame the B cell gets
“go-ahead” signals from T cells with similarly bound receptors, the B cell is
activated,meaning that it nowperceives a threat to the body (figure 12.3).Once
activated, the B cell releases antibody molecules into the bloodstream. These
antibodies bind to antigens, neutralize them, and mark them for destruction
by other immune system cells.
The activated B cell then migrates to a lymph node, where it divides

rapidly, producing large numbers of daughter cells, many with mutations
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figure 12.3. Illustration of activation of a B cell via binding and
“go-ahead” signal from a T cell. This signal prompts the B cell to
produce and release antibodies (y-shaped molecules).

that alter the copies’ receptor shapes. These copies are then tested on antigens
that are captured in the lymph node. The cells that do not bind die after a
short time.
The surviving copies are unleashed into the bloodstream, where some of

them encounter and bind to antigens, in some cases more strongly than did
their mother B cell. These activated daughter B cells also migrate to lymph
nodes and create mutated daughters of their own. This massive production
of lymphocytes is one reason that your lymph nodes often feel swollen when
you are sick.
This cycle continues, with the new B cells that best match antigens them-

selves producing the most daughter cells. In short, this is a process of natural
selection, in which collections of B cells evolve to have receptor shapes that
will bind strongly to a target antigen. This results in a growing arsenal of
antibodies that have been “designed” via selection to attack this specific anti-
gen. This process of detection and destruction typically takes from a few days
to weeks to eradicate the corresponding pathogen from the body.
There are at least two potential problems with this strategy. First, how

does the immune system prevent lymphocytes from mistakenly attacking the
body’s own molecules? Second, how does the immune system stop or tone
down its attack if the body is being harmed too much as a result?
Immunologists don’t yet have complete answers to these questions, and

each is currently an area of active research. It is thought that one major
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mechanism for avoiding attacking one’s own body is a process called negative
selection. When lymphocytes are born they are not immediately released into
the bloodstream. Instead they are tested in the bone marrow and thymus
by being exposed to molecules of one’s own body. Lymphocytes that bind
strongly to “self” molecules tend to be killed off or undergo “editing” in
the genes that give rise to receptors. The idea is that the immune system
should only use lymphocytes that will not attack the body. This mechanism
often fails, sometimes producing autoimmune disorders such as diabetes or
rheumatoid arthritis.
A second major mechanism for avoiding autoimmune attacks seems to

be the actions of a special subpopulation of T cells called regulatory T cells.
It’s not yet known exactly how these regulatory T cells work, but they do
secrete chemicals that suppress the actions of other T cells. A thirdmechanism
has been hypothesized to be the competition among B cells for a limited
resource—a particular chemical named BAFF needed for B cells to survive.
B cells that slip through the negative selection process and still bind strongly
to self-molecules find themselves, due to their continual binding to self-
molecules, in need of higher amounts of BAFF than non-self-binding B cells.
Competition for this limited resource leads to the increased probability of
death for self-binding B cells.
Even if the immune system is attacking foreign pathogens, it needs to

balance the virulence of its attack with the obligation to prevent harm to
the body as much as possible. The immune system employs a number of
(mostly little understood) mechanisms for achieving this balance. Many of
these mechanisms rely on a set of signaling molecules called cytokines. Harm
to the body can result in the secretion of cytokines, which suppress active lym-
phocytes. Presumably themore harmbeing done, the higher the concentration
of suppression cytokines, which makes it more likely that active cells will
encounter them and turn off, thus regulating the immune system without
suppressing it altogether.

Ant Colonies

As I described in chapter 1, analogies often have been made between ant
colonies and the brain. Both can be thought of as networks of relatively
simple elements (neurons, ants) from which emerge larger-scale information-
processing behaviors. Two examples of such behavior in ant colonies are the
ability to optimally and adaptively forage for food, and the ability to adaptively
allocate ants to different tasks as needed by the colony. Both types of behavior
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are accomplishedwith no central control, viamechanisms that are surprisingly
similar to those described above for the immune system.
In many ant species, foraging for food works roughly as follows. Foraging

ants in a colony set out moving randomly in different directions. When an
ant encounters a food source, it returns to the nest, leaving a trail made up
of a type of signaling chemicals called pheromones. When other ants encounter
a pheromone trail, they are likely to follow it. The greater the concentration
of pheromone, the more likely an ant will be to follow the trail. If an ant
encounters the food source, it returns to the nest, reinforcing the trail. In
the absence of reinforcement, a pheromone trail will evaporate. In this way,
ants collectively build up and communicate information about the locations
and quality of different food sources, and this information adapts to changes
in these environmental conditions. At any given time, the existing trails
and their strengths form a good model of the food environment discovered
collectively by the foragers (figure 12.4).
Task allocation is another way in which an ant colony regulates its own

behavior in a decentralized way. The ecologist Deborah Gordon has studied
task allocation in colonies of Red Harvester ants. Workers in these colonies
divide themselves among four types of tasks: foraging, nest-maintenance,
patrolling, and refuse-sorting work. The number of workers pursuing each
type of task adapts to changes in the environment. Gordon found, for example,

figure 12.4. An ant trail.
(Photograph copyright © by
Flagstaffotos. Reproduced by
permission.)
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that if the nest is disturbed in some small way, the number of nest mainte-
nance workers will increase. Likewise, if the food supply in the neighborhood
is large and high quality, the number of foragers will increase. How does an
individual ant decide which task to adopt in response to nestwide environ-
mental conditions, even though no ant directs the decision of any other ant
and each ant interacts only with a small number of other ants?
The answer seems to be that ants decide to switch tasks both as a function of

what they encounter in the environment and as a function of the rate at which
they encounter other ants performing different tasks. For example, an inactive
ant—one not currently performing a task—that encounters a foreign object
near the nest has increased probability of taking up nest-maintenance work.
In addition, an inactive ant that encounters a high rate of nest-maintenance
workers entering and leaving the nest will also have an increased probability of
adopting the nest-maintenance task; the increased activity in someway signals
that there are important nest maintenance tasks to be done. In a similar way,
a nest-maintenance worker who encounters a high rate of foragers returning
to the nest carrying seeds will have an increased probability of switching to
foraging; the increased seed delivery signals in some way that a high-quality
food source has been found and needs to be exploited. Ants are apparently able
to sense, through direct contact of their antennae with other ants, what task
the other ants have been engaged in, by perceiving specific chemical residues
associated with each task.
Similar types of mechanisms—based on pheromone signals and direct

interaction among individuals—seem to be responsible for other types of
collective behavior in ants and other social insects, such as the construction
of bridges or shelters formed of ants’ bodies described in chapter 1, although
many aspects of such behavior are still not very well understood.

Biological Metabolism

Metabolism is the group of chemical processes by which living organisms
use the energy they take in from food, air, or sunlight to maintain all the
functions needed for life. These chemical processes occur largely inside of cells,
via chains of chemical reactions called metabolic pathways. In every cell of an
organism’s body, nutrientmolecules are processed to yield energy, and cellular
components are built up via parallel metabolic pathways. These components
are needed for internal maintenance and repair and for external functions and
intercellular communication. At any given time, millions of molecules in
the cell drift around randomly in the cytoplasm. The molecules continually
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encounter one another. Occasionally (on a scale of microseconds), enzymes
encounter molecules of matching shape, speeding up the chemical reactions
the enzymes control. Sequences of such reactions cause large molecules to be
built up gradually.
Just as lymphocytes affect immune system dynamics by releasing

cytokines, and as ants affect foraging behavior by releasing pheromones, chem-
ical reactions that occur along a metabolic pathway continually change the
speed of and resources given to that particular pathway.
In general, metabolic pathways are complex sequences of chemical reac-

tions, controlled by self-regulating feedback. Glycolysis is one example of a
metabolic pathway that occurs in all life forms—it is a multistep process
in which glucose is transformed into the chemical pryruvate, which is then
used by the metabolic pathway called the citric acid cycle to produce, among
other things, the molecule called ATP (adenosine triphosphate), which is the
principal source of usable energy in a cell.
At any given time, hundreds of such pathways are being followed, some

independent, some interdependent. The pathways result in new molecules,
initiation of other metabolic pathways, and the regulation of themselves or
other metabolic pathways.
Similar to the regulation mechanisms I described above for the immune

system and ant colonies, metabolic regulation mechanisms are based on feed-
back. Glycolysis is a great example of this. One of the main purposes of
glycolysis is to provide chemicals necessary for the creation of ATP. If there is a
large amount of ATP in the cell, this slows down the rate of glycolysis and thus
decreases the rate of newATP production. Conversely, when the cell is lacking
in ATP, the rate of glycolysis goes up. In general, the speed of a metabolic
pathway is often regulated by the chemicals that are producedby that pathway.

Information Processing in These Systems

Let me now attempt to answer the questions about information processing I
posed at the beginning of this chapter:

• What plays the role of “information” in these systems?
• How is it communicated and processed?
• How does this information acquire meaning? And to whom?

what plays the role of information?

Aswas the case for cellular automata,when I talk about information processing
in these systems I am referring not to the actions of individual components
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such as cells, ants, or enzymes, but to the collective actions of large groups of
these components. Framed in this way, information is not, as in a traditional
computer, precisely or statically located in any particular place in the system.
Instead, it takes the form of statistics and dynamics of patterns over the
system’s components.
In the immune system the spatial distribution and temporal dynamics

of lymphocytes can be interpreted as a dynamic representation of informa-
tion about the continually changing population of pathogens in the body.
Similarly, the spatial distribution and dynamics of cytokine concentrations
encode large-scale information about the immune system’s success in killing
pathogens and avoiding harm to the body.
In ant colonies, information about the colony’s food environment is rep-

resented, in a dynamic way, by the statistical distribution of ants on various
trails. The colony’s overall state is represented by the dynamic distribution of
ants performing different tasks.
In cellular metabolism information about the current state and needs of

the cell are continually reflected in the spatial concentrations and dynamics
of different kinds of molecules.

how is information communicated and processed?

Communication via Sampling

One consequence of encoding information as statistical and time-varying
patterns of low-level components is that no individual component of the
system can perceive or communicate the “big picture” of the state of the sys-
tem. Instead, information must be communicated via spatial and temporal
sampling.
In the immune system, for example, lymphocytes sample their environ-

ment via receptors for both antigens and signals from other immune system
cells in the form of cytokines. It is the results of the lymphocytes’ samples of
the spatial and temporal concentration of these molecular signals that cause
lymphocytes to become active or stay dormant. Other cells are in turn affected
by the samples they take of the concentration and type of active lymphocytes,
which can lead pathogen-killer cells to particular areas in the body.
In ant colonies, an individual ant samples pheromone signals via its recep-

tors. It bases its decisions on which way to move on the results of these
sampled patterns of concentrations of pheromones in its environment. As I
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described above, individual ants also use sampling of concentration-based
information—via random encounters with other ants—to decide when to
adopt a particular task. In cellular metabolism, feedback in metabolic path-
ways arises from bindings between enzymes and particular molecules as
enzymes sample spatial and time-varying concentrations of molecules.

Random Components of Behavior

Given the statistical nature of the information read, the actions of the system
need to have random (or at least “unpredictable”) components. All three sys-
tems described above use randomness and probabilities in essential ways. The
receptor shape of each individual lymphocyte has a randomly generated com-
ponent so as to allow sampling of many possible shapes. The spatial pattern
of lymphocytes in the body has a random component due to the distribution
of lymphocytes by the bloodstream so as to allow sampling of many possible
spatial patterns of antigens. The detailed thresholds for activation of lympho-
cytes, their actual division rates, and the mutations produced in the offspring
all involve random aspects.
Similarly, the movements of ant foragers have random components, and

these foragers encounter and are attracted to pheromone trails in a probabilistic
way. Ants also task-switch in a probabilistic manner. Biochemist Edward Ziff
and science historian Israel Rosenfield describe this reliance on randomness as
follows: “Eventually, the ants will have established a detailed map of paths to
food sources. An observer might think that the ants are using a map supplied
by an intelligent designer of food distribution. However, what appears to
be a carefully laid out mapping of pathways to food supplies is really just a
consequence of a series of random searches.”
Cellular metabolism relies on random diffusion of molecules and on proba-

bilistic encounters between molecules, with probabilities changing as relative
concentrations change in response to activity in the system.
It appears that such intrinsic random and probabilistic elements are needed

in order for a comparatively small population of simple components (ants,
cells, molecules) to explore an enormously larger space of possibilities, partic-
ularly when the information to be gained from such explorations is statistical
in nature and there is little a priori knowledge aboutwhatwill be encountered.
However, randomnessmust be balancedwith determinism: self-regulation

in complex adaptive systems continually adjusts probabilities of where the
components should move, what actions they should take, and, as a result, how
deeply to explore particular pathways in these large spaces.
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Fine-Grained Exploration

Many, if not all, complex systems in biology have a fine-grained architecture,
in that they consist of large numbers of relatively simple elements that work
together in a highly parallel fashion.
Several possible advantages are conferred by this type of architecture,

including robustness, efficiency, and evolvability. One additional major
advantage is that a fine-grained parallel system is able to carry out what
Douglas Hofstadter has called a “parallel terraced scan.” This refers to a simul-
taneous exploration of many possibilities or pathways, in which the resources
given to each exploration at a given time depend on the perceived success
of that exploration at that time. The search is parallel in that many differ-
ent possibilities are explored simultaneously, but is “terraced” in that not
all possibilities are explored at the same speeds or to the same depth. Infor-
mation is used as it is gained to continually reassess what is important to
explore.
For example, at any given time, the immune systemmust determinewhich

regions of the huge space of possible pathogen shapes should be explored by
lymphocytes. Each of the trillions of lymphocytes in the body at any given
time can be seen as a particular mini-exploration of a range of shapes. The
shape ranges that are most successful (i.e., bind strongly to antigens) are given
more exploration resources, in the form of mutated offspring lymphocytes,
than the shape ranges that do not pan out (i.e., lymphocytes that do not bind
strongly). However, while exploiting the information that has been obtained,
the immune system continues at all times to generate new lymphocytes that
explore completely novel shape ranges. Thus the system is able to focus on
the most promising possibilities seen so far, while never neglecting to explore
new possibilities.
Similarly, ant foraging uses a parallel-terraced-scan strategy: many ants

initially explore random directions for food. If food is discovered in any of
these directions, more of the system’s resources (ants) are allocated, via the
feedback mechanisms described above, to explore those directions further. At
all times, different paths are dynamically allocated exploration resources in
proportion to their relative promise (the amount and quality of the food that
has been discovered at those locations). However, due to the large number of
ants and their intrinsic random elements, unpromising paths continue to be
explored as well, though with many fewer resources. After all, who knows—a
better source of food might be discovered.
In cellular metabolism such fine-grained explorations are carried out by

metabolic pathways, each focused on carrying out a particular task. A pathway
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can be speeded up or slowed down via feedback from its own results or from
other pathways. The feedback itself is in the form of time-varying concentra-
tions of molecules, so the relative speeds of different pathways can continually
adapt to the moment-to-moment needs of the cell.
Note that the fine-grained nature of the system not only allows many dif-

ferent paths to be explored, but it also allows the system to continually change
its exploration paths, since only relatively simple micro-actions are taken at
any time. Employing more coarse-grained actions would involve committing
time to a particular exploration that might turn out not to be warranted. In
this way, the fine-grained nature of exploration allows the system to fluidly
and continuously adapt its exploration as a result of the information it obtains.
Moreover, the redundancy inherent in fine-grained systems allows the system
to work well even when the individual components are not perfectly reli-
able and the information available is only statistical in nature. Redundancy
allows many independent samples of information to be made, and allows fine-
grained actions to be consequential only when taken by large numbers of
components.

Interplay of Unfocused and Focused Processes

In all three example systems there is a continual interplay of unfocused,
random explorations and focused actions driven by the system’s perceived
needs.
In the immune system, unfocused explorations are carried out by a continu-

ally changing population of lymphocytes with different receptors, collectively
prepared to approximately match any antigen. Focused explorations consist of
the creation of offspring that are variations of successful lymphocytes, which
allow these explorations to zero in on a particular antigen shape.
Likewise, ant foraging consists of unfocused explorations by ants moving

at random, looking for food in any direction, and focused explorations in
which ants follow existing pheromone trails.
In cellular metabolism, unfocused processes of random exploration by

molecules are combined with focused activation or inhibition driven by
chemical concentrations and genetic regulation.
As in all adaptive systems, maintaining a correct balance between these

two modes of exploring is essential. Indeed, the optimal balance shifts over
time. Early explorations, based on little or no information, are largely random
and unfocused. As information is obtained and acted on, exploration gradually
becomes more deterministic and focused in response to what has been per-
ceived by the system. In short, the system both explores to obtain information
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and exploits that information to successfully adapt. This balancing act between
unfocused exploration and focused exploitation has been hypothesized to
be a general property of adaptive and intelligent systems. John Holland,
for example, has cited this balancing act as a way to explain how genetic
algorithms work.

how does information acquire meaning?

How information takes on meaning (some might call it purpose) is one of those
slippery topics that has filled many a philosophy tome over the eons. I don’t
think I can add much to what the philosophers have said, but I do claim that
in order to understand information processing in living systems we will need
to answer this question in some form.
In my view, meaning is intimately tied up with survival and natural

selection. Events that happen to an organismmean something to that organism
if those events affect its well-being or reproductive abilities. In short, the
meaning of an event is what tells one how to respond to it. Similarly, events
that happen to or within an organism’s immune system have meaning in
terms of their effects on the fitness of the organism. (I’m using the term fitness
informally here.) These events mean something to the immune system because
they tell it how to respond so as to increase the organism’s fitness—similarly
with ant colonies, cells, and other information-processing systems in living
creatures. This focus on fitness is one way I can make sense of the notion of
meaning and apply it to biological information-processing systems.
But in a complex system such as those I’ve described above, inwhich simple

components act without a central controller or leader, who or what actually
perceives the meaning of situations so as to take appropriate actions? This
is essentially the question of what constitutes consciousness or self-awareness in
living systems. To me this is among the most profound mysteries in complex
systems and in science in general. Although this mystery has been the subject
of many books of science and philosophy, it has not yet been completely
explained to anyone’s satisfaction.
Thinking about living systems as doing computation has had an inter-

esting side effect: it has inspired computer scientists to write programs that
mimic such systems in order to accomplish real-world tasks. For example,
ideas about information processing in the immune system has inspired so-
called artificial immune systems: programs that adaptively protect computers
from viruses and other intruders. Similarly ant colonies have inspired what
are now called “ant colony optimization algorithms,” which use simulated
ants, secreting simulated pheromones and switching between simulated jobs,
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to solve hard problems such as optimal cell-phone communications rout-
ing and optimal scheduling of delivery trucks. I don’t know of any artificial
intelligence programs inspired both by these two systems and by cellular
metabolism, except for one I myself wrote with my Ph.D. advisor, which I
describe in the next chapter.

information processing in living systems 185



How to Make Analogies (if You
Are a Computer)

chapter 13

Easy Things Are Hard

The other day I said to my eight-year-old son, “Jake, please put your socks
on.” He responded by putting them on his head. “See, I put my socks
on!” He thought this was hilarious. I, on the other hand, realized that his
antics illustrated a deep truth about the difference between humans and
computers.
The “socks on head” joke was funny (at least to an eight-year-old) because

it violates something we all know is true: even though most statements in
human language are, in principle, ambiguous, when you say something to
another person, they almost always know what you mean. If I say tomy husband,
“Honey, do you know where my keys are?” and he replies, simply, “yes,” I
get annoyed—of course I meant “tell me where my keys are.” When my best
friend says that she is feeling swamped at her job, and I reply “same here,”
she knows that I don’t mean that I am feeling swamped at her job, but rather
my own. This mutual understanding is what we might call “common sense”
or, more formally, “sensitivity to context.”
In contrast, we have modern-day computers, which are anything but sensi-

tive to context. My computer supposedly has a state-of-the-art spam filter, but
sometimes it can’t figure out that a message with a “word” such as V!a&®@
is likely to be spam. As a similar example, a recent New York Times article
described how print journalists are now learning how to improve the Web
accessibility of their stories by tailoring headlines to literal-minded search



engines instead of to savvy humans: “About a year ago, the Sacramento Bee
changed online section titles. ‘Real Estate’ became ‘Homes,’ ‘Scene’ turned
into ‘Lifestyle,’ and dining information found in newsprint under ‘Taste,’ is
online under ‘Taste/Food.’ ”
This is, of course, not to say that computers are dumb about everything.

In selected, narrow domains they have become quite intelligent. Computer-
controlled vehicles can now drive by themselves across rugged desert terrain.
Computer programs can beat human doctors at diagnosing certain diseases,
humanmathematicians at solving complex equations, and human grand mas-
ters at chess. These are only a few examples of a surge of recent successes in
artificial intelligence (AI) that have brought a new sense of optimism to
the field. Computer scientist Eric Horvitz noted, “At conferences you are
hearing the phrase ‘human-level AI,’ and people are saying that without
blushing.”
Well, some people, perhaps. There are a few minor “human-level” things

computers still can’t do, such as understand human language, describe the
content of a photograph, and more generally use common sense as in the
preceding examples. Marvin Minsky, a founder of the field of artificial intel-
ligence, concisely described this paradox of AI as, “Easy things are hard.”
Computers can do many things that we humans consider to require high
intelligence, but at the same time they are unable to perform tasks that any
three-year-old child could do with ease.

Making Analogies

An important missing piece for current-day computers is the ability to make
analogies.
The term analogy often conjures up people’s bad memories of standard-

ized test questions, such as “Shoe is to foot as glove is to _____?” However,
what I mean by analogy-making is much broader: analogy-making is the
ability to perceive abstract similarity between two things in the face of super-
ficial differences. This ability pervades almost every aspect of what we call
intelligence.
Consider the following examples:

A child learns that dogs in picture books, photographs, and real life are
all instances of the same concept.

A person is easily able to recognize the letter A in a vast variety of
printed typefaces and handwriting.
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Jean says to Simone, “I call my parents once a week.” Simone replies “I
do that too,” meaning, of course, not that she calls Jean’s parents once a
week, but that she calls her own parents.

A woman says to her male colleague, “I’ve been working so hard lately,
I haven’t been able to spend enough time with my husband.” He
replies, “Same here”—meaning not that he is too busy to spend enough
time with the woman’s husband, but that he has little time to spend
with his girlfriend.

An advertisement describes Perrier as “the Cadillac of bottled waters.”
A newspaper article describes teaching as “the Beirut of professions.”
The war in Iraq is called “another Vietnam.”

Britain and Argentina go to war over the Falklands (or las Malvinas), a
set of small islands located near the coast of Argentina and populated by
British settlers. Greece sides with Britain because of its own conflict
with Turkey over Cyprus, an island near the coast of Turkey, the
majority of whose population is ethnically Greek.

A classical music lover hears an unfamiliar piece on the radio and knows
instantly that it is by Bach. An early-music enthusiast hears a piece for
baroque orchestra and can easily identify which country the composer
was from. A supermarket shopper recognizes the music being piped in
as a Muzak version of the Beatles’ “Hey Jude.”

The physicist Hideki Yukawa explains the nuclear force by using an
analogy with the electromagnetic force, on which basis he postulates a
mediating particle for the nuclear force with properties analogous to the
photon. The particle is subsequently discovered, and its predicted
properties are verified. Yukawa wins a Nobel prize.

This list is a small sampling of analogies ranging from the mundane every-
day kind to the once-in-a-lifetime-discovery kind. Each of these examples
demonstrates, at different levels of impressiveness, how good humans are at
perceiving abstract similarity between two entities or situations by letting
concepts “slip” from situation to situation in a fluid way. The list taken
as a whole illustrates the ubiquity of this ability in human thought. As the
nineteenth-century philosopher Henry David Thoreau put it, “All perception
of truth is the detection of an analogy.”
Perceiving abstract similarities is something computers are notoriously

bad at. That’s why I can’t simply show the computer a picture, say, of a dog
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swimming in a pool, and ask it to find “other pictures like this” in my online
photo collection.

My Own Route to Analogy

In the early 1980s, after I had graduated from college and didn’t quite know
what to do with my life, I got a job as a high-school math teacher in New
York City. The job provided me with very little money, and New York is an
expensive city, so I cut down on unnecessary purchases. But one purchase I
did make was a relatively new book written by a computer science professor
at Indiana University, with the odd titleGödel, Escher, Bach: an Eternal Golden
Braid. Having majored in math and having visited a lot of museums, I knew
who Gödel and Escher were, and being a fan of classical music, I knew very
well who Bach was. But putting their names together in a book title didn’t
make sense to me, and my curiosity was piqued.
Reading the book, written by Douglas Hofstadter, turned out to be one of

those life-changing events that one can never anticipate. The title didn’t let
on that the book was fundamentally about how thinking and consciousness
emerge from the brain via the decentralized interactions of large numbers of
simple neurons, analogous to the emergent behavior of systems such as cells,
ant colonies, and the immune system. In short, the book was my introduction
to some of the main ideas of complex systems.
It was clear that Hofstadter’s passionate goal was to use similar principles

to construct intelligent and “self-aware” computer programs. These ideas

Douglas Hofstadter. (Photograph courtesy of Indiana University.)
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quickly became my passion as well, and I decided that I wanted to study
artificial intelligence with Hofstadter.
The problemwas, I was a young nobody right out of college andHofstadter

was a famous writer of a best-selling book that had won both a Pulitzer Prize
and a National Book Award. I wrote him a letter saying I wanted to come
work with him as a graduate student. Naturally, he never responded. So I
settled for biding my time and learning a bit more about AI.
A year later I had moved to Boston with a new job and was taking classes

in computer science to prepare for my new career. One day I happened to
see a poster advertising a talk by Hofstadter at MIT. Excited, I went to the
talk, and afterward mingled among the throng of fans waiting to meet their
hero (I wasn’t the only one whose life was changed by Hofstadter’s book). I
finally got to the front of the line, shook Hofstadter’s hand, and told him that
I wanted to work in AI on ideas like his and that I was interested in applying
to Indiana University. I asked if I could visit him sometime at Indiana to talk
more. He told me that he was actually living in Boston, visiting the MIT
Artificial Intelligence Lab for the year. He didn’t invite me to come talk to
him at the AI Lab; rather he handed me off to talk to a former student of his
who was hanging around, and quickly went on to the next person in line.
I was disappointed, but not deterred. I managed to findHofstadter’s phone

number at the MIT AI Lab, and called several times. Each time the phone was
answered by a secretary who toldme thatHofstadter was not in, but she would
be glad to leave a message. I left several messages but received no response.
Then, one night, I was lying in bed pondering what to do next, when a

crazy idea hit me. All my calls to Hofstadter had been in the daytime, and
he was never there. If he was never there during the day, then when was he
there? It must be at night! It was 11:00 p.m., but I got up and dialed the
familiar number. Hofstadter answered on the first ring.
He seemed to be in a much better mood than he was at the lecture. We

chatted for a while, and he invited me to come by his office the next day
to talk about how I could get involved in his group’s research. I showed up
as requested, and we talked about Hofstadter’s current project—writing a
computer program that could make analogies.
Sometimes, having the personality of a bulldog can pay off.

Simplifying Analogy

One of Hofstadter’s great intellectual gifts is the ability to take a complex
problem and simplify it in such a way that it becomes easier to address but
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still retains its essence, the part that made it interesting in the first place.
In this case, Hofstadter took the problem of analogy-making and created a
microworld that retained many of the problem’s most interesting features. The
microworld consists of analogies to be made between strings of letters.
For example, consider the following problem: if abc changes to abd, what

is the analogous change to ijk? Most people describe the change as something
like “Replace the rightmost letter by its alphabetic successor,” and answer ijl.
But clearly there are many other possible answers, among them:

• ijd (“Replace the rightmost letter by a d”—similar to Jake putting his
socks “on”)

• ijk (“Replace all c’s by d’s; there are no c’s in ijk”), and
• abd (“Replace any string by abd”).

There are, of course, an infinity of other, even less plausible answers, such
as ijxx (“Replace all c’s by d’s and each k by two x’s”), but almost everyone
immediately views ijl as the best answer. This being an abstract domain with
no practical consequences, I may not be able to convince you that ijl is a better
answer than, say, ijd if you really believe the latter is better. However, it seems
that humans have evolved in such a way as to make analogies in the real world
that affect their survival and reproduction, and their analogy-making ability
seems to carry over into abstract domains as well. This means that almost
all of us will, at heart, agree that there is a certain level of abstraction that
is “most appropriate,” and here it yields the answer ijl. Those people who
truly believe that ijd is a better answer would probably, if alive during the
Pleistocene, have been eaten by tigers, which explains why there are not many
such people around today.
Here is a second problem: if abc changes to abd, what is the analogous

change to iijjkk? The abc⇒ abd change can again be described as “Replace
the rightmost letter by its alphabetic successor,” but if this rule is applied
literally to iijjkk it yields answer iijjkl, which doesn’t take into account the
double-letter structure of iijjkk. Most people will answer iijjll, implicitly
using the rule “Replace the rightmost group of letters by its alphabetic succes-
sor,” letting the concept letter of abc slip into the concept group of letters for
iijjkk.
Another kind of conceptual slippage can be seen in the problem

abc⇒ abd
kji ⇒ ?

A literal application of the rule “Replace the rightmost letter by its alphabetic
successor” yields answer kjj, but this ignores the reverse structure of kji, in
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which the increasing alphabetic sequence goes from right to left rather than
from left to right. This puts pressure on the concept rightmost in abc to slip
to leftmost in kji, which makes the new rule “Replace the leftmost letter by its
alphabetic successor,” yielding answer lji. This is the answer given by most
people. Some people prefer the answer kjh, in which the sequence kji is seen as
going from left to right but decreasing in the alphabet. This entails a slippage
from “alphabetic successor” to “alphabetic predecessor,” and the new rule is
“Replace the rightmost letter by its alphabetic predecessor.”
Consider

abc ⇒ abd
mrrjjj⇒ ?

You want to make use of the salient fact that abc is an alphabetically
increasing sequence, but how? This internal “fabric” of abc is a very appeal-
ing and seemingly central aspect of the string, but at first glance no such
fabric seems to weavemrrjjj together. So either (like most people) you settle
for mrrkkk (or possibly mrrjjk), or you look more deeply. The interesting
thing about this problem is that there happens to be an aspect of mrrjjj
lurking beneath the surface that, once recognized, yields what many people
feel is a more satisfying answer. If you ignore the letters in mrrjjj and look
instead at group lengths, the desired successorship fabric is found: the lengths
of groups increase as “1-2-3.” Once this connection between abc and mrrjjj
is discovered, the rule describing abc ⇒ abd can be adapted to mrrjjj as
“Replace the rightmost group of letters by its length successor,” which yields
“1-2-4” at the abstract level, or, more concretely, mrrjjjj.
Finally, consider

abc⇒ abd
xyz⇒ ?

At first glance this problem is essentially the same as the problem with
target string ijk given previously, but there is a snag:Z has no successor. Most
people answer xya, but inHofstadter’s microworld the alphabet is not circular
and therefore this answer is excluded. This problem forces an impasse that
requires analogy-makers to restructure their initial view, possibly making
conceptual slippages that were not initially considered, and thus to discover
a different way of understanding the situation.
People give a number of different responses to this problem, including xy

(“Replace the z by nothing at all”), xyd (“Replace the rightmost letter by a
d”; given the impasse, this answer seems less rigid and more reasonable than
did ijd for the first problem above), xyy (“If you can’t take the z’s successor,
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then the next best thing is to take its predecessor”), and several other answers.
However, there is one particular way of viewing this problem that, to many
people, seems like a genuine insight, whether or not they come up with it
themselves. The essential idea is that abc and xyz are “mirror images”—xyz
is wedged against the end of the alphabet, and abc is similarly wedged against
the beginning. Thus the z in xyz and the a in abc can be seen to correspond,
and then one naturally feels that the x and the c correspond as well. Underlying
these object correspondences is a set of slippages that are conceptually parallel:
alphabetic-first⇒ alphabetic-last, rightmost⇒ leftmost, and successor⇒ predecessor.
Taken together, these slippages convert the original rule into a rule adapted
to the target string xyz: “Replace the leftmost letter by its predecessor.” This
yields a surprising but strong answer: wyz.
It should be clear by now that the key to analogy-making in this

microworld (as well as in the real world) is what I am calling conceptual slip-
page. Finding appropriate conceptual slippages given the context at hand is
the essence of finding a good analogy.

Being a Copycat

Doug Hofstadter’s plan was for me to write a computer program that could
make analogies in the letter-string world by employing the same kinds of
mechanisms that he believed are responsible for human analogy-making in
general. He already had a name for this (as yet nonexistent) program: “Copy-
cat.” The idea is that analogy-making is a subtle form of imitation—for
example, ijk needs to imitate what happened when abc changed to abd,
using concepts relevant in its own context. Thus the program’s job was to be
a clever and creative copycat.
I began working on this project at MIT in the summer of 1984. That fall,

Hofstadter started a new faculty position at the University of Michigan in
Ann Arbor. I also moved there and enrolled as a Ph.D. student. It took a total
of six years of working closely with Doug for me to construct the program
he envisioned—the devil, of course, is in the details. Two results came out of
this: a program that could make human-like analogies in its microworld, and
(finally) my Ph.D.

How to Do the Right Thing

To be an intelligent copycat, you first have to make sense of the object, event,
or situation that you are “copycatting.”When presented with a situation with
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many components and potential relations among components, be it a visual
scene, a friend’s story, or a scientific problem, how does a person (or howmight
a computer program) mentally explore the typically intractably huge number
of possible ways of understanding what is going on and possible similarities
to other situations?
The following are two opposite and equally implausible strategies, both

to be rejected:

1. Some possibilities are a priori absolutely excluded from being explored.
For example, after an initial scan of mrrjjj, make a list of candidate
concepts to explore (e.g., letter, group of letters, successor, predecessor,
rightmost) and rigidly stick to it. The problem with this strategy, of
course, is that it gives up flexibility. One or more concepts not
immediately apparent as relevant to the situation (e.g., group length)
might emerge later as being central.

2. All possibilities are equally available and easy to explore, so one can do
an exhaustive search through all concepts and possible relationships that
would ever be relevant in any situation. The problem with this strategy
is that in real life there are always too many possibilities, and it’s not
even clear ahead of time what might constitute a possible concept for a
given situation. If you hear a funny clacking noise in your engine and
then your car won’t start, you might give equal weight to the
possibilities that (a) the timing belt has accidentally come off its
bearings or (b) the timing belt is old and has broken. If for no special
reason you give equal weight to the third possibility that your next-door
neighbor has furtively cut your timing belt, you are a bit paranoid. If for
no special reason you also give equal weight to the fourth possibility
that the atoms making up your timing belt have quantum-tunneled
into a parallel universe, you are a bit of a crackpot. If you continue and
give equal weight to every other possibility . . .well, you just can’t, not
with a finite brain. However, there is some chance you might be right
about the malicious neighbor, and the quantum-tunneling possibility
shouldn’t be forever excluded from your cognitive capacities or you risk
missing a Nobel prize.

The upshot is that all possibilities have to be potentially available, but they
can’t all be equally available. Counterintuitive possibilities (e.g., your mali-
cious neighbor; quantum-tunneling) must be potentially available but must
require significant pressure to be considered (e.g., you’ve heard complaints
about your neighbor; you’ve just installed a quantum-tunneling device in
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your car; every other possibility that you have explored has turned out to be
wrong).
The problem of finding an exploration strategy that achieves this goal has

been solved many times in nature. For example, we saw this in chapter 12 in
the way ant colonies forage for food: the shortest trails leading to the best food
sources attain the strongest pheromone scent, and increasing numbers of ants
follow these trails. However, at any given time, some ants are still follow-
ing weaker, less plausible trails, and some ants are still foraging randomly,
allowing for the possibility of new food sources to be found.
This is an example of needing to keep a balance between exploration and

exploitation, which I mentioned in chapter 12.When promising possibilities
are identified, they should be exploited at a rate and intensity related to their
estimated promise, which is being continually updated. But at all times explo-
ration for new possibilities should continue. The problem is how to allocate
limited resources—be they ants, lymphocytes, enzymes, or thoughts—to dif-
ferent possibilities in a dynamic way that takes new information into account
as it is obtained. Ant colonies have solved this problem by having large
numbers of ants follow a combination of two strategies: continual random
foraging combined with a simple feedback mechanism of preferentially fol-
lowing trails scentedwith pheromones and layingdown additional pheromone
while doing so.
The immune system also seems tomaintain a near optimal balance between

exploration and exploitation. We saw in chapter 12 how the immune sys-
tem uses randomness to attain the potential for responding to virtually any
pathogen it encounters. This potential is realized when an antigen activates a
particular B cell and triggers the proliferation of that cell and the production
of antibodies with increasing specificity for the antigen in question. Thus the
immune system exploits the information it encounters in the form of antigens
by allocating much of its resources toward targeting those antigens that are
actually found to be present. But it always continues to explore additional
possibilities that it might encounter by maintaining its huge repertoire of
different B cells. Like ant colonies, the immune system combines randomness
with highly directed behavior based on feedback.
Hofstadter proposed a scheme for exploring uncertain environments: the

“parallel terraced scan,” which I referred to in chapter 12. In this schememany
possibilities are explored in parallel, each being allocated resources according
to feedback about its current promise,whose estimation is updated continually
as new information is obtained. Like in an ant colony or the immune system,
all possibilities have the potential to be explored, but at any given time only
some are being actively explored, and not with equal resources.When a person
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(or ant colony or immune system) has little information about the situation
facing it, the exploration of possibilities starts out being very random, highly
parallel (many possibilities being considered at once) and unfocused: there is
no pressure to explore any particular possibility more strongly than any other.
As more and more information is obtained, exploration gradually becomes
more focused (increasing resources are concentrated on a smaller number of
possibilities) and less random: possibilities that have already been identified as
promising are exploited.As in ant colonies and the immune system, inCopycat
such an exploration strategy emerges from myriad interactions among simple
components.

Overview of the Copycat Program

Copycat’s task is to use the concepts it possesses to build perceptual
structures—descriptions of objects, links between objects in the same string,
groupings of objects in a string, and correspondences between objects in dif-
ferent strings—on top of the three “raw,” unprocessed letter strings given to
it in each problem. The structures the program builds represent its under-
standing of the problem and allow it to formulate a solution. Since for every
problem the program starts out from exactly the same state with exactly the
same set of concepts, its concepts have to be adaptable, in terms of their rel-
evance and their associations with one another, to different situations. In a
given problem, as the representation of a situation is constructed, associa-
tions arise and are considered in a probabilistic fashion according to a parallel
terraced scan in which many routes toward understanding the situation are
tested in parallel, each at a rate and to a depth reflecting ongoing evaluations
of its promise.
Copycat’s solution of letter-string analogy problems involves the interac-

tion of the following components:

• The Slipnet: A network of concepts, each of which consists of a central
node surrounded by potential associations and slippages. A picture of
some of the concepts and relationships in the current version of the
program is given in figure 13.1. Each node in the Slipnet has a
dynamic activation value that gives its current perceived relevance to
the analogy problem at hand, which therefore changes as the program
runs. Activation also spreads from a node to its conceptual neighbors
and decays if not reinforced. Each link has a dynamic resistance value
that gives its current resistance to slippage. This also changes as the
program runs. The resistance of a link is inversely proportional to the
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figure 13.1. Part of Copycat’s Slipnet. Each node is labeled with the
concept it represents (e.g., A–Z, rightmost, successor). Some links between
nodes (e.g., rightmost–leftmost) are connected to a label node giving the link’s
relationship (e.g., opposite). Each node has a dynamic activation value (not
shown) and spreads activation to neighboring nodes. Activation decays if
not reinforced. Each link has an intrinsic resistance to slippage, which
decreases when the label node is activated.

activation of the node naming the link. For example, when opposite is
highly active, the resistance to slippage between nodes linked by
opposite links (e.g., successor and predecessor) is lowered, and the
probability of such slippages is increased.

• TheWorkspace: A working area in which the letters composing the
analogy problem reside and in which perceptual structures are built on
top of the letters.

• Codelets: Agents that continually explore possibilities for perceptual
structures to build in the Workspace, and, based on their findings,
attempt to instantiate such structures. (The term codelet is meant to
evoke the notion of a “small piece of code,” just as the later term applet
in Java is meant to evoke the notion of a small application program.)
Teams of codelets cooperate and compete to construct perceptual
structures defining relationships between objects (e.g., “b is the
successor of a in abc,” or “the two i’s in iijjkk form a group,” or “the b
in abc corresponds to the group of j’s in iijjkk,” or “the c in abc
corresponds to the k in kji”). Each team considers a particular
possibility for structuring part of the world, and the resources (codelet
time) allocated to each team depends on the promise of the structure it
is trying to build, as assessed dynamically as exploration proceeds. In
this way, a parallel terraced scan of possibilities emerges as the teams
of codelets, via competition and cooperation, gradually build up a
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hierarchy of structures that defines the program’s “understanding” of
the situation with which it is faced.

• Temperature, which measures the amount of perceptual organization in
the system. As in the physical world, high temperature corresponds to
disorganization, and low temperature corresponds to a high degree of
organization. In Copycat, temperature both measures organization and
feeds back to control the degree of randomness with which codelets
make decisions. When the temperature is high, reflecting little
perceptual organization and little information on which to base
decisions, codelets make their decisions more randomly. As perceptual
structures are built and more information is obtained about what
concepts are relevant and how to structure the perception of objects
and relationships in the world, the temperature decreases, reflecting
the presence of more information to guide decisions, and codelets
make their decisions more deterministically.

A Run of Copycat

The best way to describe how these different components interact in Copycat
is to display graphics from an actual run of the program. These graphics are
produced in real-time as the program runs. This section displays snapshots
from a run of the program on abc⇒ abd, mrrjjj⇒ ?

Figure 13.2: The problem is presented. Displayed are: the Workspace
(here, the as-yet unstructured letters of the analogy problem); a “thermometer”
on the left that gives the current temperature (initially set at 100, itsmaximum

figure 13.2.
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figure 13.3.

value, reflecting the lack of any perceptual structures); and the number of
codelets that have run so far (zero).
Figure 13.3: Thirty codelets have run and have investigated a variety

of possible structures. Conceptually, codelets can be thought of as antlike
agents, each one probabilistically following a path to explore but being guided
by the paths laid down by other codelets. In this case the “paths” corre-
spond to candidate perceptual structures. Candidate structures are proposed
by codelets looking around at random for plausible descriptions, relation-
ships, and groupings within strings, and correspondences between strings. A
proposed structure becomes stronger as more and more codelets consider it
and find it worthwhile. After a certain threshold of strength, the structure is
considered to be “built” and can then influence subsequent structure building.
In figure 13.3, dotted lines and arcs represent structures in early stages of

consideration; dashed lines and arcs represent structures inmore serious stages
of consideration; finally, solid lines and arcs represent structures that have
been built. The speed at which proposed structures are considered depends on
codelets’ assessments of the promise of the structure. For example, the codelet
that proposed the a–m correspondence rated it as highly promising because
both objects are leftmost in their respective strings: identity relationships such
as leftmost ⇒ leftmost are always strong. The codelet that proposed the a–j
correspondence rated it much more weakly, since the mapping it is based
on, leftmost ⇒ rightmost, is much weaker, especially given that opposite is not
currently active. Thus the a–m correspondence is likely to be investigated
more quickly than the less plausible a–j correspondence.
The temperature has gone down from 100 to 94 in response to the single

built structure, the “sameness” link between the rightmost two j’s inmrrjjj.
This sameness link activated the node same in the Slipnet (not shown), which
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figure 13.4.

creates focused pressure in the form of specifically targeted codelets to look
for instances of sameness elsewhere.
Figure 13.4: Ninety-six codelets have run. The successorship fabric of abc

has been built. Note that the proposed c-to-b predecessor link of figure 13.3
has been out-competed by a successor link. The two successor links in abc
support each other: each is viewed as stronger due to the presence of the other,
making rival predecessor links much less likely to destroy the successor links.
Two rival groups based on successorship links between letters are being

considered: bc and abc (a whole-string group). These are represented by dotted
or dashed rectangles around the letters in figure 13.4. Although bc got off
to an early lead (it is dashed while the latter is only dotted), the group abc
covers more objects in the string. This makes it stronger than bc—codelets
will likely get around to testing it more quickly and will be more likely to
build it than to build bc. A strong group, jjj, based on sameness is being
considered in the bottom string.
Exploration of the crosswise a–j correspondence (dotted line in figure 13.3)

has been aborted, since codelets that further investigated it found it too weak
to be built. A c–j correspondence has been built (jagged vertical line); the
mapping on which it is based (namely, both letters are rightmost in their
respective strings) is given beneath it.
Since successor and sameness links have been built, along with an identity

mapping (rightmost ⇒ rightmost), these nodes are highly active in the Slipnet
and are creating focused pressure in the form of codelets to search explicitly for
other instances of these concepts. For example, an identity mapping between
the two leftmost letters is being considered.
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figure 13.5.

In response to the structures that have been built, the temperature has
decreased to 76. The lower the temperature, the less random are the decisions
made by codelets, so unlikely structures such as the bc group are even more
unlikely to be built.
Figure 13.5: The abc and jjj groups have been built, represented by solid

rectangles around the letters. For graphical clarity, the links between letters
in a group are not displayed. The existence of these groups creates additional
pressure to find new successorship and sameness groups, such as the rr same-
ness group that is being strongly considered. Groups, such as the jjj sameness
group, become new objects in the string and can have their own descriptions,
as well as links and correspondences to other objects. The capital J represents
the object consisting of the jjj group; the abc group likewise is a new object
but for clarity a single letter representing it is not displayed. Note that the
length of a group is not automatically noticed by the program; it has to be
noticed by codelets, just like other attributes of an object. Every time a group
node (e.g., successor group, sameness group) is activated in the Slipnet, it spreads
some activation to the node length. Thus length is now weakly activated
and creating codelets to notice lengths, but these codelets are not urgent
compared with others and none so far have run and noticed the lengths of
groups.
A rule describing the abc⇒ abd change has been built: “Replace letter-

category of rightmost letter by successor.” The current version of Copycat
assumes that the example change consists of the replacement of exactly one
letter, so rule-building codelets fill in the template “Replace by

,” choosing probabilistically from descriptions that the program has
attached to the changed letter and its replacement, with a probabilistic bias
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figure 13.6.

toward choosing more abstract descriptions (e.g., usually preferring rightmost
letter to C).
The temperature has fallen to 53, resulting from the increasing perceptual

organization reflected in the structures that have been built.
Figure 13.6: Two-hundred twenty-five codelets have run. The letter-

to-letter c–j correspondence has been defeated by the letter-to-group c–J
correspondence. Reflecting this, the rightmost ⇒ rightmost mapping has been
joined by a letter ⇒ group mapping underlying the correspondence. The c–J
correspondence is stronger than the c–j correspondence because the former
coversmore objects and because the concept group is highly active and thus seen
as highly relevant to the problem. However, in spite of its relative weakness,
the c–j correspondence is again being considered by a new team of codelets.
Meanwhile, the rrgrouphas been built. In addition, its length (represented

by the 2 next to the R) has been noticed by a codelet (a probabilistic event).
This event activated the node length, creating pressure to notice other groups’
lengths.
A new rule, “Replace the letter category of the rightmost letter by ‘D,’ ”

has replaced the old one at the top of the screen. Although this rule is weaker
than the previous one, competitions between rival structures (including rules)
are decided probabilistically, and this one simply happened to win. However,
its weakness has caused the temperature to increase to 58.
If the programwere to stop now (which is quite unlikely, since a key factor

in the program’s probabilistic decision to stop is the temperature, which is still
relatively high), the rule would be adapted for application to the stringmrrjjj
as “Replace the letter category of the rightmost group by ‘D,’ ” obeying the
slippage letter ⇒ group spelled out under the c–J correspondence. This yields
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figure 13.7.

answermrrddd, an answer that Copycat does indeed produce, though on very
rare occasions.
Codelets that attempt to create an answer run frequently throughout the

program (their attempts are not displayed here) but are not likely to succeed
unless the temperature is low.
Figure 13.7: Four hundred eighty codelets into the run, the rule “Replace

letter-category of rightmost letter by successor” has been restored after it out-
competed the previousweaker rule (a probabilistic event).However, the strong
c–J correspondence was broken and replaced by its weaker rival, the c–j corre-
spondence (also a probabilistic event). As a consequence, if the programwere to
stop at this point, its answer would bemrrjjk, since the c in abc ismapped to a
letter, not to a group. Thus the answer-building codelet would ignore the fact
that b has been mapped to a group. However, the (now) candidate correspon-
dence between the c and the group J is again being strongly considered. It will
fight againwith the c–j correspondence, butwill likely be seen as even stronger
than before because of the parallel correspondence between the b and the
group R.
In the Slipnet the activation of length has decayed since the length descrip-

tion given to the R group hasn’t so far been found to be useful (i.e., it hasn’t yet
been connected up with any other structures). In the Workspace, the salience
of the group R’s length description 2 is correspondingly diminished.
The temperature is still fairly high, since the program is having a hard

time making a single, coherent structure out ofmrrjjj, something that it did
easily with abc. That continuing difficulty, combined with strong focused
pressure from the two sameness groups that have been built inside mrrjjj,
caused the system to consider the a priori very unlikely idea of making a
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figure 13.8.

single-letter sameness group. This is represented by the dashed rectangle
around the letter m.
Figure 13.8: As a result of these combined pressures, the M sameness

group was built to parallel the R and J groups in the same string. Its length
of 1 has been attached as a description, activating length, which makes the
program again consider the possibility that group length is relevant for this
problem. This activation now more strongly attracts codelets to the objects
representing group lengths. Some codelets have already been exploring rela-
tions between these objects and, probably due to focused pressures from abc
to see successorship relationships, have built a successorship link between the
1 and the 2.
A consistent trio of letter ⇒ group correspondences have been made, and as

a result of these promising new structures the temperature has fallen to the
relatively low value of 36, which in turn helps to lock in this emerging view.
If the program were to halt at this point, it would produce the answer

mrrkkk, which is its most frequent answer (see figure 13.12).
Figure 13.9: As a result of length’s continued activity, length descriptions

have been attached to the remaining two groups in the problem, jjj and
abc, and a successorship link between the 2 and the 3 (for which there is
much focused pressure coming from both abc and the emerging view of
mrrjjj) is being considered. Other less likely candidate structures (a bc group
and a c–j correspondence) continue to be considered, though at considerably
less urgency than earlier, now that a coherent perception of the problem is
emerging and the temperature is relatively low.
Figure 13.10: The link between the 2 and the 3 was built, which, in con-

junction with focused pressure from the abc successor group, allowed codelets
to propose and build a whole-string group based on successorship links, here
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figure 13.10.

between numbers rather than between letters. This group is represented by
a large solid rectangle surrounding the three sameness groups. Also, a cor-
respondence (dotted vertical line to the right of the two strings) is being
considered between the two whole-string groups abc and mrrjjj.
Ironically, just as these sophisticated ideas seem to be converging, a small

renegade codelet, totally unaware of the global movement, has had some
good luck: its bid to knock down the c–J correspondence and replace it with a
c–j correspondence was successful. Of course, this is a setback on the global
level; while the temperature would have gone down significantly because of
the strong mrrjjj group that was built, its decrease was offset by the now
nonparallel set of correspondences linking together the two strings. If the
program were forced to stop at this point, it would answer mrrjjk, since at
this point, the object that changed, the c, is seen as corresponding to the
letter j rather than the group J. However, the two other correspondences will
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figure 13.11.

continue to put much pressure on the program (in the form of codelets) to go
back to the c–J correspondence.
Figure 13.11: Indeed, not much later in the run this happens: the c–j cor-

respondence has been broken and the c–J correspondence has been restored. In
addition, the proposed whole-string correspondence between abc andmrrjjj
has been built; underlying it are themappingswhole⇒whole, successor-group⇒
successor-group, right ⇒ right (direction of the links underlying both groups),
successor ⇒ successor (type of links underlying both groups), letter-category ⇒
length, and 3 ⇒ 3 (size of both groups).
The now very coherent set of perceptual structures built by the program

resulted in a very low temperature (11), and (probabilistically) due to this low
temperature, a codelet has succeeded in translating the rule according to the
slippages present in the Workspace: letter ⇒ group and letter-category ⇒ length
(all othermappings are identitymappings). The translated rule is “Replace the
length of the rightmost group by its successor,” and the answer is thusmrrjjjj.
It should be clear from the description above that because each run of

Copycat is permeated with probabilistic decisions, different answers appear
on different runs. Figure 13.12 displays a bar graph showing the different
answers Copycat gave over 1,000 runs, each starting from a different random
number seed. Each bar’s height gives the relative frequency of the answer
it corresponds to, and printed above each bar is the actual number of runs
producing that answer. The average final temperature for each answer is also
given below each bar’s label.
The frequency of an answer roughly corresponds to how obvious or imme-

diate it is, given the biases of the program. For example, mrrkkk, produced
705 times, is much more immediate to the program thanmrrjjjj, which was
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figure 13.12. A bar graph plotting the different answers Copycat
gave over 1,000 runs, each starting from a different random number
seed.

produced only 42 times. However, the average final temperature on runs pro-
ducingmrrjjjj is much lower than on runs producingmrrkkk (21 versus 43),
indicating that even though the latter is a more immediate answer, the pro-
gram judges the former to be a better answer, in terms of the strength and
coherence of the structures it built to produce each answer.

Summary

Via the mechanisms illustrated in this run of the program, Copycat avoids
the Catch-22 of perception: you can’t explore everything, but you don’t know
which possibilities are worth exploring without first exploring them. You
have to be open-minded, but the territory is too vast to explore everything;
you need to use probabilities in order for exploration to be fair. In Copycat’s
biologically inspired strategy, early on there is little information, resulting
in high temperature and high degree of randomness, with lots of parallel
explorations. As more and more information is obtained and fitting concepts
are found, the temperature falls, and exploration becomes more deterministic
and more serial as certain concepts come to dominate. The overall result is
that the system gradually changes from a mostly random, parallel, bottom-up
mode of processing to a deterministic, serial, focusedmode inwhich a coherent
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perception of the situation at hand is gradually discovered and gradually
“frozen in.” As I illustrated in chapter 12, this gradual transition between
different modes of processing seems to be a feature common to at least some
complex adaptive systems.
Analogies such as those between Copycat and biological systems force us to

thinkmore broadly about the systemswe are building or trying to understand.
If one notices, say, that the role of cytokines in immune signaling is similar to
that of codelets that call attention to particular sites in an analogy problem,
one is thinking at a general information-processing level about the function of
a biological entity. Similarly, if one sees that temperature-like phenomena in
the immune system—fever, inflammation—emerge from the joint actions of
many agents, one might get some ideas on how to better model temperature
in a system like Copycat.
Finally, there is the ever-thorny issue of meaning. In chapter 12 I said that

for traditional computers, information is notmeaningful to the computer itself
but to its human creators and “end users.” However, I would like to think
that Copycat, which represents a rather nontraditional mode of computation,
perceives a very primitive kind of meaning in the concepts it has and in
analogies it makes. For example, the concept successor group is embedded in a
network in which it is linked to conceptually similar concepts, and Copycat
can recognize and use this concept in an appropriate way in a large variety of
diverse situations. This is, in my mind, the beginning of meaning. But as I
said in chapter 12, meaning is intimately tied up with survival and natural
selection, neither of which are relevant to Copycat, except for the very weak
“survival” instinct of lowering its temperature. Copycat (and an even more
impressive array of successor programs created in Hofstadter’s research group)
is still quite far from biological systems in this way.
The ultimate goal of AI is to take humans out of the meaning loop and

have the computer itself perceive meaning. This is AI’s hardest problem. The
mathematician Gian-Carlo Rota called this problem “the barrier of meaning”
and asked whether or when AI would ever “crash” it. I personally don’t think
it will be anytime soon, but if and when this barrier is unlocked, I suspect
that analogy will be the key.
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Prospects of Computer Modelingchapter 14

Because complex systems are typically, as their name
implies, hard to understand, the more mathematically oriented sciences

such as physics, chemistry, and mathematical biology have traditionally con-
centrated on studying simple, idealized systems that are more tractable via
mathematics. However, more recently, the existence of fast, inexpensive com-
puters has made it possible to construct and experiment with models of
systems that are too complex to be understood with mathematics alone. The
pioneers of computer science—Alan Turing, John von Neumann, Norbert
Wiener, and others—were all motivated by the desire to use computers to
simulate systems that develop, think, learn, and evolve. In this fashion a new
way of doing science was born. The traditional division of science into theory
and experiment has been complemented by an additional category: computer
simulation (figure 14.1). In this chapter I discuss what we can learn from
computer models of complex systems and what the possible pitfalls are of
using such models to do science.

What Is a Model?

Amodel, in the context of science, is a simplified representation of some “real”
phenomenon. Scientists supposedly study nature, but in reality much of what
they do is construct and study models of nature.
Think of Newton’s law of gravity: the force of gravity between two objects

is proportional to the product of their masses divided by the square of the
distance between them. This is a mathematical statement of the effects



figure 14.1. The traditional division of science into theory and
experiment has been complemented by a new category: computer
simulation. (Drawing by David Moser.)

of a particular phenomenon—a mathematical model. Another kind of model
describes how the phenomenon actually works in terms of simpler concepts—
that is, what we call mechanisms. In Newton’s own time, his law of gravity
was attacked because he did not give a mechanism for gravitational force.
Literally, he did not show how it could be explained in terms of “size, shape,
and motion” of parts of physical objects—the primitive elements that were,
according to Descartes, necessary and sufficient components of all models in
physics. Newton himself speculated on possible mechanisms of gravity; for
example, he “pictured the Earth like a sponge, drinking up the constant stream
of fine aethereal matter falling from the heavens, this stream by its impact on
bodies above the Earth causing them to descend.” Such a conceptualization
might be called amechanistic model. Two hundred years later, Einstein proposed
a different mechanistic model for gravity, general relativity, in which grav-
ity is conceptualized as being caused by the effects of material bodies on the
shape of four-dimensional space-time. At present, some physicists are touting
string theory, which proposes that gravity is caused by miniscule, vibrating
strings.
Models are ways for our minds to make sense of observed phenomena in

terms of concepts that are familiar to us, concepts that we can get our heads
around (or in the case of string theory, that only a few very smart people can
get their heads around). Models are also a means for predicting the future: for
example, Newton’s law of gravity is still used to predict planetary orbits, and
Einstein’s general relativity has been used to successfully predict deviations
from those predicted orbits.
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Idea Models

For applications such as weather forecasting, the design of automobiles and
airplanes, or military operations, computers are often used to run detailed and
complicated models that in turn make detailed predictions about the specific
phenomena being modeled.
In contrast, a major thrust of complex systems research has been the

exploration of idea models: relatively simple models meant to gain insights
into a general concept without the necessity of making detailed predictions
about any specific system. Here are some examples of idea models that I have
discussed so far in this book:

• Maxwell’s demon: An idea model for exploring the concept of entropy.
• Turing machine: An idea model for formally defining “definite
procedure” and for exploring the concept of computation.

• Logistic model and logistic map: Minimal models for predicting
population growth; these were later turned into idea models for
exploring concepts of dynamics and chaos in general.

• Von Neumann’s self-reproducing automaton: An idea model for
exploring the “logic” of self-reproduction.

• Genetic algorithm: An idea model for exploring the concept of
adaptation. Sometimes used as a minimal model of Darwinian
evolution.

• Cellular automaton: An idea model for complex systems in general.
• Koch curve: An idea model for exploring fractal-like structures such as
coastlines and snowflakes.

• Copycat: An idea model for human analogy-making.

Idea models are used for various purposes: to explore general mechanisms
underlying some complicated phenomenon (e.g., von Neumann’s logic of
self-reproduction); to show that a proposed mechanism for a phenomenon is
plausible or implausible (e.g., dynamics of population growth); to explore
the effects of variations on a simple model (e.g., investigating what hap-
pens when you change mutation rates in genetic algorithms or the value of
the control parameter R in the logistic map); and more generally, to act as
what the philosopher Daniel Dennett called “intuition pumps”—thought
experiments or computer simulations used to prime one’s intuitions about
complex phenomena.
Idea models in complex systems also have provided inspiration for new

kinds of technology and computing methods. For example, Turing machines
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inspired programmable computers; vonNeumann’s self-reproducing automa-
ton inspired cellular automata; minimal models of Darwinian evolution, the
immune system, and insect colonies inspired genetic algorithms, computer
immune systems, and “swarm intelligence” methods, respectively.
To illustrate the accomplishments and prospects of idea models in

science, I now delve into a few examples of particular idea models in
the social sciences, starting with the best-known one of all: the Prisoner’s
Dilemma.

Modeling the Evolution of Cooperation

Many biologists and social scientists have used idea models to explore what
conditions can lead to the evolution of cooperation in a population of self-
interested individuals.
Indeed, living organisms are selfish—their success in evolutionary terms

requires living long enough, staying healthy enough, and being attractive
enough to potential mates in order to produce offspring. Most living creatures
are perfectly willing to fight, trick, kill, or otherwise harm other creatures
in the pursuit of these goals. Common sense predicts that evolution will
select selfishness and self-preservation as desirable traits that will be passed
on through generations and will spread in any population.
In spite of this prediction, there are notable counterexamples to selfish-

ness at all levels of the biological and social realms. Starting from the bottom,
sometime in evolutionary history, groups of single-celled organisms cooper-
ated in order to form more complex multicelled organisms. At some point
later, social communities such as ant colonies evolved, in which the vast
majority of ants not only work for the benefit of the whole colony, but also
abnegate their ability to reproduce, allowing the queen ant to be the only
source of offspring. Much later, more complex societies emerged in primate
populations, involving communal solidarity against outsiders, complicated
trading, and eventually human nations, governments, laws, and international
treaties.
Biologists, sociologists, economists, and political scientists alike have faced

the question of how such cooperation can arise among fundamentally self-
ish individuals. This is not only a question of science, but also of policy:
e.g., is it possible to engender conditions that will allow cooperation to arise
and persist among different nations in order to deal with international con-
cerns such as the spread of nuclear weapons, the AIDS epidemic, and global
warming?

212 computation writ large



figure 14.2. Alice and Bob face a “Prisoner’s Dilemma.”
(Drawing by David Moser.)

the prisoner’s dilemma

In the 1950s, at the height of the ColdWar, many people were thinking about
how to foster cooperationbetween enemynations so as to prevent a nuclearwar.
Around 1950, two mathematical game theorists, Merrill Flood and Melvin
Drescher, invented the Prisoner’s Dilemma as a tool for investigating such
cooperation dilemmas.
The Prisoner’s Dilemma is often framed as follows. Two individuals (call

them Alice and Bob) are arrested for committing a crime together and are put
into separate rooms to be interrogated by police officers (figure 14.2). Alice
and Bob are each separately offered the same deal in return for testifying
against the other. If Alice agrees to testify against Bob, then she will go free
and Bob will receive a sentence of life in prison. However, if Alice refuses to
testify but Bob agrees to testify, he will go free and she will receive the life
sentence. If they both testify against the other, they each will go to prison,
but for a reduced sentence of ten years. Both Alice and Bob know that if
neither testifies against the other they can be convicted only on a lesser charge
for which they will go to jail for five years. The police demand a decision
from each of them on the spot, and of course don’t allow any communication
between them.
If you were Alice, what would you do?
You might reason it out this way: Bob is either going to testify against

you or keep quiet, and you don’t know which. Suppose he plans to testify
against you. Then you would come out best by testifying against him (ten
years vs. life in prison). Now suppose he plans to keep quiet. Again your best
choice is to testify (go free vs. five years in prison). Thus, regardless of what
Bob does, your best bet for saving your own skin is to agree to testify.
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The problem is that Bob is following the exact same line of reasoning. So
the result is, you both agree to testify against the other, giving each of you a
worse outcome than if you had both kept quiet.
Let me tell this story in a slightly different context. Imagine you are the

U.S. president. You are considering a proposal to build a powerful nuclear
weapon, much more powerful than any that you currently have in your stock-
pile. You suspect, but don’t know for sure, that the Russian government is
considering the same thing.
Look into the future and suppose the Russians indeed end up building

such a weapon. If you also had decided to build the weapon, then the United
States and Russia would remain equal in fire power, albeit at significant cost
to each nation and making the world a more dangerous place. If you had
decided not to build the weapon, then Russia would have a military edge over
the United States.
Now suppose Russia does not build the weapon in question. Then if you

had decided to build it, the United States would have a military edge over
Russia, though at some cost to the nation, and if you had decided not to build,
the United States and Russia would remain equal in weaponry.
Just as we saw for Bob and Alice, regardless of what Russia is going to do,

the rational thing is for you to approve the proposal, since in each case building
the weapon turns out to be the better choice for the United States. Of course
the Russians are thinking along similar lines, so both nations end up build-
ing the new bomb, producing a worse outcome for both than if neither had
built it.
This is the paradox of the Prisoner’s Dilemma—in the words of political

scientist Robert Axelrod, “The pursuit of self-interest by each leads to a poor
outcome for all.” This paradox also applies to the all too familiar case of a group
of individuals who, by selfishly pursuing their own interests, collectively
bring harm to all members of the group (global warming is a quintessential
example). The economist Garrett Hardin has famously called such scenarios
“the tragedy of the commons.”
The Prisoner’s Dilemma and variants of it have long been studied as idea

models that embody the essence of the cooperation problem, and results from
those studies have influenced how scholars, businesspeople, and governments
think about real-world policies ranging from weapons control and responses
to terrorism to corporate management and regulation.
The Dilemma is typically formulated in terms of a two-person “game”

defined by what mathematical game theorists call a payoff matrix—an array
of all possible outcomes for two players. One possible payoff matrix for the
Prisoner’s Dilemma is given in figure 14.3. Here, the goal is to get as many

214 computation writ large



figure 14.3. A payoff matrix for the Prisoner’s Dilemma game.

points (as opposed to as few years in prison) as possible. A turn consists of each
player independently making a “cooperate or defect” decision. That is, on
each turn, players A and B independently, without communicating, decide
whether to cooperate with the other player (e.g., refuse to testify; decide not
to build the bomb) or to defect from the other player (e.g., testify; build the
bomb). If both players cooperate, each receives 3 points. If player A cooper-
ates and player B defects, then player A receives zero points and player B
gets 5 points, and vice versa if the situation is reversed. If both players
defect, each receives 1 point. As I described above, if the game lasts for
only one turn, the rational choice for both is to defect. However, if the game
is repeated , that is, if the two players play several turns in a row, both play-
ers’ always defecting will lead to a much lower total payoff than the players
would receive if they learned to cooperate. How can reciprocal cooperation be
induced?
Robert Axelrod, of the University of Michigan, is a political scientist who

has extensively studied and written about the Prisoner’s Dilemma. His work
on the Dilemma has been highly influential in many different disciplines,
and has earned him several prestigious research prizes, including aMacArthur
foundation “genius” award.
Axelrod began studying the Dilemma during the Cold War as a result

of his own concern over escalating arms races. His question was, “Under
what conditions will cooperation emerge in a world of egoists without central
authority?” Axelrod noted that the most famous historical answer to this
question was given by the seventeenth-century philosopher Thomas Hobbes,
who concluded that cooperation could develop only under the aegis of a central
authority. Three hundred years (and countless wars) later, Albert Einstein
similarly proposed that the only way to ensure peace in the nuclear age was
to form an effective world government. The League of Nations, and later, the
United Nations, were formed expressly for this purpose, but neither has been
very successful in either establishing a world government or instilling peace
between and within nations.
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Robert Axelrod. (Photograph
courtesy of the Center for the Study
of Complex Systems, University of

Michigan.)

Since an effective central government seems out of reach, Axelrod won-
dered if and how cooperation could come about without one. He believed
that exploring strategies for playing the simple repeated Prisoner’s Dilemma
game could give insight into this question. For Axelrod, “cooperation com-
ing about” meant that cooperative strategies must, over time, receive higher
total payoff than noncooperative ones, even in the face of any changes
opponents make to their strategies as the repeated game is being played.
Furthermore, if the players’ strategies are evolving under Darwinian selec-
tion, the fraction of cooperative strategies in the population should increase
over time.

computer simulations of the prisoner’s dilemma

Axlerod’s interest in determining what makes for a good strategy led him
to organize two Prisoner’s Dilemma tournaments. He asked researchers in
several disciplines to submit computer programs that implemented particular
strategies for playing the Prisoner’s Dilemma, and then had the programs play
repeated games against one another.
Recall frommy discussion of Robby the Robot in chapter 9 that a strategy

is a set of rules that gives, for any situation, the action one should take in
that situation. For the Prisoner’s Dilemma, a strategy consists of a rule for
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deciding whether to cooperate or defect on the next turn, depending on the
opponent’s behavior on previous turns.
The first tournament received fourteen submitted programs; the second

tournament jumped to sixty-three programs. Each program played with
every other program for 200 turns, collecting points according to the pay-
off matrix in figure 14.3. The programs had some memory—each program
could store the results of at least some of its previous turns against each
opponent. Some of the strategies submitted were rather complicated, using
statistical techniques to characterize other players’ “psychology.” However,
in both tournaments the winner (the strategy with the highest average score
over games with all other players) was the simplest of the submitted strate-
gies: TIT FOR TAT. This strategy, submitted by mathematician Anatol
Rapoport, cooperates on the first turn and then, on subsequent turns, does
whatever the opponent did for its move on the previous turn. That is, TIT
FOR TAT offers cooperation and reciprocates it. But if the other player
defects, TIT FOR TAT punishes that defection with a defection of its own,
and continues the punishment until the other player begins cooperating
again.
It is surprising that such a simple strategy could beat out all others, espe-

cially in light of the fact that the entrants in the second tournament already
knew aboutTITFORTATso could plan against it.However, out of the dozens
of experts who participated, no one was able to design a better strategy.
Axelrod drew some general conclusions from the results of these tourna-

ments. He noted that all of the top scoring strategies have the attribute of
being nice—that is, they are never the first one to defect. The lowest scoring
of all the nice programs was the “least forgiving” one: it starts out by cooper-
ating but if its opponent defects even once, it defects against that opponent
on every turn from then on. This contrasts with TIT FOR TAT, which will
punish an opponent’s defection with a defection of its own, but will forgive
that opponent by cooperating once the opponent starts to cooperate again.
Axelrod also noted that although the most successful strategies were nice

and forgiving, they also were retaliatory—they punished defection soon after
it occurred. TIT FOR TAT not only was nice, forgiving, and retaliatory, but
it also had another important feature: clarity and predictability. An opponent
can easily see what TIT FOR TAT’s strategy is and thus predict how it would
respond to any of the opponent’s actions. Such predictability is important for
fostering cooperation.
Interestingly, Axelrod followed up his tournaments by a set of experiments

in which he used a genetic algorithm to evolve strategies for the Prisoner’s
Dilemma. The fitness of an evolving strategy is its score after playing many
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repeated games with the other evolving strategies in the population. The
genetic algorithm evolved strategies with the same or similar behavior as TIT
FOR TAT.

extensions of the prisoner’s dilemma

Axelrod’s studies of the Prisoner’s Dilemma made a big splash starting in
the 1980s, particularly in the social sciences. People have studied all kinds
of variations on the game—different payoff matrices, different number of
players, multiplayer games in which players can decide whom to play with,
and so on. Two of the most interesting variations experimented with adding
social norms and spatial structure, respectively.

Adding Social Norms

Axelrod experimented with adding norms to the Prisoner’s Dilemma, where
norms correspond to social censure (in the form of negative points) for defect-
ing when others catch the defector in the act. In Axelrod’s multiplayer game,
every time a player defects, there is some probability that some other players
will witness that defection. In addition to a strategy for playing a version of
the Prisoner’s Dilemma, each player also has a strategy for deciding whether
to punish (subtract points from) a defector if the punisher witnesses the
defection.
In particular, each player’s strategies consist of two numbers: a probability

of defecting (boldness) and a probability of punishing a defection that the player
witnesses (vengefulness). In the initial population of players, these probability
values are assigned at random to each individual.
At each generation, the population plays a round of the game: each player

in the population plays a single game against all other players, and each time
a player defects, there is some probability that the defection is witnessed
by other population members. Each witness will punish the defector with a
probability defined by the witness’s vengefulness value.
At the end of each round, an evolutionary process takes place: a new

population of players is created from parent strategies that are selected based
on fitness (number of points earned). The parents create offspring that are
mutated copies of themselves: each child can have slightly different boldness
and vengefulness numbers than its parent. If the population starts out with
most players’ vengefulness set to zero (e.g., no social norms), then defectors
will come to dominate the population. Axelrod initially expected to find that
norms would facilitate the evolution of cooperation in the population—that
is, vengefulness would evolve to counter boldness.
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However, it turned out that norms alone were not enough for coopera-
tion to emerge reliably. In a second experiment, Axelrod added metanorms, in
which there were punishers to punish the nonpunishers, if you know what I
mean. Sort of like people in the supermarket who give me disapproving looks
when I don’t discipline my children for chasing each other up the aisles and
colliding with innocent shoppers. In my case the metanorm usually works.
Axelrod also found that metanorms did the trick—if punishers of nonpunish-
ers were around, the nonpunishers evolved to be more likely to punish, and
the punished defectors evolved to be more likely to cooperate. In Axelrod’s
words, “Meta-norms can promote and sustain cooperation in a population.”

Adding Spatial Structure

The second extension that I find particularly interesting is the work done by
mathematical biologist Martin Nowak and collaborators on adding spatial
structure to the Prisoner’s Dilemma. In Axelrod’s original simulations, there
was no notion of space—it was equally likely for any player to encounter any
other player, with no sense of distance between players.
Nowak suspected that placing players on a spatial lattice, on which the

notion of neighbor is well defined, would have a strong effect on the evolution of
cooperation. With his postdoctoral mentor Robert May (whom I mentioned
in chapter 2 in the context of the logistic map), Nowak performed computer
simulations in which the players were placed in a two-dimensional array,
and each player played only with its nearest neighbors. This is illustrated in
figure 14.4, which shows a five by five grid with one player at each site (Nowak
and May’s arrays were considerably larger). Each player has the simplest of
strategies—it has no memory of previous turns; it either always cooperates or
always defects.
The model runs in discrete time steps. At each time step, each player plays

a single Prisoner’s Dilemma game against each of its eight nearest neighbors
(like a cellular automaton, the grid wraps around at the edges) and its eight
resulting scores are summed. This is followed by a selection step in which each
player is replaced by the highest scoring player in its neighborhood (possibly
itself); no mutation is done.
The motivation for this work was biological. As stated by Nowak and

May, “We believe that deterministically generated spatial structure within
populations may often be crucial for the evolution of cooperation, whether it
be among molecules, cells, or organisms.”
Nowak and May experimented by running this model with different

initial configurations of cooperate and defect players and by varying the val-
ues in the payoff matrix. They found that depending on these settings, the
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figure 14.4. Illustration of a spatial Prisoner’s Dilemma
game. Each player interacts only with its nearest
neighbors—e.g., player P13 plays against, and competes for
selection against, only the players in its neighborhood (shaded).

spatial patterns of cooperate and defect players can either oscillate or be “chaoti-
cally changing,” in which both cooperators and defectors coexist indefinitely.
These results contrast with results from the nonspatial multiplayer Prisoner’s
Dilemma, in which, in the absence of meta-norms as discussed above, defec-
tors take over the population. In Nowak and May’s spatial case, cooperators
can persist indefinitely without any special additions to the game, such as
norms or metanorms.
Nowak and May believed that their result illustrated a feature of the

real world—i.e., the existence of spatial neighborhoods fosters cooperation.
In a commentary on this work, biologist Karl Sigmund put it this way:
“That territoriality favours cooperation . . . is likely to remain valid for real-life
communities.”

Prospects of Modeling

Computer simulations of idea models such as the Prisoner’s Dilemma, when
done well, can be a powerful addition to experimental science and math-
ematical theory. Such models are sometimes the only available means of
investigating complex systems when actual experiments are not feasible and
when the math gets too hard, which is the case for almost all of the systems we
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are most interested in. The most significant contribution of idea models such
as the Prisoner’s Dilemma is to provide a first hand-hold on a phenomenon—
such as the evolution of cooperation—for which we don’t yet have precise
scientific terminology and well-defined concepts.
The Prisoner’s Dilemma models play all the roles I listed above for idea

models in science (and analogous contributions could be listed from many
other complex-systems modeling efforts as well):

Show that a proposed mechanism for a phenomenon is plausible
or implausible. For example, the various Prisoner’s Dilemma and
related models have shown what Thomas Hobbes might not have
believed: that it is indeed possible for cooperation—albeit in an
idealized form—to come about in leaderless populations of
self-interested (but adaptive) individuals.

Explore the effects of variations on a simple model and prime
one’s intuitions about a complex phenomenon. The endless list of
Prisoner’s Dilemma variations that people have studied has revealed
much about the conditions under which cooperation can and cannot
arise. You might ask, for example, what happens if, on occasion, people
who want to cooperate make a mistake that accidentally signals
noncooperation—an unfortunate mistranslation into Russian of a U.S.
president’s comments, for instance? The Prisoner’s Dilemma gives an
arena in which the effects of miscommunications can be explored. John
Holland has likened such models to “flight simulators” for testing one’s
ideas and for improving one’s intuitions.

Inspire new technologies. Results from the Prisoner’s Dilemma
modeling literature—namely, the conditions needed for cooperation to
arise and persist—have been used in proposals for improving
peer-to-peer networks and preventing fraud in electronic commerce, to
name but two applications.

Lead to mathematical theories. Several people have used the results
from Prisoner’s Dilemma computer simulations to formulate general
mathematical theories about the conditions needed for cooperation. A
recent example is work by Martin Nowak, in a paper called “Five Rules
for the Evolution of Cooperation.”

How should results from idea models such as the Prisoner’s Dilemma be
used to inform policy decisions, such as the foreign relations strategies of
governments or responses to global warming? The potential of idea models in
predicting the results of different policies makes such models attractive, and,
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indeed, the influence of the Prisoner’s Dilemma and related models among
policy analysts has been considerable.
As one example, New Energy Finance, a consulting firm specializing in

solutions for global warming, recently put out a report called “How to Save
the Planet: Be Nice, Retaliatory, Forgiving, and Clear.” The report argues
that the problem of responding to climate change is best seen as a multi-
player repeated Prisoner’s Dilemma in which countries can either cooperate
(mitigate carbon output at some cost to their economies) or defect (do nothing,
saving money in the short term). The game is repeated year after year as
new agreements and treaties regulating carbon emissions are forged. The
report recommends specific policies that countries and global organizations
should adopt in order to implement the “nice, retaliatory, forgiving, and
clear” characteristics Axelrod cited as requirements for success in the repeated
Prisoner’s Dilemma.
Similarly, the results of the norms and metanorms models—namely,

that not only norms but also metanorms can be important for sustaining
cooperation—has had impact on policy-making research regarding govern-
ment response to terrorism, arms control, and environmental governance
policies, among other areas. The results of Nowak andMay’s spatial Prisoner’s
Dilemma models have informed people’s thinking about the role of space and
locality in fostering cooperation in areas ranging from the maintenance of
biodiversity to the effectiveness of bacteria in producing new antibiotics. (See
the notes for details on these various impacts.)

Computer Modeling Caveats

All models are wrong, but some are useful.
—George Box and Norman Draper

Indeed, the models I described above are highly simplified but have been
useful for advancing science and policy in many contexts. They have led to
new insights, new ways of thinking about complex systems, better models,
and better understanding of how to build useful models. However, some very
ambitious claims have been made about the models’ results and how they
apply in the real world. Therefore, the right thing for scientists to do is to
carefully scrutinize the models and ask how general their results actually are.
The best way to do that is to try to replicate those results.
In an experimental science such as astronomy or chemistry, every impor-

tant experiment is replicated, meaning that a different group of scientists does
the same experiment from scratch to see whether they get the same results
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as the original group. No experimental result is (or should be) believed if no
other group can replicate it in this way. The inability of others to replicate
results has been the death knell for uncountable scientific claims.
Computer models also need to be replicated—that is, independent groups

need to construct the proposed computer model from scratch and see whether
it produces the same results as those originally reported. Axelrod, an out-
spoken advocate of this idea, writes: “Replication is one of the hallmarks
of cumulative science. It is needed to confirm whether the claimed results
of a given simulation are reliable in the sense that they can be reproduced
by someone starting from scratch. Without this confirmation, it is possible
that some published results are simply mistaken due to programming errors,
misrepresentation of what was actually simulated, or errors in analyzing or
reporting the results. Replication can also be useful for testing the robustness
of inferences from models.”
Fortunately, many researchers have taken this advice to heart and have

attempted to replicate some of the more famous Prisoner’s Dilemma simula-
tions. Several interesting and sometimes unexpected results have come out of
these attempts.
In 1995, BernardoHuberman andNatalie Glance re-implementedNowak

and May’s spatial Prisoner’s Dilemma model. Huberman and Glance ran a
simulation with only one change. In the original model, at each time step all
games between players in the lattice were played simultaneously, followed
by the simultaneous selection in all neighborhoods of the fittest neighbor-
hood player. (This required Nowak and May to simulate parallelism on their
nonparallel computer.) Huberman and Glance instead allowed some of the
games to be played asynchronously—that is, some group of neighboring players
would play games and carry out selection, then another group of neighboring
players would do the same, and so on. They found that this simple change,
arguably making the model more realistic, would typically result in complete
replacement of cooperators by defectors over the entire lattice. A similar result
was obtained independently by Arijit Mukherji, Vijay Rajan, and James Sla-
gle, who in addition showed that cooperation would die out in the presence
of small errors or cheating (e.g., a cooperator accidentally or purposefully
defecting). Nowak, May, and their collaborator Sebastian Bonhoeffor replied
that these changes did indeed lead to the extinction of all cooperators for
some payoff-matrix values, but for others, cooperators were able to stay in the
population, at least for long periods.
In 2005 Jose Manuel Galan and Luis Izquierdo published results of their

re-implementation of Axelrod’s Norms and Metanorms models. Given the
increase in computer power over the twenty years that had passed since
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Axelrod’s work, they were able to run the simulation for a much longer
period and do a more thorough investigation of the effects of varying certain
model details, such as the payoff matrix values, the probabilities for mutat-
ing offspring, and so on. Their results matched well with Axelrod’s for some
aspects of the simulation, but for others, the re-implementation produced
quite different results. For example, they found that whereas metanorms can
facilitate the evolution and persistence of cooperation in the short term, if the
simulation is run for a long time, defectors end up taking over the popula-
tion. They also found that the results were quite sensitive to the details of the
model, such as the specific payoff values used.
What should we make of all this? I think the message is exactly as Box

and Draper put it in the quotation I gave above: all models are wrong in
some way, but some are very useful for beginning to address highly complex
systems. Independent replication can uncover the hidden unrealistic assump-
tions and sensitivity to parameters that are part of any idealized model. And
of course the replications themselves should be replicated, and so on, as is
done in experimental science. Finally, modelers need above all to emphasize
the limitations of their models, so that the results of such models are not
misinterpreted, taken too literally, or hyped too much. I have used examples
of models related to the Prisoner’s Dilemma to illustrate all these points, but
my previous discussion could be equally applied to nearly all other simplified
models of complex systems.
I will give the last word to physicist (and ahead-of-his-time model-

building proponent) Phillip Anderson, from his 1977Nobel Prize acceptance
speech:

The art of model-building is the exclusion of real but irrelevant parts
of the problem, and entails hazards for the builder and the reader.
The builder may leave out something genuinely relevant; the reader,
armed with too sophisticated an experimental probe or too accurate a
computation, may take literally a schematized model whose main aim
is to be a demonstration of possibility.
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part iv Network Thinking

In Ersilia, to establish the relationships that sustain the city’s life, the inhabitants

stretch strings from the corners of the houses, white or black or gray or black-and-

white according to whether they mark a relationship of blood, of trade, authority,

agency. When the strings become so numerous that you can no longer pass among

them, the inhabitants leave: the houses are dismantled; only the strings and their

supports remain.

From a mountainside, camping with their household goods, Ersilia’s refugees

look at the labyrinth of taut strings and poles that rise in the plain. That is the

city of Ersilia still, and they are nothing.

They rebuild Ersilia elsewhere. They weave a similar pattern of strings which

they would like to be more complex and at the same time more regular than the other.

Then they abandon it and take themselves and their houses still farther away.

Thus, when traveling in the territory of Ersilia, you come upon the ruins of

abandoned cities, without the walls which do not last, without the bones of the dead

which the wind rolls away: spiderwebs of intricate relationships seeking a form.

—Italo Calvino, Invisible Cities (Trans. W. Weaver)
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The Science of Networkschapter 15

Small Worlds

I live in Portland, Oregon, whose metro area is home to over two million
people. I teach at Portland StateUniversity,which has close to 25,000 students
and over 1,200 faculty members. A few years back, my family had recently
moved into a new house, somewhat far from campus, and I was chatting with
our new next-door neighbor, Dorothy, a lawyer. I mentioned that I taught at
Portland State. She said, “I wonder if you knowmy father. His name is George
Lendaris.” I was amazed. George Lendaris is one of the three or four faculty
members at PSU, including myself, who work on artificial intelligence. Just
the day before, I had been in a meeting with him to discuss a grant proposal
we were collaborating on. Small world!
Virtually all of us have had this kind of “small world” experience, many

much more dramatic than mine. My husband’s best friend from high school
turns out to be the first cousin of the guy who wrote the artificial intelligence
textbook I use in my class. The woman who lived three houses away from
mine in Santa Fe turned out to be a good friend of my high-school English
teacher in Los Angeles. I’m sure you can think of several experiences of your
own like this.
How is it that such unexpected connections seem to happen as often as they

do? In the 1950s, a Harvard University psychologist named Stanley Milgram
wanted to answer this question by determining, on average, how many links
it would take to get from any person to any other person in the United States.
He designed an experiment in which ordinary people would attempt to relay
a letter to a distant stranger by giving the letter to an acquaintance, having



the acquaintance give the letter to one of his or her acquaintances, and so on,
until the intended recipient was reached at the end of the chain.
Milgram recruited (fromnewspaper ads) a group of “starters” inKansas and

Nebraska, and gave each the name, occupation, and home city of a “target,”
a person unknown to the starter, to whom the letter was addressed. Two
examples of Milgram’s chosen targets were a stockbroker in Boston and the
wife of a divinity student in nearby Cambridge. The starters were instructed
to pass on the letter to someone they knew personally, asking that person to
continue the chain. Each link in the chain was recorded on the letter; if and
when a letter reached the target, Milgram counted the number of links it
went through. Milgram wrote of one example:

Four days after the folders were sent to a group of starting per-
sons in Kansas, an instructor at the Episcopal Theological Seminary
approached our target person on the street. “Alice,” he said, thrusting
a brown folder toward her, “this is for you.” At first she thought he was
simply returning a folder that had gone astray and had never gotten
out of Cambridge, but when we looked at the roster, we found to our
pleased surprise that the document had started with a wheat farmer in
Kansas. He had passed it on to an Episcopalian minister in his home
town, who sent it to the minister who taught in Cambridge, who gave
it to the target person. Altogether, the number of intermediate links
between starting person and target amounted to two!

In his most famous study, Milgram found that, for the letters that made
it to their target, the median number of intermediate acquaintances from
starter to target was five. This result was widely quoted and is the source of
the popular notion that people are linked by only “six degrees of separation.”
Later work by psychologist Judith Kleinfeld has shown that the popular

interpretation of Milgram’s work was rather skewed—in fact, most of the
letters from starters never made it to their targets, and in other studies by
Milgram, the median number of intermediates for letters that did reach the
targets was higher than five. However, the idea of a small world linked by six
degrees of separation has remained as what may be an urban myth of our culture.
As Kleinfeld points out,

When people experience an unexpected social connection, the event is
likely to be vivid and salient in a person’s memory . . . . We have a poor
mathematical, as well as a poor intuitive understanding of the nature
of coincidence.
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Stanley Milgram, 1933–1984.
(Photograph by Eric Kroll,
reprinted by permission of Mrs.
Alexandra Milgram.)

So is it a small world or not? This question has recently received a lot of
attention, not only for humans in the social realm, but also for other kinds
of networks, ranging from the networks of metabolic and genetic regulation
inside living cells to the explosively growing World Wide Web. Over the
last decade questions about such networks have sparked a stampede of com-
plex systems researchers to create what has been called the “new science of
networks.”

The New Science of Networks

You’ve no doubt seen diagrams of networks like the one in figure 15.1. This
one happens to be a map of the domestic flight routes of Continental Airlines.
The dots (or nodes) represent cities and the lines (or links) represent flights
between cities.
Airline route maps are an obvious example of themany natural, technolog-

ical, and cultural phenomena that can usefully be described as networks. The
brain is a huge network of neurons linked by synapses. The control of genetic
activity in a cell is due to a complex network of genes linked by regulatory
proteins. Social communities are networks in which the nodes are people (or

the science of networks 229



figure 15.1. Slightly simplified route map of Continental Airlines. (From NASA
Virtual Skies: [http://virtualskies.arc.nasa.gov/research/tutorial/tutorial2b.html].)

organizations of people) between whom there are many different types of pos-
sible relationships. The Internet and the World Wide Web are of course two
very prominent networks in today’s society. In the realm of national security,
much effort has been put into identifying and analyzing possible “terrorist
networks.”
Until very recently, network science was not seen as a field unto itself.

Mathematicians studied abstract network structures in a field called “graph
theory.” Neuroscientists studied neural networks. Epidemiologists studied
the transmission of diseases through networks of interacting people. Soci-
ologists and social psychologists such as Milgram were interested in the
structure of human social networks. Economists studied the behavior of eco-
nomic networks, such as the spread of technological innovation in networks
of businesses. Airline executives studied networks like the one in figure 15.1
in order to find a node-link structure that would optimize profits given cer-
tain constraints. These different groups worked pretty much independently,
generally unaware of one another’s research.
However, over the last decade or so, a growinggroup of appliedmathemati-

cians and physicists have become interested in developing a set of unifying
principles governing networks of any sort in nature, society, and technology.
The seeds of this upsurge of interest in general networks were planted by the
publication of two important papers in the late 1990s: “Collective Dynam-
ics of ‘Small World Networks’ ” by Duncan Watts and Steven Strogatz, and
“Emergence of Scaling in Random Networks” by Albert-László Barabási and
Réka Albert. These papers were published in the world’s two top scientific
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Duncan Watts (photograph
courtesy of Duncan Watts).

journals, Nature and Science, respectively, and almost immediately got a lot
of people really excited about this “new” field. Discoveries about networks
started coming fast and furiously.
The time and place was right for people to jump on this network-

science rushing locomotive. A study of common properties of networks across
disciplines is only feasible with computers fast enough to study networks
empirically—both in simulation and with massive amounts of real-world
data. By the 1990s, such work was possible. Moreover, the rising popularity
of using the Internet for social, business, and scientific networkingmeant that
large amounts of data were rapidly becoming available.
In addition, there was a large coterie of very smart physicists who had

lost interest in the increasingly abstract nature of modern physics and were
looking for something else to do. Networks, with their combination of pris-
tine mathematical properties, complex dynamics, and real-world relevance,
were the perfect vehicle. As DuncanWatts (who is an applied mathematician
and sociologist) phrased it, “No one descends with such fury and in so great a
number as a pack of hungry physicists, adrenalized by the scent of a new prob-
lem.” All these smart people were trained with just the right mathematical
techniques, as well as the ability to simplify complex problems without losing
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Steven Strogatz (photograph
courtesy of Steven Strogatz).

Albert-László Barabási (photograph
courtesy of Albert-László Barabási).
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their essential features. Several of these physicists-turned-network-scientists
have become major players in this field.
Perhaps most important, there was, among many scientists, a progres-

sive realization that new ideas, new approaches—really, a new way of
thinking—were direly needed to help make sense of the highly complex,
intricately connected systems that increasingly affect human life and well-
being. Albert-László Barabási, among others, has labeled the resulting new
approaches “network thinking,” and proclaimed that “network thinking is
poised to invade all domains of human activity and most fields of human
inquiry.”

What Is Network Thinking?

Network thinking means focusing on relationships between entities rather
than the entities themselves. For example, as I described in chapter 7, the fact
that humans and mustard plants each have only about 25,000 genes does not
seem to jibe with the biological complexity of humans compared with these
plants. In fact, in the last few decades, some biologists have proposed that the
complexity of an organism largely arises from complexity in the interactions
among its genes. I say much more about these interactions in chapter 18, but
for now it suffices to say that recent results in network thinking are having
significant impacts on biology.
Network thinking has recently helped to illuminate additional, seemingly

unrelated, scientific and technological mysteries: Why is the typical life span
of organisms a simple function of their size? Why do rumors, jokes, and
“urban myths” spread so quickly? Why are large, complex networks such as
electrical power grids and the Internet so robust in some circumstances, and
so susceptible to large-scale failures in others? What types of events can cause
a once-stable ecological community to fall apart?
Disparate as these questions are, network researchers believe that the

answers reflect commonalities among networks in many different disciplines.
The goals of network science are to tease out these commonalities and use
them to characterize different networks in a common language. Network sci-
entists also want to understand how networks in nature came to be and how
they change over time.
The scientific understanding of networks could have a large impact not

only on our understanding of many natural and social systems, but also on our
ability to engineer and effectively use complex networks, ranging from better
Web search and Internet routing to controlling the spread of diseases, the
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effectiveness of organized crime, and the ecological damage resulting from
human actions.

What Is a ‘Network,’ Anyway?

In order to investigate networks scientifically, we have to define precisely
what we mean by network. In simplest terms, a network is a collection of nodes
connected by links. Nodes correspond to the individuals in a network (e.g.,
neurons, Web sites, people) and links to the connections between them (e.g.,
synapses, Web hyperlinks, social relationships).
For illustration, figure 15.2 shows part of my own social network—some

of my close friends, some of their close friends, et cetera, with a total of 19
nodes. (Of course most “real” networks would be considerably larger.)
At first glance, this network looks like a tangled mess. However, if you

look more closely, you will see some structure to this mess. There are some
mutually connected clusters—not surprisingly, some of my friends are also
friends with one another. For example, David, Greg, Doug, and Bob are
all connected to one another, as are Steph, Ginger, and Doyne, with myself
as a bridge between the two groups. Even knowing little about my history
you might guess that these two “communities” of friends are associated with
different interests of mine or with different periods in my life. (Both are true.)

figure 15.2. Part of my own social network.
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You also might notice that there are some people with lots of friends (e.g.,
myself, Doyne, David, Doug, Greg) and some people with only one friend
(e.g., Kim, Jacques, Xiao). Here this is due only to the incompleteness of this
network, but in most large social networks there will always be some people
with many friends and some people with few.
In their efforts to develop a common language, network scientists have

coined terminology for these different kinds of network structures. The
existence of largely separate tight-knit communities in networks is termed
clustering. The number of links coming into (or out of) a node is called the
degree of that node. For example, my degree is 10, and is the highest of all the
nodes; Kim’s degree is 1 and is tied with five others for the lowest. Using this
terminology, we can say that the network has a small number of high-degree
nodes, and a larger number of low-degree ones.
This can be seen clearly in figure 15.3, where I plot the degree distribution

of this network. For each degree from 1 to 10 the plot gives the number of
nodes that have that degree. For example, there are six nodes with degree 1
(first bar) and one node with degree 10 (last bar).
This plot makes it explicit that there are many nodes with low degree

and few nodes with high degree. In social networks, this corresponds to the
fact that there are a lot of people with a relatively small number of friends,
and a much smaller group of very popular people. Similarly, there are a small
number of very popular Web sites (i.e., ones to which many other sites link),
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figure 15.3. The degree distribution of the network in figure 15.2.
For each degree, a bar is drawn representing the number of nodes with
that degree.
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such as Google, with more than 75 million incoming links, and a much
larger number of Web sites that hardly anyone has heard of—such as my own
Web site, with 123 incoming links (many of which are probably from search
engines).
High-degree nodes are called hubs; they are major conduits for the flow of

activity or information in networks. Figure 15.1 illustrates the hub system
that most airlines adopted in the 1980s, after deregulation: each airline des-
ignated certain cities as hubs, meaning that most of the airline’s flights go
through those cities. If you’ve ever flown from the western United States to
the East Coast on Continental Airlines, you probably had to change planes in
Houston.
A major discovery to date of network science is that high-clustering,

skewed degree distributions, and hub structure seem to be characteristic of
the vast majority of all the natural, social, and technological networks that
network scientists have studied. The presence of these structures is clearly no
accident. If I put together a network by randomly sticking in links between
nodes, all nodeswould have similar degree, so the degree distributionwouldn’t
be skewed the way it is in figure 15.3. Likewise, there would be no hubs and
little clustering.
Why do networks in the real world have these characteristics? This is a

major question of network science, and has been addressed largely by devel-
oping models of networks. Two classes of models that have been studied in
depth are known as small-world networks and scale-free networks.

Small-World Networks

Although Milgram’s experiments may not have established that we actually
live in a small world, the world of my social network (figure 15.2) is indeed
small. That is, it doesn’t take many hops to get from any node to any other
node. While they have never met one another (as far as I know), Gar can reach
Charlie in only three hops, and John can reach Xiao in only four hops. In fact,
in my network people are linked by at most four degrees of separation.
Applied mathematician and sociologist DuncanWatts and applied math-

ematician Steven Strogatz were the first people to mathematically define the
concept of small-world network and to investigate what kinds of network struc-
tures have this property. (Their work on abstract networks resulted from an
unlikely source: research on how crickets synchronize their chirps.)Watts and
Strogatz started by looking at the simplest possible “regular” network: a ring
of nodes, such as the network of figure 15.4, which has 60 nodes. Each node is
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figure 15.4. An example of a regular
network. This network is a ring of nodes
in which each node has a link to its two
nearest neighbors.

figure 15.5. A random rewiring of
three links turns the regular network of
figure 15.4 into a small-world network.

linked to its two nearest neighbors in the ring, reminiscent of an elementary
cellular automaton. To determine the degree of “small-worldness” in a net-
work,Watts and Strogatz computed the average path length in the network. The
path length between two nodes is simply the number of links on the shortest
path between those two nodes. The average path length is simply the average
over path lengths between all pairs of nodes in the network. The average path
length of the regular network of figure 15.4 turns out to be 15. Thus, as in
a children’s game of “telephone,” on average it would take a long time for a
node to communicate with another node on the other side of the ring.
Watts and Strogatz then asked, If we take a regular network like this

and rewire it a little bit—that is, change a few of the nearest-neighbor links
to long-distance links—how will this affect the average path length? They
discovered that the effect is quite dramatic.
As an example, figure 15.5 shows the regular network of figure 15.4 with

5% (here, three) of the links rewired—that is, one end of each of the three
links is moved to a randomly chosen node.
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This rewired network has the same number of links as the original regular
network, but the average path-length has shrunk to about 9. Watts and
Strogatz found that as the number of nodes increases, the effect becomes
increasingly pronounced. For example, in a regular networkwith 1,000 nodes,
the average path length is 250; in the same network with 5% of the links
randomly rewired, the average path length will typically fall to around 20. As
Watts puts it, “only a few random links can generate a very large effect . . . on
average, the first five random rewirings reduce the average path length of the
network by one-half, regardless of the size of the network.”
These examples illustrate the small-world property: a network has this prop-

erty if it has relatively few long-distance connections but has a small average
path-length relative to the total number of nodes. Small-world networks also
typically exhibit a high degree of clustering: for any nodes A, B, and C, if node
A is connected to nodes B and C, then B and C are also likely to be connected
to one another. This is not apparent in figure 15.5, since in this network
most nodes are linked to only their two nearest neighbors. However, if the
network were more realistic, that is, if each node were initially connected to
multiple neighbors, the clustering would be high. An example is my own
social network—I’m more likely to be friends with the friends of my friends
than with other, random, people.
As part of their work,Watts and Strogatz looked at three examples of real-

world networks from completely different domains and showed that they all
have the small-world property. The first was a large network of movie actors.
In this network, nodes represent individual actors; two nodes are linked if
the corresponding actors have appeared in at least one movie together, such
as Tom Cruise and Max von Sydow (Minority Report), or Cameron Diaz and
Julia Roberts (My Best Friend’s Wedding). This particular social network has
received attention via the popular “Kevin Bacon game,” in which a player
tries to find the shortest path in the network from any given movie actor
to the ultra-prolific actor Kevin Bacon. Evidently, if you are in movies and
you don’t have a short path to Kevin Bacon, you aren’t doing so well in
your career.
The second example is the electrical power grid of the western United

States. Here, nodes represent the major entities in the power grid: electrical
generators, transformers, and power substations. Links represent high-voltage
transmission lines between these entities. The third example is the brain
of the worm C. elegans, with nodes being neurons and links being connec-
tions between neurons. (Luckily for Watts and Strogatz, neuroscientists had
alreadymapped out every neuron andneural connection in this humbleworm’s
small brain.)
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You’d never have suspected that the “high-power” worlds of movie stars
and electrical grids (not to mention the low-power world of a worm’s brain)
would have anything interesting in common, butWatts and Strogatz showed
that they are indeed all small-world networks, with low average path lengths
and high clustering.
Watts and Strogatz’s now famous 1990 paper, “Collective Dynamics of

‘Small-World’ Networks,” helped ignite the spark that set the new science of
networks aflame with activity. Scientists are finding more and more examples
of small-world networks in the real world, some of which I’ll describe in
the next chapter. Natural, social, and technological evolution seem to have
produced organisms, communities, and artifacts with such structure. Why?
It has been hypothesized that at least two conflicting evolutionary selective
pressures are responsible: the need for information to travel quickly within the
system, and the high cost of creating and maintaining reliable long-distance
connections. Small-world networks solve both these problems by having short
average path lengths between nodes in spite of having only a relatively small
number of long-distance connections.
Further research showed that networks formed by the method proposed by

Watts and Strogatz—starting with a regular network and randomly rewiring
a small fraction of connections—do not actually have the kinds of degree dis-
tributions seen in many real-world networks. Soon, much attention was being
paid to a different network model, one which produces scale-free networks—a
particular kind of small-world network that looks more like networks in the
real world.

Scale-Free Networks

I’m sure you have searched the World Wide Web, and you most likely use
Google as your search engine. (If you’re reading this long after I wrote it in
2008, perhaps a new search engine has become predominant.) Back in the
days of the Web before Google, search engines worked by simply looking
up the words in your search query in an index that connected each possible
English word to a list of Web pages that contained that word. For example,
if your search query was the two words “apple records,” the search engine
would give you a list of all theWeb pages that included those words, in order
of how many times those words appeared close together on the given page.
You might be as likely to get a Web page about the historical price of apples
in Washington State, or the fastest times recorded in the Great Apple Race
in Tasmania, as you would a page about the famous record label formed in
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1968 by the Beatles. It was very frustrating in those days to sort through a
plethora of irrelevant pages to find the one with the information you were
actually looking for.
In the 1990s Google changed all that with a revolutionary idea for pre-

senting the results of a Web search, called “PageRank.” The idea was that the
importance (and probable relevance) of aWeb page is a function of how many
other pages link to it (the number of “in-links”). For example, at the time I
write this, the Web page with the American and Western Fruit Grower report
about Washington State apple prices in 2008 has 39 in-links. The Web page
with information about theGreatAppleRace of Tasmania has 47 in-links. The
Web page www.beatles.com has about 27,000 in-links. This page is among
those presented at the top of the list for the “apple records” search. The other
two are way down the list of approximately one million pages (“hits”) listed
for this query. The original PageRank algorithmwas a very simple idea, but it
produced a tremendously improved search engine whereby the most relevant
hits for a given query were usually at the top of the list.
If we look at theWeb as a network, with nodes beingWeb pages and links

being hyperlinks from one Web page to another, we can see that PageRank
works only because this network has a particular structure: as in typical social
networks, there are many pages with low degree (relatively few in-links), and
a much smaller number of high-degree pages (i.e., relatively many in-links).
Moreover, there is a wide variety in the number of in-links among pages,
which allows ranking to mean something—to actually differentiate between
pages. In other words, the Web has the skewed degree distribution and hub
structure described above. It also turns out to have high clustering—different
“communities” of Web pages have many mutual links to one another.
In network science terminology, the Web is a scale-free network. This

has become one of the most talked-about notions in recent complex systems
research, so let’s dig into it a bit, by looking more deeply at theWeb’s degree
distribution and what it means to be scale-free.

degree distribution of the web

How can we figure out what the Web’s degree distribution is? There are two
kinds of Web links: in-links and out-links. That is, suppose my page has a
link to your page but not vice versa: I have an out-link and you have an in-link.
One needs to be specific about which kinds of links are counted. The original
PageRank algorithm looked only at in-links and ignored out-links—in this
discussion I’ll do the same. We’ll call the number of in-links to a page the
in-degree of that page.
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Now,what is theWeb’s in-degree distribution? It’s hard, if not impossible,
to count all the pages and in-links on theWeb—there’s no complete list stored
anywhere and new links are constantly being added and old ones deleted.
However, several Web scientists have tried to find approximate values using
sampling and cleverWeb-crawling techniques. Estimates of the total number
of Web pages vary considerably; as of 2008, the estimates I have seen range
from 100 million to over 10 billion, and clearly the Web is still growing
quickly.
Several different research groups have found that the Web’s in-degree

distribution can be described by a very simple rule: the number of pages with
a given in-degree is approximately proportional to 1 divided by the square of
that in-degree. Suppose we denote the in-degree by the letter k. Then

Number of Web pages with in-degree k is proportional to
1

k2
.

(There has been some disagreement in the literature as to the actual expo-
nent on k but it is close to 2—see the notes for details.) It turns out that this
rule actually fits the data only for values of in-degree (k) in the thousands or
greater.
To demonstrate why the Web is called “scale free,” I’ll plot the in-degree

distribution as defined by this simple rule above, at three different scales.
These plots are shown in figure 15.6. The first graph (top) plots the distribu-
tion for 9,000 in-degrees, starting at 1,000, which is close to where the rule
becomes fairly accurate. Similar to figure 15.3, the in-degree values between
1,000 and 10,000 are shown on the horizontal axis, and their frequency (num-
ber of pages with the given in-degree) by the height of the boxes along
the vertical axis. Here there are so many boxes that they form a solid black
region.
The plots don’t give the actual values for frequency since I want to focus

on the shape of the graph (not to mention that as far as I know, no one has very
good estimates for the actual frequencies). However, you can see that there is a
relatively large number of pages with k = 1,000 in-links, and this frequency
quickly drops as in-degree increases. Somewhere between k = 5,000 and
k = 10,000, the number of pages with k in-links is so small compared with
the number of pages with 1,000 in-links that the corresponding boxes have
essentially zero height.
What happens if we rescale—that is, zoom in on—this “near-zero-height”

region? The second (middle) graph plots the in-degree distribution from k =
10,000 to k = 100,000.Here I’ve rescaled the plot so that the k = 10,000 box
on this graph is at the same height as the k = 1,000 box on the previous graph.
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figure 15.6. Approximate shape of the Web’s in-degree distribution at three
different scales.
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figure 15.6. (Continued )

At this scale, there is now a relatively large number of pages with k = 10,000
in-links, and now somewhere between k = 50,000 and k = 100,000 we get
“near-zero-height” boxes.
But something else is striking—except for the numbers on the horizontal

axis, the second graph is identical to the first. This is true even though we
are now plotting the distribution over 90,000 values instead of 9,000—what
scientists call an order of magnitude more.
The third graph (bottom) shows the same phenomenon on an even larger

scale. When we plot the distribution over k from 100,000 to 1 million, the
shape remains identical.
A distribution like this is called self-similar, because it has the same shape at

any scale you plot it. In more technical terms, it is “invariant under rescaling.”
This is what is meant by the term scale-free. The term self-similarity might be
ringing a bell.We saw it back in chapter 7, in the discussion of fractals. There
is indeed a connection to fractals here; more on this in chapter 17.

scale-free distributions versus bell curves

Scale-free networks are said to have no “characteristic scale.” This is best
explained by comparing a scale-free distribution with another well-studied
distribution, the so-called bell-curve.
Suppose I plotted the distribution of adult human heights in the world.

The smallest (adult) person in the world is a little over 2 feet tall (around
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figure 15.7. A bell-curve (normal) distribution of human heights.

70 cm). The tallest person is somewhere close to 9 feet tall (around 270 cm).
The average adult height is about 5 feet 5 inches (165 cm), and the vast
majority of all adults have height somewhere between 5 and 7 feet.
The distribution of human heights looks something like figure 15.7. The

plot’s bell-like shape is why it is often called a bell curve. Lots of things have
approximate bell-curve distributions—height, weight, test scores on some
exams, winning scores in basketball games, abundance of different species,
and so on. In fact, because so many quantities in the natural world have this
distribution, the bell curve is also called the normal distribution.
Normal distributions are characterized by having a particular scale—e.g.,

70–270 cm for height, 0–100 for test scores. In a bell-curve distribution,
the value with highest frequency is the average—e.g., 165 cm for height.
Most other values don’t vary much from the average—the distribution is
fairly homogeneous. If in-degrees in theWeb were normally distributed, then
PageRank wouldn’t work at all, since nearly all Web pages would have close
to the average number of in-links. The Web page www.beatles.com would
have more or less the same number of in-links as all other pages containing
the phrase “apple records”; thus “number of in-links” could not be used as a
way to rank such pages in order of probable relevance.
Fortunately for us (and even more so for Google stockholders), the Web

degree distribution has a scale-free rather than bell-curve structure. Scale-
free networks have four notable properties: (1) a relatively small number
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of very high-degree nodes (hubs); (2) nodes with degrees over a very large
range of different values (i.e., heterogeneity of degree values); (3) self-similarity;
(4) small-world structure. All scale-free networks have the small-world
property, thoughnot all networkswith the small-world property are scale-free.
In more scientific terms, a scale-free network always has a power law

degree distribution. Recall that the approximate in-degree distribution for
the Web is

Number of Web pages with in-degree k is proportional to
1

k2
.

Perhaps you will remember from high school math that 1k2 also can be written
as k−2. This is a “power lawwith exponent−2.” Similarly, 1k (or, equivalently,
k−1) is a power law with exponent−1.” In general, a power-law distribution
has the form of xd , where x is a quantity such as in-degree. The key number
describing the distribution is the exponent d ; different exponents cause very
different-looking distributions.
I will have more to say about power laws in chapter 17. The important

thing to remember for now is scale-free network = power-law degree distribution.

Network Resilience

A very important property of scale-free networks is their resilience to the
deletion of nodes. This means that if a set of random nodes (along with
their links) are deleted from a large scale-free network, the network’s basic
properties do not change: it still will have a heterogeneous degree distribution,
short average path length, and strong clustering. This is true even if the
number of deleted nodes is fairly large. The reason for this is simple: if nodes
are deleted at random, they are overwhelmingly likely to be low-degree nodes,
since these constitute nearly all nodes in the network. Deleting such nodes
will have little effect on the overall degree distribution and path lengths. We
can see many examples of this in the Internet and the Web. Many individual
computers on the Internet fail or are removed all the time, but this doesn’t
have any obvious effect on the operation of the Internet or on its average path
length. Similarly, although individual Web pages and their links are deleted
all the time, Web surfing is largely unaffected.
However, this resilience comes at a price: if one or more of the hubs is

deleted, the network will be likely to lose all its scale-free properties and
cease to function properly. For example, a blizzard in Chicago (a big airline
hub) will probably cause flight delays or cancellations all over the country. A
failure in Google will wreak havoc throughout the Web.
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In short, scale-free networks are resilient when it comes to randomdeletion
of nodes but highly vulnerable if hubs go down or can be targeted for attack.
In the next chapter I discuss several examples of real-world networks that

have been found to have small-world or scale-free properties and describe
some theories of how they got that way.
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Applying Network Science to
Real-World Networks

chapter 16

Network thinking is evidently on a lot of people’s minds.
According to my search on the Google Scholar Web site, at the time

of this writing over 14,000 academic papers on small-world or scale-free net-
works have been published in the last five years (since 2003), nearly 3,000
in the last year alone. I did a scan of the first 100 or so titles in the list and
found that 11 different disciplines are represented, ranging from physics and
computer science to geology and neuroscience. I’m sure that the range of dis-
ciplines I found would grow substantially if I did a more comprehensive scan.
In this chapter I survey some diverse examples of real-world networks and

discuss how advances in network science are influencing the way scientists
think about networks in many disciplines.

Examples of Real-World Networks

the brain

Several groups have found evidence that the brain has small-world properties.
The brain can be viewed as a network at several different levels of description;
for example, with neurons as nodes and synapses as links, or with entire func-
tional areas as nodes and larger-scale connections between them (i.e., groups
of neural connections) as links.
As I mentioned in the previous chapter, the neurons and neural connec-

tions of the brain of the worm C. elegans have been completely mapped by



neuroscientists and have been shown to form a small-world network. More
recently, neuroscientists have mapped the connectivity structure in certain
higher-level functional brain areas in animals such as cats, macaque monkeys,
and even humans and have found the small-world property in those structures
as well.
Whywould evolution favor brain networkswith the small-world property?

Resilience might be one major reason: we know that individual neurons die
all the time, but, happily, the brain continues to function as normal. The
hubs of the brain are a different story: if a stroke or some other mishap or
disease affects, say, the hippocampus (which is a hub for networks encoding
short-term memory), the failure can be quite devastating.
In addition, researchers have hypothesized that a scale-free degree distri-

bution allows an optimal compromise between two modes of brain behavior:
processing in local, segregated areas such as parts of the visual cortex or
language areas versus global processing of information, for example when
information from the visual cortex is communicated to areas doing language
processing, and vice versa.
If every neuron were connected to every other neuron, or all different

functional areas were fully connected to one another, then the brain would use
up a mammoth amount of energy in sending signals over the huge number of
connections. Evolution presumably selected more energy-efficient structures.
In addition, the brain would probably have to be much larger to fit all those
connections. At the other extreme, if there were no long-distance links in
the brain, it would take too long for the different areas to communicate with
one another. The human brain size—and corresponding skull size—seems
to be exquisitely balanced between being large enough for efficient complex
cognition and small enough for mothers to give birth. It has been proposed
that the small-world property is exactly what allows this balance.
It has also been widely speculated that synchronization, in which groups

of neurons repeatedly fire simultaneously, is a major mechanism by which
information in the brain is communicated efficiently, and it turns out that a
small-world connectivity structure greatly facilitates such synchronization.

genetic regulatory networks

As I mentioned in chapter 7, humans have about 25,000 genes, roughly the
same number as the mustard plant arabidopsis. What seems to generate the
complexity of humans as compared to, say, plants is not how many genes we
have but how those genes are organized into networks.
There are many genes whose function is to regulate other genes—that

is, control whether or not the regulated genes are expressed. A well-known
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simple example of gene regulation is the control of lactosemetabolism inE. coli
bacteria. These bacteria usually live off of glucose, but they can alsometabolize
lactose. The ability to metabolize lactose requires the cell to contain three
particular protein enzymes, each encoded by a separate gene. Let’s call these
genes A, B, and C. There is a fourth gene that encodes a protein, called a lactose
repressor, which binds to genes A, B, and C, in effect, turning off these genes. If
there is no lactose in the bacterium’s local environment, lactose repressors are
continually formed, and no lactose metabolism takes place. However, if the
bacterium suddenly finds itself in a glucose-free but lactose-rich environment,
then lactose molecules bind to the lactose repressor and detach it from genes
A, B, and C, which then proceed to produce the enzymes that allow lactose
metabolism.
Regulatory interactions like this, some much more intricate, are the heart

and soul of complexity in genetics. Network thinking played a role in under-
standing these interactions as early as the 1960s, with the work of Stuart
Kauffman (more on this in chapter 18). More recently, network scientists
teaming up with geneticists have demonstrated evidence that at least some
networks of these interactions are approximately scale-free. Here, the nodes
are individual genes, and each node links to all other genes it regulates
(if any).
Resilience is mandatory for genetic regulatory networks. The processes of

gene transcription and gene regulation are far from perfect; they are inher-
ently error-ridden and often affected by pathogens such as viruses. Having
a scale-free structure helps the system to be mostly impervious to such
errors.

Metabolic Networks

As I described in chapter 12, cells inmost organisms have hundreds of different
metabolic pathways, many interconnecting, forming networks of metabolic
reactions. Albert-László Barabási and colleagues looked in detail at the struc-
ture of metabolic networks in forty-three different organisms and found that
they all were “well fitted” by a power-law distribution—i.e., are scale free.
Here the nodes in the network are chemical substrates—the fodder and prod-
uct of chemical reactions. One substrate is considered to be linked to another
if the first participates in a reaction that produces the second. For example,
in the second step of the pathway called glycolysis, the substrate glucose-6-
phosphate produces the substrate fructose-6-phosphate, so there would be a link
in the network from the first substrate to the second.
Since metabolic networks are scale-free, they have a small number of

hubs that are the products of a large number of reactions involving many
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different substrates. These hubs turn out to be largely the same chemicals in
all the diverse organisms studied—the chemicals that are known to be most
essential for life. It has been hypothesized that metabolic networks evolved
to be scale-free so as to ensure robustness of metabolism and to optimize
“communication” among different substrates.

Epidemiology

In the early 1980s, in the early stages of the worldwide AIDS epidemic,
epidemiologists at the Centers for Disease Control in Atlanta identified a
Canadian flight attendant, Gaetan Dugas, as part of a cluster of men with
AIDS who were responsible for infecting large numbers of other gay men in
many different cities around the world. Dugas was later vilified in the media
as “patient zero,” the first North American with AIDS, who was responsible
for introducing and widely spreading the AIDS virus in the United States and
elsewhere. Although later studies debunked the theory that Dugas was the
source of the North American epidemic, there is no question that Dugas, who
claimed to have had hundreds of different sexual partners each year, infected
many people. In network terms, Dugas was a hub in the network of sexual
contacts.
Epidemiologists studying sexually transmitted diseases often look at net-

works of sexual contacts, in which nodes are people and links represent sexual
partnerships between two people. Recently, a group consisting of sociologists
and physicists analyzed data from a Swedish survey of sexual behavior and
found that the resulting network has a scale-free structure; similar results
have been found in studies of other sexual networks.
In this case, the vulnerability of such networks to the removal of hubs can

work in our favor. It has been suggested that safe-sex campaigns, vaccinations,
and other kinds of interventions should mainly be targeted at such hubs.
How can these hubs be identified without having to map out huge

networks of people, for which data on sexual partners may not be available?
A clever yet simple method was proposed by another group of network

scientists: choose a set of random people from the at-risk population and
ask each to name a partner. Then vaccinate that partner. People with many
partners will be more likely to be named, and thus vaccinated, under this
scheme.
This strategy, of course, can be exported to other situations in which “hub-

targeting” is desired, such as fighting computer viruses transmitted by e-mail:
in this case, one should target anti-virus methods to the computers of people
with large address books, rather than depending on all computer users to
perform virus detection.
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figure 16.1. Example of a food web. (Illustration from USGS Alaska
Science Center, [http://www.absc.usgs.gov/research/seabird_foragefish/
marinehabitat/home.html].)

Ecologies and Food Webs

In the science of ecology, the common notion of food chain has been extended
to food web, a network in which a node represents a species or group of species;
if species B is part of the diet of species A, then there is a link from node A
to node B. Figure 16.1 shows a simple example of a food web.
Mapping the food webs of various ecosystems has been an important part

of ecological science for some time. Recently, researchers have been applying
network science to the analysis of these webs in order to understand biodiver-
sity and the implications of different types of disruptions to that biodiversity
in ecosystems.
Several ecologists have claimed that (at least some) food webs possess the

small-world property, and that some of these have scale-free degree distribu-
tions, which evolved presumably to give food webs resilience to the random
deletion of species. Others ecologists have disagreed that food webs have
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scale-free structure, and the ecology research community has recently seen
a lot of debate on this issue, mainly due to the difficulty of interpreting
real-world data.

Significance of Network Thinking

The examples above are only a small sampling of the ways in which net-
work thinking is affecting various areas of science and technology. Scale-free
degree distributions, clustering, and the existence of hubs are the common
themes; these features give rise to networks with small-world communication
capabilities and resilience to deletion of random nodes. Each of these proper-
ties is significant for understanding complex systems, both in science and in
technology.
In science, network thinking is providing a novel language for expressing

commonalities across complex systems in nature, thus allowing insights from
one area to influence other, disparate areas. In a self-referential way, network
science itself plays the role of a hub—the common connection among otherwise
far-flung scientific disciplines.
In technology, network thinking is providing novel ways to think about

difficult problems such as how to do efficient search on theWeb, how to control
epidemics, how to manage large organizations, how to preserve ecosystems,
how to target diseases that affect complex networks in the body, how to target
modern criminal and terrorist organizations, and,more generally,what kind of
resilience and vulnerabilities are intrinsic to natural, social, and technological
networks, and how to exploit and protect such systems.

Where Do Scale-Free Networks Come From?

No one purposely designed theWeb to be scale-free. TheWeb’s degree distri-
bution, like that of the other networks I’ve mentioned above, is an emergent
outcome of the way in which the network was formed, and how it grows.
In 1999 physicists Albert-László Barabási and Réka Albert proposed that a

particular growing process for networks, which they called preferential attach-
ment, is the explanation for the existence of most (if not all) scale-free networks
in the real world. The idea is that networks grow in such a way that nodes
with higher degree receive more new links than nodes with lower degree.
Intuitively this makes sense. People with many friends tend to meet more
new people and thus make more new friends than people with few friends.
Web pages with many incoming links are easier to find than those with few
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incoming links, somore newWeb pages link to the high-degree ones. In other
words, the rich get richer, or perhaps the linked get more linked. Barabási
and Albert showed that growth by preferential attachment leads to scale-free
degree distributions. (Unbeknownst to them at the time, this process and its
power-law outcome had been discovered independently at least three times
before.)
The growth of so-called scientific citation networks is one example of the

effects of preferential attachment. Here the nodes are papers in the scientific
literature; each paper receives a link from all other papers that cite it. Thus
the more citations others have given to your paper, the higher its degree in the
network. One might assume that a large number of citations is an indicator of
goodwork; for example, in academia, thismeasure is routinely used inmaking
decisions about tenure, pay increases, and other rewards. However, it seems
that preferential attachment often plays a large role. Suppose you and Joe
Scientist have independently written excellent articles about the same topic.
If I happen to cite your article but not Joe’s in my latest opus, then others who
read only my paper will be more likely to cite yours (usually without reading
it). Other people will read their papers, and also be more likely to cite you than
to cite Joe. The situation for Joe gets worse and worse as your situation gets
better and better, even though your paper and Joe’s were both of the same
quality. Preferential attachment is one mechanism for getting to what the
writer Malcolm Gladwell called tipping points—points at which some process,
such as citation, spread of fads, and so on, starts increasing dramatically in a
positive-feedback cycle. Alternatively, tipping points can refer to failures in
a system that induce an accelerating systemwide spread of additional failures,
which I discuss below.

Power Laws and Their Skeptics

So far I have implied that scale-free networks are ubiquitous in nature due to
the adaptive properties of robustness and fast communication associated with
power-law degree distributions, and that the mechanism by which they form
is growth by preferential attachment. These notions have given scientists new
ways of thinking about many different scientific problems.
However compelling all this may seem, scientists are supposed to be skep-

tical by nature, especially of new, relatively untested ideas, and even more
particularly of ideas that claim generality over many disciplines. Such skep-
ticism is not only healthy, it is also essential for the progress of science. Thus,
fortunately, not everyone has jumped on the network-science bandwagon, and
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even many who have are skeptical concerning some of the most optimistic
statements about the significance of network science for complex systems
research. This skepticism is founded on the following arguments.

1. Too many phenomena are being described as power-law or
scale-free. It’s typically rather difficult to obtain good data about
real-world network degree distributions. For example, the data used by
Barabási and colleagues for analyzing metabolic networks came from a
Web-based database to which biologists from all over the world
contributed information. Such biological databases, while invaluable to
research, are invariably incomplete and error-ridden. Barabási and
colleagues had to rely on statistics and curve-fitting to determine the
degree distributions in various metabolic networks—an imperfect
method, yet the one that is most often used in analyzing real-world
data. A number of networks previously identified to be “scale-free”
using such techniques have later been shown to in fact have
non-scale-free distributions.
As noted by philosopher and historian of biology Evelyn Fox Keller,

“Current assessments of the commonality of power laws are probably
overestimates.” Physicist and network scientist Cosma Shalizi had a less
polite phrasing of the same sentiments: “Our tendency to hallucinate
power laws is a disgrace.” As I write this, there are still considerable
controversies over which real-world networks are indeed scale-free.

2. Even for networks that are actually scale-free, there are many pos-
sible causes for power law degree distributions in networks; pref-
erential attachment is not necessarily the one that actually occurs in
nature. As Cosma Shalizi succinctly said: “there turn out to be nine and
sixty ways of constructing power laws, and every single one of them is right.”
When I was at the Santa Fe Institute, it seemed that there was a lecture
every other day on a new hypothesized mechanism that resulted in power
law distributions. Some are similar to preferential attachment, some work
quite differently. It’s not obvious how to decide which ones are themecha-
nisms that are actually causing the power laws observed in the real world.

3. The claimed significance of network science relies on models
that are overly simplified and based on unrealistic assumptions.
The small-world and scale-free network models are just that—
models—which means that they make simplifying assumptions
that might not be true of real-world networks. The hope in creating
such simplified models is that they will capture at least some aspects
of the phenomenon they are designed to represent. As we have seen,
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these two network models, in particular the scale-free model, indeed
seem to capture something about degree-distributions, clustering,
and resilience in a large number of real-world systems (though point
1 above suggests that the number might not be as large as some think).
However, simplified models of networks, in and of themselves, cannot

explain everything about their real-world counterparts. In both the
small-world and scale-free models, all nodes are assumed to be identical
except for their degree; and all links are the same type and have the same
strength. This is not the case in real-world networks. For example, in the
real version of my social network (whose simplified model was shown in
figure 14.2), some friendship links are stronger than others. Kim and Gar
are both friends of mine but I know Kimmuch better, so I might be more
likely to tell her about important personal events in my life. Furthermore,
Kim is a woman and Gar is a man, which might increase my likelihood
of confiding in her but not in Gar. Similarly, my friend Greg knows and
cares a lot more about math than Kim, so if I wanted to share some neat
mathematical fact I learned, I’d be much more likely to tell Greg about
it than Kim. Such differences in link and node types as well as link
strength can have very significant effects on how information spreads in a
network, effects that are not captured by the simplified network models.

Information Spreading and Cascading Failure in Networks

In fact, understanding the ways in which information spreads in networks
is one of the most important open problems in network science. The results
I have described in this and the previous chapter are all about the structure
of networks—e.g., their static degree distributions—rather than dynamics of
spreading information in a network.
What do I mean by “spreading information in a network”? Here I’m using

the term information to capture any kind of communication among nodes.
Some examples of information spreading are the spread of rumors, gossip,
fads, opinions, epidemics (in which the communication between people is via
germs), electrical currents, Internet packets, neurotransmitters, calories (in
the case of food webs), vote counts, and a more general network-spreading
phenomenon called “cascading failure.”
The phenomenon of cascading failure emphasizes the need to understand

information spreading and how it is affected by network structure. Cascading
failure in a network happens as follows: Suppose each node in the network
is responsible for performing some task (e.g., transmitting electrical power).
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If a node fails, its task gets passed on to other nodes. This can result in the
other nodes getting overloaded and failing, passing on their task to still other
nodes, and so forth. The result is an accelerating domino effect of failures that
can bring down the entire network.
Examples of cascading failure are all too common in our networked world.

Here are two fairly recent examples that made the national news:

• August 2003: A massive power outage hit the Midwestern and
Northeastern United States, caused by cascading failure due to a
shutdown at one generating plant in Ohio. The reported cause of the
shutdown was that electrical lines, overloaded by high demand on a
very hot day, sagged too far down and came into contact with
overgrown trees, triggering an automatic shutdown of the lines, whose
load had to be shifted to other parts of the electrical network, which
themselves became overloaded and shut down. This pattern of
overloading and subsequent shutdown spread rapidly, eventually
resulting in about 50 million customers in the Eastern United States
and Canada losing electricity, some for more than three days.

• August 2007: The computer system of the U.S. Customs and Border
Protection Agency went down for nearly ten hours, resulting in more
than 17,000 passengers being stuck in planes sitting on the tarmac at
Los Angeles International Airport. The cause turned out to be a
malfunction in a single network card on a desktop computer. Its
failure quickly caused a cascading failure of other network cards, and
within about an hour of the original failure, the entire system shut
down. The Customs agency could not process arriving international
passengers, some of whom had to wait on airplanes for more than
five hours.

A third example shows that cascading failures can also happen when
network nodes are not electronic devices but rather corporations.

• August–September 1998: Long-Term Capital Management (LTCM), a
private financial hedge fund with credit from several large financial
firms, lost nearly all of its equity value due to risky investments. The
U.S. Federal Reserve feared that this loss would trigger a cascading
failure in worldwide financial markets because, in order to cover its
debts, LTCM would have to sell off much of its investments, causing
prices of stocks and other securities to drop, which would force other
companies to sell off their investments, causing a further drop in
prices, et cetera. At the end of September 1998, the Federal Reserve
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acted to prevent such a cascading failure by brokering a bailout of
LTCM by its major creditors.

The network resilience I talked about earlier—the ability of networks
to maintain short average path lengths in spite of the failure of random
nodes—doesn’t take into account the cascading failure scenario in which the
failure of one node causes the failure of other nodes. Cascading failures pro-
vide another example of “tipping points,” in which small events can trigger
accelerating feedback, causing a minor problem to balloon into a major dis-
ruption. Although many people worry about malicious threats to our world’s
networked infrastructure from hackers or “cyber-terrorists,” it may be that
cascading failures pose amuch greater risk. Such failures are becoming increas-
ingly common and dangerous as our society becomes more dependent on
computer networks, networked voting machines, missile defense systems,
electronic banking, and the like. As Andreas Antonopoulos, a scientist who
studies such systems, has pointed out, “The threat is complexity itself.”
Indeed, a general understanding of cascading failures and strategies for

their prevention are some of the most active current research areas in network
science. Two current approaches are theories called Self-Organized Criti-
cality (SOC) and Highly Optimized Tolerance (HOT). SOC and HOT are
examples of the many theories that propose mechanisms different from pref-
erential attachment for how scale-free networks arise. SOC and HOT each
propose a general set of mechanisms for cascading failures in both evolved
and engineered systems.
The simplified models of small-world networks and scale-free networks

described in the previous chapter have been extraordinarily useful, as they
have opened up the idea of network thinking to many different disciplines
and established network science as a field in its own right. The next step is
understanding the dynamics of information and other quantities in networks.
To understand the dynamics of information in networks such as the immune
system, ant colonies, and cellularmetabolism (cf. chapter 12), network science
will have to characterize networks in which the nodes and links continually
change in both time and space. This will be a major challenge, to say the least.
As Duncan Watts eloquently writes: “Next to the mysteries of dynamics on
a network—whether it be epidemics of disease, cascading failures in power
systems, or the outbreak of revolutions—the problems of networks that we
have encountered up to now are just pebbles on the seashore.”
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The Mystery of Scalingchapter 17

The previous two chapters showed how network thinking
is having profound effects on many areas of science, particularly biology.

Quite recently, a kind of network thinking has led to a proposed solution
for one of biology’s most puzzling mysteries: the way in which properties of
living organisms scale with size.

Scaling in Biology

Scaling describes how one property of a systemwill change if a related property
changes. The scalingmystery in biology concerns the question of how the aver-
age energy used by an organismwhile resting—the basal metabolic rate—scales
with the organism’s body mass. Since metabolism, the conversion by cells of
food, water, air, and light to usable energy, is the key process underlying all
living systems, this relation is enormously important for understanding how
life works.
It has long been known that the metabolism of smaller animals runs faster

relative to their body size than that of larger animals. In 1883, German
physiologistMaxRubner tried to determine the precise scaling relationship by
using arguments from thermodynamics and geometry. Recall from chapter 3
that processes such as metabolism, that convert energy from one form to
another, always give off heat. An organism’s metabolic rate can be defined as
the rate at which its cells convert nutrients to energy, which is used for all
the cell’s functions and for building new cells. The organism gives off heat
at this same rate as a by-product. An organism’s metabolic rate can thus be
inferred by measuring this heat production.



If you hadn’t already known that smaller animals have faster metabolisms
relative to body size than large ones, a naïve guessmight be thatmetabolic rate
scales linearly with body mass—for example, that a hamster with eight times
the body mass of a mouse would have eight times that mouse’s metabolic
rate, or even more extreme, that a hippopotamus with 125,000 times the
body mass of a mouse would have a metabolic rate 125,000 times higher.
The problem is that the hamster, say, would generate eight times the

amount of heat as the mouse. However, the total surface area of the hamster’s
body—from which the heat must radiate—would be only about four times
the total surface of the mouse. This is because as an animal gets larger, its
surface area grows more slowly than its mass (or equivalent, its volume).
This is illustrated in figure 17.1, in which a mouse, hamster, and hippo

are represented by spheres. You might recall from elementary geometry that
the formula for the volume of a sphere is four-thirds pi times the radius cubed,
where pi ≈ 3.14159. Similarly, the formula for the surface area of a sphere
is four times pi times the radius squared. We can say that “volume scales
as the cube of the radius” whereas “surface area scales as the square of the
radius.” Here “scales as” just means “is proportional to”—that is, ignore the

figure 17.1. Scaling properties of animals (represented as spheres). (Drawing by
David Moser.)
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constants 4/3 × pi and 4 × pi. As illustrated in figure 17.1, the hamster
sphere has twice the radius of the mouse sphere, and it has four times the
surface area and eight times the volume of the mouse sphere. The radius of
the hippo sphere (not drawn to scale) is fifty times the mouse sphere’s radius;
the hippo sphere thus has 2,500 times the surface area and 125,000 times
the volume of themouse sphere. You can see that as the radius is increased, the
surface area grows (or “scales”) much more slowly than the volume. Since the
surface area scales as the radius squared and the volume scales as the radius
cubed, we can say that “the surface area scales as the volume raised to the
two-thirds power.” (See the notes for the derivation of this.)
Raising volume to the two-thirds power is shorthand for saying “square

the volume, and then take its cube root.”
Generating eight times the heat with only four times the surface area to

radiate it would result in one very hot hamster. Similarly, the hippo would
generate 125,000 times the heat of themouse but that heat would radiate over
a surface area of only 2,500 times the mouse’s. Ouch! That hippo is seriously
burning.
Nature has been very kind to animals by not using that naïve solution:

our metabolisms thankfully do not scale linearly with our body mass. Max
Rubner reasoned that nature had figured out that in order to safely radiate
the heat we generate, our metabolic rate should scale with body mass in the
same way as surface area. Namely, he proposed that metabolic rate scales with
body mass to the two-thirds power. This was called the “surface hypothesis,”
and it was accepted for the next fifty years. The only problem was that the
actual data did not obey this rule.
This was discovered in the 1930s by a Swiss animal scientist, Max

Kleiber, who performed a set of careful measures of metabolism rate of
different animals. His data showed that metabolic rate scales with body
mass to the three-fourths power: that is, metabolic rate is proportional to
bodymass3/4. You’ll no doubt recognize this as a power law with exponent
3/4. This result was surprising and counterintuitive. Having an exponent
of 3/4 rather than 2/3 means that animals, particularly large ones, are able
to maintain a higher metabolic rate than one would expect, given their sur-
face area. This means that animals are more efficient than simple geometry
predicts.
Figure 17.2 illustrates such scaling for a number of different animals. The

horizontal axis gives the body mass in kilograms and the vertical axis gives
the average basal metabolic rate measured in watts. The labeled dots are the
actual measurements for different animals, and the straight line is a plot of
metabolic rate scaling with body mass to exactly the three-fourths power.
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figure 17.2. Metabolic rate of various animals as a function of their
body mass. (From K. Schmidt-Nielsen, Scaling: Why Is Animal Size So
Important? Copyright © 1984 by Cambridge University Press.
Reprinted with permission of Cambridge University Press.)

The data do not exactly fit this line, but they are pretty close. Figure 17.2
is a special kind of plot—technically called a double logarithmic (or log-log)
plot—in which the numbers on both axes increase by a power of ten with
each tic on the axis. If you plot a power law on a double logarithmic plot, it
will look like a straight line, and the slope of that line will be equal to the
power law’s exponent. (See the notes for an explanation of this.)
This power law relation is now called Kleiber’s law. Such 3/4-power scal-

ing has more recently been claimed to hold not only for mammals and birds,
but also for the metabolic rates of many other living beings, such as fish,
plants, and even single-celled organisms.
Kleiber’s law is based only on observation of metabolic rates and body

masses; Kleiber offered no explanation for why his law was true. In fact,
Kleiber’s law was baffling to biologists for over fifty years. The mass of living
systems has a huge range: from bacteria, which weigh less than one one-
trillionth of a gram, to whales, which can weigh over 100 million grams. Not
only does the law defy simple geometric reasoning; it is also surprising that
such a law seems to hold so well for organisms over such a vast variety of sizes,
species types, and habitat types. What common aspect of nearly all organisms
could give rise to this simple, elegant law?
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Several other related scaling relationships had also long puzzled biologists.
For example, the larger a mammal is, the longer its life span. The life span
for a mouse is typically two years or so; for a pig it is more like ten years, and
for an elephant it is over fifty years. There are some exceptions to this general
rule, notably humans, but it holds for most mammalian species. It turns out
that if you plot average life span versus body mass for many different species,
the relationship is a power law with exponent 1/4. If you plot average heart
rate versus body mass, you get a power law with exponent −1/4 (the larger
an animal, the slower its heart rate). In fact, biologists have identified a large
collection of such power law relationships, all having fractional exponents
with a 4 in the denominator. For that reason, all such relationships have been
called quarter-power scaling laws. Many people suspected that these quarter-
power scaling lawswere a signature of something very important and common
in all these organisms. But no one knew what that important and common
property was.

An Interdisciplinary Collaboration

By the mid-1990s, James Brown, an ecologist and professor at the Uni-
versity of New Mexico, had been thinking about the quarter-power scaling
problem for many years. He had long realized that solving this problem—
understanding the reason for these ubiquitous scaling laws—would be a key
step in developing any general theory of biology. A biology graduate student
named Brian Enquist, also deeply interested in scaling issues, came to work
with Brown, and they attempted to solve the problem together.
Brown and Enquist suspected that the answer lay somewhere in the struc-

ture of the systems in organisms that transport nutrients to cells. Blood
constantly circulates in blood vessels, which form a branching network that
carries nutrient chemicals to all cells in the body. Similarly, the branching
structures in the lungs, called bronchi, carry oxygen from the lungs to the
blood vessels that feed it into the blood (figure 17.3). Brown and Enquist
believed that it is the universality of such branching structures in animals
that give rise to the quarter-power laws. In order to understand how such
structures might give rise to quarter-power laws, they needed to figure out
how to describe these structures mathematically and to show that the math
leads directly to the observed scaling laws.
Most biologists, Brown and Enquist included, do not have the math

background necessary to construct such a complex geometric and topolog-
ical analysis. So Brown and Enquist went in search of a “math buddy”—a
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Left to right: Geoffrey West, Brian Enquist, and James Brown.
(Photograph copyright © by Santa Fe Institute. Reprinted with
permission.)

figure 17.3. Illustration
of bronchi, branching
structures in the lungs.
(Illustration by Patrick
Lynch, licensed under
Creative Commons
[http://creativecommons.
org/licenses/by/3.0/].)
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mathematician or theoretical physicist who could help them out with this
problem but not simplify it so much that the biology would get lost in the
process.
Enter Geoffrey West, who fit the bill perfectly. West, a theoretical

physicist then working at Los Alamos National Laboratory, had the ideal
mathematical skills to address the scaling problem. Not only had he already
worked on the topic of scaling, albeit in the domain of quantum physics,
but he himself had been mulling over the biological scaling problem as well,
without knowing very much about biology. Brown and Enquist encountered
West at the Santa Fe Institute in the mid-1990s, and the three began to meet
weekly at the institute to forge a collaboration. I remember seeing them there
once a week, in a glass-walled conference room, talking intently while some-
one (usually Geoffrey) was scrawling reams of complex equations on the white
board. (Brian Enquist later described the group’s math results as “pyrotech-
nics.”) I knew only vaguely what they were up to. But later, when I first heard
Geoffrey West give a lecture on their theory, I was awed by its elegance and
scope. It seemed to me that this work was at the apex of what the field of
complex systems had accomplished.
Brown, Enquist, andWest had developed a theory that not only explained

Kleiber’s law and other observed biological scaling relationships but also
predicted a number of new scaling relationships in living systems. Many of
these have since been supported by data. The theory, called metabolic scaling
theory (or simply metabolic theory), combines biology and physics in equal parts,
and has ignited both fields with equal parts excitement and controversy.

Power Laws and Fractals

Metabolic scaling theory answers two questions: (1) why metabolic scaling
follows a power law at all; and (2) why it follows the particular power law
with exponent 3/4. Before I describe how it answers these questions, I need
to take a brief diversion to describe the relationship between power laws and
fractals.
Remember the Koch curve and our discussion of fractals from chapter 7? If

so, youmight recall the notion of “fractal dimension.”We saw that in theKoch
curve, at each level the line segments were one-third the length of the previous
level, and the structure at each level wasmade up of four copies of the structure
at the previous level. In analogy with the traditional definition of dimension,
we defined the fractal dimension of the Koch curve this way: 3dimension = 4,
which yields dimension = 1.26.More generally, if each level is scaled by a factor
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of x from the previous level and is made up of N copies of the previous level,
then xdimension = N. Now, after having read chapter 15, you can recognize that
this is a power law,with dimension as the exponent. This illustrates the intimate
relationship between power laws and fractals. Power law distributions, as we
saw in chapter 15, figure 15.6, are fractals—they are self-similar at all scales
of magnification, and a power-law’s exponent gives the dimension of the
corresponding fractal (cf. chapter 7), where the dimension quantifies precisely
how the distribution’s self-similarity scales with level of magnification. Thus
one could say, for example, that the degree distributions of the Web has a
fractal structure, since it is self-similar. Similarly one could say that a fractal
like the Koch curve gives rise to a power-law—the one that describes precisely
how the curve’s self-similarity scales with level of magnification.
The take-home message is that fractal structure is one way to generate a

power-law distribution; and if you happen to see that some quantity (such as
metabolic rate) follows a power-law distribution, then you can hypothesize
that there is something about the underlying system that is self-similar or
“fractal-like.”

Metabolic Scaling Theory

Since metabolic rate is the rate at which the body’s cells turn fuel into energy,
Brown, Enquist, andWest reasoned thatmetabolic rate must be largely deter-
mined by how efficiently that fuel is delivered to cells. It is the job of the
organism’s circulatory system to deliver this fuel.
Brown, Enquist, and West realized that the circulatory system is not just

characterized in terms of its mass or length, but rather in terms of its network
structure. As West pointed out, “You really have to think in terms of two
separate scales—the length of the superficial you and the real you, which is
made up of networks.”
In developing their theory, Brown, Enquist, and West assumed that evo-

lution has produced circulatory and other fuel-transport networks that are
maximally “space filling” in the body—that is, that can transport fuel to cells
in every part of the body. They also assumed that evolution has designed these
networks to minimize the energy and time that is required to distribute this
fuel to cells. Finally, they assume that the “terminal units” of the network,
the sites where fuel is provided to body tissue, do not scale with body mass,
but rather are approximately the same size in small and large organisms. This
property has been observed, for example, with capillaries in the circulatory
system, which are the same size in most animals. Big animals just have more
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of them. One reason for this is that cells themselves do not scale with body
size: individual mouse and hippo cells are roughly the same size. The hippo
just has more cells so needs more capillaries to fuel them.
Themaximally space-filling geometric objects are indeed fractal branching

structures—the self-similarity at all scales means that space is equally filled
at all scales. What Brown, Enquist, and West were doing in the glass-walled
conference room all thosemanyweeks andmonths was developing an intricate
mathematical model of the circulatory system as a space-filling fractal. They
adopted the energy-and-time-minimization and constant-terminal-unit-size
assumptions given above, and asked, What happens in the model when body
mass is scaled up? Lo and behold, their calculations showed that in the model,
the rate at which fuel is delivered to cells, which determines metabolic rate,
scales with body mass to the 3/4 power.
The mathematical details of the model that lead to the 3/4 exponent are

rather complicated. However, it is worth commenting on the group’s inter-
pretation of the 3/4 exponent. Recall my discussion above of Rubner’s surface
hypothesis—that metabolic rate must scale with body mass the same way in
which volume scales with surface area, namely, to the 2/3 power. One way to
look at the 3/4 exponent is that it would be the result of the surface hypothesis
applied to four-dimensional creatures! We can see this via a simple dimen-
sional analogy. A two-dimensional object such as a circle has a circumference
and an area. In three dimensions, these correspond to surface area and volume,
respectively. In four dimensions, surface area and volume correspond, respec-
tively, to “surface” volume and what we might call hypervolume—a quantity
that is hard to imagine since our brains are wired to think in three, not four
dimensions. Using arguments that are analogous to the discussion of how
surface area scales with volume to the 2/3 power, one can show that in four
dimensions surface volume scales with hypervolume to the 3/4 power.
In short, what Brown, Enquist, andWest are saying is that evolution struc-

tured our circulatory systems as fractal networks to approximate a “fourth
dimension” so as to make our metabolisms more efficient. As West, Brown,
and Enquist put it, “Although living things occupy a three-dimensional
space, their internal physiology and anatomy operate as if they were four-
dimensional . . . Fractal geometry has literally given life an added dimension.”

Scope of the Theory

In its original form,metabolic scaling theory was applied to explainmetabolic
scaling in many animal species, such as those plotted in figure 17.2. However,
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Brown, Enquist,West, and their increasing cadre of new collaborators did not
stop there. Every few weeks, it seems, a new class of organisms or phenomena
is added to the list covered by the theory. The group has claimed that their
theory can also be used to explain other quarter-power scaling laws such as
those governing heart rate, life span, gestation time, and time spent sleeping.
Thegroup also believes that the theory explainsmetabolic scaling in plants,

many of which use fractal-like vascular networks to transport water and other
nutrients. They further claim that the theory explains the quarter-power scal-
ing laws for tree trunk circumference, plant growth rates, and several other
aspects of animal and plant organisms alike. A more general form of the
metabolic scaling theory that includes body temperature was proposed to
explain metabolic rates in reptiles and fish.
Moving to the microscopic realm, the group has postulated that their

theory applies at the cellular level, asserting that 3/4 power metabolic scaling
predicts the metabolic rate of single-celled organisms as well as of metabolic-
like, molecule-sized distribution processes inside the cell itself, and even to
metabolic-like processes inside components of cells such as mitochondria. The
group also proposed that the theory explains the rate of DNA changes in
organisms, and thus is highly relevant to both genetics and evolutionary
biology. Others have reported that the theory explains the scaling of mass
versus growth rate in cancerous tumors.
In the realm of the very large, metabolic scaling theory and its extensions

have been applied to entire ecosystems. Brown, Enquist, and West believe
that their theory explains the observed −3/4 scaling of species population
density with body size in certain ecosystems.
In fact, because metabolism is so central to all aspects of life, it’s hard to

find an area of biology that this theory doesn’t touch on. As you can imagine,
this has got many scientists very excited and looking for new places to apply
the theory. Metabolic scaling theory has been said to have “the potential
to unify all of biology” and to be “as potentially important to biology as
Newton’s contributions are to physics.” In one of their papers, the group
themselves commented, “We see the prospects for the emergence of a general
theory of metabolism that will play a role in biology similar to the theory of
genetics.”

Controversy

As to be expected for a relatively new, high-profile theory that claims to
explain so much, while some scientists are bursting with enthusiasm for
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metabolic scaling theory, others are roiling with criticism. Here are the two
main criticisms that are currently being published in some of the top scientific
journals:

• Quarter-power scaling laws are not as universal as the theory
claims. As a rule, given any proposed general property of living
systems, biology exhibits exceptions to the rule. (And maybe even
exceptions to this rule itself.) Metabolic scaling theory is no exception,
so to speak. Although most biologists agree that a large number of
species seem to follow the various quarter-power scaling laws, there
are also many exceptions, and sometimes there is considerable
variation in metabolic rate even within a single species. One familiar
example is dogs, in which smaller breeds tend to live at least as long as
larger breeds. It has been argued that, while Kleiber’s law represents a
statistical average, the variations from this average can be quite large,
and metabolic theory does not explain this because it takes into
account only body mass and temperature. Others have argued that
there are laws predicted by the theory that real-world data strongly
contradict. Still others argue that Kleiber was wrong all along, and the
best fit to the data is actually a power law with exponent 2/3, as
proposed over one hundred years ago by Rubner in his surface
hypothesis. In most cases, this is an argument about how to correctly
interpret data on metabolic scaling and about what constitutes a “fit”
to the theory. The metabolic scaling group stands by its theory, and
has diligently replied to many of these arguments, which become
increasingly technical and obscure as the authors discuss the intricacies
of advanced statistics and biological functions.

• The Kleiber scaling law is valid but the metabolic scaling theory
is wrong. Others have argued that metabolic scaling theory is
oversimplified, that life is too complex and varied to be covered by one
overreaching theory, and that positing fractal structure is by no means
the only way to explain the observed power-law distributions. One
ecologist put it this way: “The more detail that one knows about the
particular physiology involved, the less plausible these explanations
become.” Another warned, “It’s nice when things are simple, but the
real world isn’t always so.” Finally, there have been arguments that the
mathematics in metabolic scaling theory is incorrect. The authors of
metabolic scaling theory have vehemently disagreed with these
critiques and in some cases have pointed out what they believed to be
fundamental mistakes in the critic’s mathematics.
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The authors of metabolic scaling theory have strongly stood by their work
and expressed frustration about criticisms of details. As West said, “Part of
me doesn’t want to be cowered by these little dogs nipping at our heels.”
However, the group also recognizes that a deluge of such criticisms is a good
sign—whatever they end up believing, a very large number of people have
sat up and taken notice of metabolic scaling theory. And of course, as I have
mentioned, skepticism is one of the most important jobs of scientists, and the
more prominent the theory and the more ambitious its claims are, the more
skepticism is warranted.
The arguments will not end soon; after all, Newton’s theory of gravity

was not widely accepted for more than sixty years after it first appeared,
and many other of the most important scientific advances have faced similar
fates. The main conclusion we can reach is that metabolic scaling theory is
an exceptionally interesting idea with a huge scope and some experimental
support. As ecologist Helene Müller-Landau predicts: “I suspect that West,
Enquist et al. will continue repeating their central arguments and others will
continue repeating the same central critiques, for years to come, until the
weight of evidence finally leads one way or the other to win out.”

The Unresolved Mystery of Power Laws

We have seen a lot of power laws in this and the previous chapters. In addition
to these, power-law distributions have been identified for the size of cities,
people’s incomes, earthquakes, variability in heart rate, forest fires, and stock-
market volatility, to name just a few phenomena.
As I described in chapter 15, scientists typically assume that most natural

phenomena are distributed according to the bell curve or normal distribution.
However, power laws are being discovered in such a great number and variety
of phenomena that some scientists are calling them “more normal than ‘nor-
mal.’ ” In the words of mathematician Walter Willinger and his colleagues:
“The presence of [power-law] distributions in data obtained from complex
natural or engineered systems should be considered the norm rather than the
exception.”
Scientists have a pretty good handle on what gives rise to bell curve dis-

tributions in nature, but power laws are something of a mystery. As we have
seen, there are many different explanations for the power laws observed in
nature (e.g., preferential attachment, fractal structure, self-organized critical-
ity, highly optimized tolerance, among others), and little agreement on which
observed power laws are caused by which mechanisms.
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In the early 1930s, a Harvard professor of linguistics, George Kingsley
Zipf, published a book in which he included an interesting property of lan-
guage. First take any large text such as a novel or a newspaper, and list each
word in the order of how many times it appears. For example, here is a par-
tial list of words and frequencies from Shakespeare’s “To be or not to be”
monologue from the play Hamlet:

Word Frequency Rank

the 22 1
to 15 2
of 15 3
and 12 4
that 7 5
a 5 6
sleep 5 7
we 4 8
be 3 9
us 3 10
bear 3 11
with 3 12
is 3 13
’tis 2 14
death 2 15
die 2 16
in 2 17
have 2 18
make 2 19
end 2 20

Putting this list in order of decreasing frequencies, we can assign a rank
of 1 to the most frequent word (here, “the”), a rank of 2 to the second most
frequent word, and so on. Some words are tied for frequency (e.g., “a” and
“sleep” both have five occurrences). Here, I have broken ties for ranking at
random.
In figure 17.4, I have plotted the to-be-or-not-to-be word frequency as a

function of rank. The shape of the plot indeed looks like a power law. If the
text I had chosen had been larger, the graph would have looked even more
power-law-ish.
Zipf analyzed large amounts of text in this way (without the help of

computers!) and found that, given a large text, the frequency of a word is
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figure 17.4. An illustration of Zipf ’s law using Shakespeare’s “To
be or not to be” monologue.

approximately proportional to the inverse of its rank (i.e., 1/rank). This is a
power law, with exponent −1. The second highest ranked word will appear
about half as often as the first, the third about one-third as often, and so
forth. This relation is now called Zipf ’s law, and is perhaps the most famous
of known power laws.
There have been many different explanations proposed for Zipf ’s law.

Zipf himself proposed that, on the one hand, people in general operate by a
“Principle of Least Effort”: once a word has been used, it takes less effort to
use it again for similar meanings than to come up with a different word. On
the other hand, people want language to be unambiguous, which they can
accomplish by using different words for similar but nonidentical meanings.
Zipf showed mathematically that these two pressures working together could
produce the observed power-law distribution.
In the 1950s, BenoitMandelbrot, of fractal fame, had a somewhat different

explanation, in terms of information content. Following Claude Shannon’s
formulation of information theory (cf. chapter 3), Mandelbrot considered a
word as a “message” being sent from a “source” who wants to maximize the
amount of informationwhileminimizing the cost of sending that information.
For example, thewords feline and catmean the same thing, but the latter, being
shorter, costs less (or takes less energy) to transmit. Mandelbrot showed that if
the information content and transmission costs are simultaneously optimized,
the result is Zipf ’s law.
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At about the same time, Herbert Simon proposed yet another explanation,
presaging the notion of preferential attachment. Simon envisioned a person
adding words one at a time to a text. He proposed that at any time, the
probability of that person reusing a word is proportional to that word’s current
frequency in the text. All words that have not yet appeared have the same,
nonzero probability of being added. Simon showed that this process results
in text that follows Zipf ’s law.
Evidently Mandelbrot and Simon had a rather heated argument (via duel-

ing letters to the journal Information and Control) about whose explanation was
correct.
Finally, also around the same time, to everyone’s amusement or chagrin,

the psychologist George Miller showed, using simple probability theory, that
the text generated bymonkeys typing randomly on a keyboard, ending a word
every time they (randomly) hit the space bar, will follow Zipf ’s law as well.
The many explanations of Zipf ’s law proposed in the 1930s through the

1950s epitomize the arguments going on at present concerning the physical
or informational mechanisms giving rise to power laws in nature. Under-
standing power-law distributions, their origins, their significance, and their
commonalities across disciplines is currently a very important open problem
in many areas of complex systems research. It is an issue I’m sure you will
hear more about as the science behind these laws becomes clearer.
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Evolution, Complexifiedchapter 18

In chapter 1 I asked, “How did evolution produce creatures
with such an enormous contrast between their individual simplicity and

their collective sophistication?” Indeed, as illustrated by the examples we’ve
seen in this book, the closer one looks at living systems, the more astonishing
it seems that such intricate complexity could have been formed by the gradual
accumulation of favorable mutations or the whims of historical accident. This
very argument has been used from Darwin’s time to the present by believers
in divine creation or other supernatural means of “intelligent design.”
The questions of how, why, and even if evolution creates complexity,

and how complexity in biology might be characterized and measured, are
still very much open. One of the most important contributions of complex
systems research over the last few decades has been to demonstrate new ways
to approach these age-old questions. In this chapter I describe some of the
recent discoveries in genetics and the dynamics of genetic regulation that are
giving us surprising new insights into the evolution of complex systems.

Genetics, Complexified

Often in science new technologies can open a floodgate of discoveries that
change scientists’ views of a previously established field of study. We saw
an example of this back in chapter 2—it was the invention of the electronic
computer, and its capacity for modeling complex systems such as weather,
that allowed for the demonstration of the existence of chaos. More recently,
extremely powerful land and space-based telescopes have led to a flurry of
discoveries in astronomy concerning so-called dark matter and dark energy,



which seem to call into question much of what was previously accepted in
cosmology.
No new set of technologies has had a more profound impact on an estab-

lished field than the so-called molecular revolution in genetics over the last
four decades. Technologies for rapidly copying, sequencing, synthesizing, and
engineeringDNA, for imagingmolecular-level structures that had never been
seen before, and for viewing expression patterns of thousands of different genes
simultaneously; these are only a few examples of the feats of biotechnology
in the late twentieth and early twenty-first centuries. And it seems that with
each new technology allowing biologists to peer closer into the cell, more
unexpected complexities appear.
At the timeWatson and Crick discovered its structure, DNAwas basically

thought of as a string of genes, each of which coded for a particular protein
that carried out some function in the cell. This string of genes was viewed
essentially as the “computer program” of the cell, whose commands were
translated and enacted byRNA, ribosomes, and the like, in order to synthesize
the proteins that the genes stood for. Small random changes to the genome
occurredwhen copying errorsweremade during theDNAduplication process;
the long-term accumulation of those small random changes that happened to
be favorable were the ultimate cause of adaptive change in biology and the
origin of new species.
This conventional view has undergone monumental changes in the last 40

years. The term molecular revolution refers not only to the revolutionary new
techniques in genetics, but also to the revolutionary new view of DNA, genes,
and the nature of evolution that these techniques have provided.

What Is a Gene?

One casualty of the molecular revolution is the straightforward concept of
gene. The mechanics of DNA that I sketched in chapter 6 still holds true—
chromosomes contain stretches of DNA that are transcribed and translated to
create proteins—but it turns out to be only part of the story. The following are
a few examples that give the flavor of the many phenomena that have been and
are being discovered; these phenomena are confounding the straightforward
view of how genes and inheritance work.

• Genes are not like “beads on a string.” When I took high-school
biology, genes and chromosomes were explained using the
beads-on-a-string metaphor (and I think we even got to put together a
model using pop-together plastic beads). However, it turns out that
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genes are not so discretely separated from one another. There are genes
that overlap with other genes—i.e., they each code for a different
protein, but they share DNA nucleotides. There are genes that are
wholly contained inside other genes.

• Genes move around on their chromosome and between chromosomes.
You may have heard of “jumping genes.” Indeed, genes can move
around, rearranging the makeup of chromosomes. This can happen in
any cell, including sperm and egg cells, meaning that the effects can
be inherited. The result can be a much higher rate of mutation than
comes from errors in DNA replication. Some scientists have proposed
that these “mobile genetic elements” might be responsible for the
differences observed between close relatives, and even between
identical twins. The phenomenon of jumping genes has even been
proposed as one of the mechanisms responsible for the diversity of life.

• A single gene can code for more than one protein. It had long been
thought that there was a one-to-one correspondence between genes
and proteins. A problem for this assumption arose when the human
genome was sequenced, and it was discovered that while the number
of different types of proteins encoded by genes may exceed 100,000,
the human genome contains only about 25,000 genes. The recently
discovered phenomena of alternative splicing and RNA editing help
explain this discrepancy. These processes can alter messenger RNA in
various ways after it has transcribed DNA but before it is translated
into amino acids. This means that different transcription events of the
same gene can produce different final proteins.

• In light of all these complications, even professional biologists don’t
always agree on the definition of “gene.” Recently a group of science
philosophers and biologists performed a survey in which 500
biologists were independently given certain unusual but real DNA
sequences and asked whether each sequence qualified as a “gene,” and
how confident they were of their answer. It turned out that for many
of the sequences, opinion was split, with about 60% confident of one
answer and 40% confident of the other answer. As stated in an article
in Nature reporting on this work, “The more expert scientists become
in molecular genetics, the less easy it is to be sure about what, if
anything, a gene actually is.”

• The complexity of living systems is largely due to networks of
genes rather than the sum of independent effects of individual
genes. As I described in chapter 16, genetic regulatory networks
are currently a major focus of the field of genetics. In the old
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genes-as-beads-on-a-string view, as in Mendel’s laws, genes are
linear—each gene independently contributes to the entire phenotype.
The new, generally accepted view, is that genes in a cell operate in
nonlinear information-processing networks, in which some genes
control the actions of other genes in response to changes in the cell’s
state—that is, genes do not operate independently.

• There are heritable changes in the function of genes that can occur
without any modification of the gene’s DNA sequence. Such changes
are studied in the growing field of epigenetics. One example is so-called
DNA methylation, in which an enzyme in a cell attaches particular
molecules to some parts of a DNA sequence, effectively “turning off”
those parts. When this occurs in a cell, all descendents of that cell will
have the same DNA methylation. Thus if DNA methylation occurs in
a sperm or egg cell, it will be inherited.
On the one hand, this kind of epigenetic effect happens all the time

in our cells, and is essential for life in many respects, turning off genes
that are no longer needed (e.g., once we reach adulthood, we no longer
need to grow and develop like a child; thus genes controlling juvenile
development are methylated). On the other hand, incorrect or absent
methylation is the cause of some genetic disorders and diseases. In
fact, the absence of necessary methylation during embryo development
is thought by some to be the reason so many cloned embryos do not
survive to birth, or why so many cloned animals that do survive have
serious, often fatal disorders.

• It has recently been discovered that in most organisms a large
proportion of the DNA that is transcribed by RNA is not subsequently
translated into proteins. This so-called noncoding RNA can have
many regulatory effects on genes, as well as functional roles in cells,
both of which jobs were previously thought to be the sole purview of
proteins. The significance of noncoding RNAs is currently a very
active research topic in genetics.

Genetics has become very complicated indeed. And the implications of all
these complications for biology are enormous. In 2003 the Human Genome
Project published the entire human genome—that is, the complete sequence
of human DNA. Although a tremendous amount was learned from this
project, it was less than some had hoped. Some had believed that a complete
mapping of human genes would provide a nearly complete understanding of
how genetics worked, which genes were responsible for which traits, and that
this would guide the way for revolutionary medical discoveries and targeted
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gene therapies. Although there have been several discoveries of certain genes
that are implicated in particular diseases, it has turned out that simply know-
ing the sequence of DNA is not nearly enough to understand a person’s (or
any complex organism’s) unique collection of traits and defects.
One sector that pinned high hopes on the sequencing of genes is the

international biotechnology industry.A recentNewYorkTimes article reported
on the effects that all this newly discovered genetic complexity was having
on biotech: “The presumption that genes operate independently has been
institutionalized since 1976, when the first biotech company was founded.
In fact, it is the economic and regulatory foundation on which the entire
biotechnology industry is built.”
The problem is not just that the science underlying genetics is being

rapidly revised. Amajor issue lurking for biotech is the status of gene patents.
For decades biotech companies have been patenting particular sequences of
humanDNA that were believed to “encode a specific functional product.” But
as we have seen above, many, if notmost, complex traits are not determined by
the exact DNA sequence of a particular gene. So are these patents defensible?
What if the “functional product” is the result of epigenetic processes acting
on the gene or its regulators? Or what if the product requires not only the
patented gene but also the genes that regulate it, and the genes that regulate
those genes, and so on? And what if those regulatory genes are patented by
someone else? Once we leave the world of linear genes and encounter essential
nonlinearity, the meaning of these patents becomes very murky and may
guarantee the employment of patent lawyers and judges for a long time to
come. And patents aren’t the only problem. As the New York Times pointed
out, “Evidence of a networked genome shatters the scientific basis for virtually
every official risk assessment of today’s commercial biotech products, from
genetically engineered crops to pharmaceuticals.”
Not only genetics, but evolutionary theory as a whole has been profoundly

challenged by these new genetic discoveries. A prominent example of this is
the field of “Evo-Devo.”

Evo-Devo

Evo-Devo is the nickname for “evolutionary developmental biology.” Many
people are very excited about this field and its recent discoveries, which are
claimed to explain at least three big mysteries of genetics and evolution:
(1) Humans have only about 25,000 genes. What is responsible for our com-
plexity? (2) Genetically, humans are very similar to many other species. For
example, more than 90% of our DNA is shared withmice andmore than 95%
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with chimps. Why are our bodies so different from those of other animals?
(3) Supposing that Stephen Jay Gould and others are correct about punctuated
equilibria in evolution, how could big changes in body morphology happen
in short periods of evolutionary time?
It has recently been proposed that the answer to these questions lies, at

least in part, in the discovery of genetic switches.
The fields of developmental biology and embryology study the processes

by which a fertilized single egg cell becomes a viable multibillion-celled
living organism. However, the Modern Synthesis’s concern was with genes;
in the words of developmental biologist Sean Carroll, it treated developmental
biology and embryology as a “ ‘black box’ that somehow transformed genetic
information into three-dimensional, functional animals.” This was in part due
to the view that the huge diversity of animal morphology would eventually be
explained by large differences in the number of and DNA makeup of genes.
In the 1980s and 1990s, this view became widely challenged. As I noted

above, DNA sequencing had revealed the extensive similarities in DNA
among many different species. Advances in genetics also produced a detailed
understanding of themechanisms of gene expression in cells during embryonic
and fetal development. These mechanisms turned out to be quite different
from what was generally expected. Embryologists discovered that, in all com-
plex animals under study, there is a small set of “master genes” that regulate
the formation and morphology of many of the animal’s body parts. Even more
surprising, these master genes were found to share many of the same sequences
of DNA across many species with extreme morphological differences, ranging
from fruit flies to humans.
Given that their developmental processes are governed by the same genes,

how is it that these different animals develop such different body parts? Pro-
ponents of Evo-Devo propose that morphological diversity among species is,
for the most part, not due to differences in genes but in genetic switches that
are used to turn genes on and off. These switches are sequences of DNA—
often several hundred base pairs in length—that do not code for any protein.
Rather they are part of what used to be called “junk DNA,” but now have
been found to be used in gene regulation.
Figure 18.1 illustrates how switches work. A switch is a sequence of non-

coding DNA that resides nearby a particular gene. This sequence of molecules
typically contains on the order of a dozen signature subsequences, each of
which chemically binds with a particular protein, that is, the protein attaches
to the DNA string. Whether or not the nearby gene gets transcribed, and
how quickly, depends on the combination of proteins attached to these subse-
quences. Proteins that allow transcription create strong binding sites for RNA
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figure 18.1. Illustration of genetic “switches.” (a) A DNA sequence, containing a
switch with two signature subsequences, a functional gene turned on by that switch,
and two regulatory master genes. The regulatory master genes give rise to regulatory
proteins. (b) The regulatory proteins bind to the signature subsequences, switching
on the functional gene—that is, allowing it to be transcribed.

molecules that will do the transcribing; proteins that prevent transcription
block these same RNA molecules from binding to the DNA. Some of these
proteins can negate the effects of others.
Where do these special regulator proteins come from? Like all proteins,

they come from genes, in this case regulatory genes that encode such proteins
in order to turn other genes on or off, depending on the current state of the
cell. How do these regulatory genes determine the current state of the cell? By
the presence or absence of proteins that signal the state of the cell by binding
to the regulatory genes’ own switches. Such proteins are often encoded by
other regulatory genes, and so forth.
In summary, genetic regulatory networks are made up of several different

kinds of entities, including functional genes that encode proteins (and some-
times noncoding RNA) for cellular maintenance or building, and regulatory
genes that encode proteins (and sometimes noncoding RNA) that turn other
genes on or off by binding to DNA “switches” near to the gene in question.
I can now give Evo-Devo’s answers to the three questions posed at the

beginning of this section. Humans (and other animals) can be more complex
than their number of genes would suggest for many reasons, some listed above
in the “What Is aGene” section. But a primary reason is that genetic regulatory
networks allow a huge number of possibilities for gene expression patterns,
since there are so many possible ways in which proteins can be attached to
switches.
The reason we humans can share so many genes with other creatures quite

different from us is that, although the genes might be the same, the sequences
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making up switches have often evolved to be different. Small changes in
switches can produce very different patterns of genes turning on and off dur-
ing development. Thus, according to Evo-Devo, the diversity of organisms
is largely due to evolutionary modifications of switches, rather than genes.
This is also the reason that large changes in morphology—possibly includ-
ing speciation—can happen swiftly in evolutionary time: the master genes
remain the same, but switches are modified. According to Evo-Devo, such
modifications—in the parts of DNA long thought of as “junk”—are the
major force in evolution, rather than the appearance of new genes. Biologist
John Mattick goes so far as to say, “The irony . . . is that what was dismissed
as junk [DNA] because it wasn’t understood will turn out to hold the secret
of human complexity.”
One striking instance of Evo-Devo in action is the famous example of

the evolution of finches’ beaks. As I described in chapter 5, Darwin observed
large variations in beak size and shape among finches native to the Galápagos
Islands. Until recently, most evolutionary biologists would have assumed that
such variations resulted from a gradual process in which chance mutations
of several different genes accumulated. But recently, a gene called BMP4
was discovered that helps control beak size and shape by regulating other
genes that produce bones. The more strongly BMP4 is expressed during the
birds’ development, the larger and stronger their beaks. A second gene, called
calmodulin, was discovered to be associated with long, thin beaks. As Carol
Kaesuk Yoon reported in theNew York Times, “To verify that the BMP4 gene
itself could indeed trigger the growth of grander, bigger, nut-crushing beaks,
researchers artificially cranked up the production of BMP4 in the developing
beaks of chicken embryos. The chicks began growing wider, taller, more
robust beaks similar to those of a nut-cracking finch. . . . As with BMP4,
the more that calmodulin was expressed, the longer the beak became. When
scientists artificially increased calmodulin in chicken embryos, the chicks
began growing extended beaks, just like a cactus driller. . . . So, with just
these two genes, not tens or hundreds, the scientists found the potential to
re-create beaks, massive or stubby or elongated.” The conclusion is that large
changes in the morphology of beaks (and other traits) can take place rapidly
without the necessity of waiting for many chancemutations over a long period
of time.
Another example where Evo-Devo is challenging long-held views about

evolution concerns the notion of convergent evolution. In my high school biology
class, we learned that the octopus eye and the human eye—greatly different
in morphology—were examples of convergent evolution: eyes in these two
species evolved completely independently of one another as a consequence of
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natural selection acting in two different environments in which eyes were a
useful adaptation.
However, recent evidence has indicated that the evolution of these two eyes

was not as independent as previously thought.Humans, octopi, flies, andmany
other specieshaveacommongenecalledPAX6,whichhelpsdirect thedevelop-
ment of eyes. In a strange but revealing experiment, the Swiss biologistWalter
Gehring took PAX6 genes from mice and inserted them into the genomes of
fruit flies. In particular, in different studies, PAX6 was inserted in three dif-
ferent parts of the genome: those that direct the development of legs, wings,
and antennae, respectively.The researchers got eerie results: eye-like structures
formed on flies’ legs, wings, and antennae. Moreover, the structures were like
fly eyes, notmouse eyes. Gehring’s conclusion: the eye evolved notmany times
independently, but only once, in a commonancestorwith thePAX6gene.This
conclusion is still quite controversial among evolutionary biologists.
Although genetic regulatory networks directed by master genes can

produce great diversity, they also enforce certain constraints on evolution.
Evo-Devo scientists claim that the types of body morphology (called body
plans) any organism can have are highly constrained by the master genes, and
that is why only a few basic body plans are seen in nature. It’s possible that
genomes vastly different from ours could result in new types of body plans, but
in practice, evolution can’t get us there becausewe are so reliant on the existing
regulatory genes. Our possibilities for evolution are constrained. According
to Evo-Devo, the notion that “every trait can vary indefinitely” is wrong.

Genetic Regulation and Kauffman’s “Origins of Order”

StuartKauffman is a theoretical biologistwho has been thinking about genetic
regulatory networks and their role in constraining evolution for over forty
years, long before the ascendency of Evo-Devo. He has also thought about the
implications for evolution of the “order” we see emerging from such complex
networks.
Kauffman is a legendary figure in complex systems. My first encounter

with him was at a conference I attended during my last year of graduate
school. His talk was the very first one at the conference, and I must say that,
for me at the time, it was the most inspiring talk I had ever heard. I don’t
remember the exact topic; I just remember the feeling I had while listening
that what he was saying was profound, the questions he was addressing were
the most important ones, and I wanted to work on this stuff too.
Kauffman started his career with a short stint as a physician but soon

moved to genetics research. His work was original and influential; it earned
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Stuart Kauffman (Photograph
by Daryl Black, reprinted

with permission.)

him many academic accolades, including a MacArthur “genius” award, as
well as a faculty position at the Santa Fe Institute. At SFI seminars, Kauffman
would sometimes chime in from the audience with, “I know I’m just a simple
country doctor, but . . . ” andwould spend a good fiveminutes ormore fluently
and eloquently giving his extemporaneous opinion on some highly technical
topic that he had never thought about before.One science journalist called him
a “world-class intellectual riffer,” which is an apt description that I interpret
as wholly complimentary.
Stuart’s “simple country doctor” humble affect belies his personality.

Kauffman is one of Complex Systems’ big thinkers, a visionary, and not what
you would call a “modest” or “humble” person. A joke at SFI was that Stu-
art had “patented Darwinian evolution,” and indeed, he holds a patent on
techniques for evolving protein sequences in the laboratory for the purpose of
discovering new useful drugs.

random boolean networks

Kauffman was perhaps the first person to invent and study simplified com-
puter models of genetic regulatory networks. His model was a structure called
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figure 18.2. (a) A random Boolean network with five nodes. The in-degree (K) of
each node is equal to 2. At time step 0, each node is in a random initial state: on
(black) or off (white). (b) Time step 1 shows the network after each node has
updated its state.

a Random Boolean Network (RBN), which is an extension of cellular automata.
Like any network, an RBN consists of a set of nodes and links between the
nodes. Like a cellular automaton, an RBN updates its nodes’ states in dis-
crete time steps. At each time step each node can be in either state on or
state off.
The property that on and off are the only allowed states is where the term

Boolean comes in: a Boolean rule (or function) is one that gets some number
of inputs, each equal to either 0 or 1, and from those inputs it produces an
output of a 0 or 1. Such rules are named after the mathematician George
Boole, who did extensive mathematical research on them.
In an RBN, links are directional: if node A links to node B, node B does

not necessarily (but can possibly) link to node A. The in-degree of each node
(the number of links from other nodes to that node) is the same for each
node—let’s call that number K.
Here is how to build an RBN: for each node, create in-links to that node

from K other randomly chosen nodes (including, possibly, a self-link), and
give that node a Boolean rule, chosen randomly, that inputs K on or off states
and outputs a single on or off state (figure 18.2a).
To run the RBN, give each node an initial state of on or off chosen at

random. Then at each time step, each node transmits its state to the nodes it
links to, and receives as input the states from the nodes that link to it. Each
node then applies its rule to its input to determine its state at the next time
step. All this is illustrated in figure 18.2, which shows the action of an RBN
of five nodes, each with two inputs, over one time step.
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RBNs are similar to cellular automata, but with two major differences:
nodes are connected not to spatially neighboring nodes but at random, and
rather than all nodes having an identical rule, each node has its own rule.
In Kauffman’s work, the RBN as a whole is an idealized model of a genetic

regulatory network, in which “genes” are represented by nodes, and “gene A
regulates gene B” is represented by node A linking to node B. The model is of
course vastly simpler than real genetic networks. Using such idealized models
in biology is now becoming common, but when Kauffman started this work
in the 1960s, it was less well accepted.

life at the edge of chaos

Kauffman and his students and collaborators have done a raft of simulations
of RBNs with different values of the in-degree K for each node. Starting from
a random initial state, and iterated over a series of time steps, the nodes in
the RBN change state in random ways for a while, and finally settle down
to either a fixed point (all nodes’ states remain fixed) or an oscillation (the
state of the whole network oscillates with some small period), or do not
settle down at all, with random-looking behavior continuing over a large
number of iterations. Such behavior is chaotic, in that the precise trajectory
of states of the network have sensitive dependence on the initial state of the
network.
Kauffman found that the typical final behavior is determined by both

the number of nodes in the network and each node’s in-degree K. As K is
increased from 1 (i.e., each node has exactly one input) all the way up to
the total number of nodes (i.e., each node gets input from all other nodes,
including itself), the typical behavior of the RBNs moves through the three
different “regimes” of behavior (fixed-point, oscillating, chaotic). You might
notice that this parallels the behavior of the logistic map as R is increased
(cf. chapter 2). At K = 2 Kauffman found an “interesting” regime—neither
fixed point, oscillating, or completely chaotic. In analogywith the term “onset
of chaos” used with the logistic map, he called this regime the “edge of chaos.”
Assuming the behavior of his RBNs reflected the behavior of real genetic

networks, and making an analogy with the phases of water as temperature
changes, he concluded that “the genomic networks that control development
from zygote to adult can exist in three major regimes: a frozen ordered regime,
a gaseous chaotic regime, and a kind of liquid regime located in the region
between order and chaos.”
Kauffman reasoned that, for an organism to be both alive and stable, the

genetic networks his RBNs modeled had to be in the interesting “liquid”
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regime—not too rigid or “frozen,” and not too chaotic or “gaseous.” In his
own words, “life exists at the edge of chaos.”
Kauffman used the vocabulary of dynamical systems theory—attractors,

bifurcations, chaos—to describe his findings. Suppose we call a possible
configuration of the nodes’ states a global state of the network. Since RBNs
have a finite number of nodes, there are only a finite number of possible global
states, so if the network is iterated for long enough it will repeat one of the
global states it has already been in, and hence cycle through the next series
of states until it repeats that global state again. Kauffman called this cycle
an “attractor” of the network. By performing many simulations of RBNs, he
estimated that the average number of different attractors produced in differ-
ent networks with K = 2 was approximately equal to the square root of the
number of nodes.
Next came a big leap in Kauffman’s interpretation of this model. Every

cell in the body has more or less identical DNA. However, the body has
different types of cells: skin cells, liver cells, and so forth. Kauffman asserted
that what determines a particular cell type is the pattern of gene expression in
the cell over time—I have described above how gene expression patterns can
be quite different in different cells. In the RBNmodel, an attractor, as defined
above, is a pattern over time of “gene expression.” Thus Kauffman proposed
that an attractor in his network represents a cell type in an organism’s body.
Kauffman’s model thus predicted that for an organism with 100,000 genes,
the number of different cell types would be approximately the square root
of 100,000, or 316. This is not too far from the actual number of cell types
identified in humans—somewhere around 256.
At the time Kauffman was doing these calculations, it was generally

believed that the human genome contained about 100,000 genes (since the
human body uses about 100,000 types of proteins). Kauffman was thrilled
that his model had come close to correctly predicting the number of cell
types in humans. Now we know that the human genome contains only about
25,000 genes, so Kauffman’s model would predict about 158 cell types.

the origin of order

The model wasn’t perfect, but Kauffman believed it illustrated his most
important general point about living systems: that natural selection is in
principle not necessary to create a complex creature. Many RBNs with K = 2
exhibited what he termed “complex” behavior, and no natural selection or
evolutionary algorithm was involved. His view was that once a network
structure becomes sufficiently complex—that is, has a large number of nodes
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controlling other nodes—complex and “self-organized” behavior will emerge.
He says,

Most biologists, heritors of the Darwinian tradition, suppose that the
order of ontogeny is due to the grinding away of a molecular Rube
Goldberg machine, slapped together piece by piece by evolution. I
present a countering thesis:most of the beautiful order seen in ontogeny
is spontaneous, a natural expression of the stunning self-organization
that abounds in very complex regulatory networks. We appear to have
been profoundly wrong. Order, vast and generative, arises naturally.

Kauffman was deeply influenced by the framework of statistical mechan-
ics, which I described in chapter 3. Recall that statistical mechanics explains
how properties such as temperature arise from the statistics of huge numbers
of molecules. That is, one can predict the behavior of a system’s tempera-
ture without having to follow the Newtonian trajectory of every molecule.
Kauffman similarly proposed that he had found a statistical mechanics law
governing the emergence of complexity from huge numbers of intercon-
nected, mutually regulating components. He termed this law a “candidate
fourth law of thermodynamics.” Just as the second law states that the uni-
verse has an innate tendency toward increasing entropy, Kauffman’s “fourth
law” proposes that life has an innate tendency to become more complex,
which is independent of any tendency of natural selection. This idea is
discussed at length in Kauffman’s book, The Origins of Order. In Kauff-
man’s view, the evolution of complex organisms is due in part to this
self-organization and in part to natural selection, andperhaps self-organization
is really what predominates, severely limiting the possibilities for selection
to act on.

Reactions to Kauffman’s Work

Given that Kauffman’s work implies “a fundamental reinterpretation of the
place of selection in evolutionary theory,” you can imagine that people react
rather strongly to it. There are a lot of huge fans of this work (“His approach
opens up new vistas”; it is “the first serious attempt to model a complete
biology”). On the other side, many people are highly skeptical of both his
results and his broad interpretations of them. One reviewer called Kauffman’s
writing style “dangerously seductive” and said of The Origins of Order, “There
are times when the bracing walk through hyperspace seems unfazed by the
nagging demands of reality.”
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Indeed, the experimental evidence concerning Kauffman’s claims is not
all on his side. Kauffman himself admits that regarding RBNs as models of
genetic regulatory networks requiresmany unrealistic assumptions: each node
can be in only one of two states (whereas gene expression has different degrees
of strength), each has an identical number of nodes that regulate it, and all
nodes are updated in synchrony at discrete time steps. These simplifications
may ignore important details of genetic activity.
Most troublesome for his theory are the effects of “noise”—errors and

other sources of nondeterministic behavior—that are inevitable in real-world
complex systems, including genetic regulation. Biological genetic networks
make errors all the time, yet they are resilient—most often our health is
not affected by these errors. However, simulations have shown that noise has
a significant effect on the behavior of RBNs, and sometimes will prevent
RBNs from reaching a stable attractor. Even some of the claims Kauffman
made specifically about his RBN results are not holding up to further scrutiny.
For example, recall Kauffman’s claim that the number of attractors that occur
in a typical network is close to the square root of the number of nodes, and
his interpretation of this fact in terms of cell-types. Additional simulations
have shown that the number of attractors is actually not well approximated
by the square root of the number of nodes. Of course this doesn’t necessarily
mean that Kauffman is wrong in his broader claims; it just shows that there
is considerably more work to be done on developing more accurate models.
Developing accurate models of genetic regulatory networks is currently a very
active research area in biology.

Summary

Evolutionary biology is still working on answering its most important ques-
tion: How does complexity in living systems come about through evolution?
As we have seen in this chapter, the degree of complexity in biology is only
beginning to be fully appreciated. We also have seen that many major steps
are being taken toward understanding the evolution of complexity. One step
has been the development of what some have called an “extended Synthesis,”
in which natural selection still plays an important role, but other forces—
historical accidents, developmental constraints, and self-organization—are
joining natural selection as explanatory tools. Evolutionists, particularly in the
United States, have been under attack from religious extremists and are often
on the defensive, reluctant to admit that natural selectionmay not be the entire
story. As biologists Guy Hoelzer, John Pepper, and Eric Smith have written
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about this predicament: “It has essentially become a matter of social respon-
sibility for evolutionary biologists to join the battle in defense of Darwinism,
but there is a scientific cost associated with this cultural norm. Alternative
ways of describing evolutionary processes, complementary to natural selection,
can elicit the same defensive posture without critical analysis.”
Evolutionary biologist Dan McShea has given me a useful way to think

about these various issues. He classifies evolutionists into three categories:
adaptationists, who believe that natural selection is primary; historicists, who
give credit to historical accident for many evolutionary changes; and struc-
turalists, such as Kauffman, who focus on how organized structure comes
about even in the absence of natural selection. Evolutionary theory will be
unified only when these three groups are able to show how their favored forces
work as an integrated whole.
Dan also gaveme an optimistic perspective on this prospect: “Evolutionary

biology is in a state of intellectual chaos. But it’s an intellectual chaos of a
very productive kind.”
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part v Conclusion

I will put Chaos into fourteen lines

And keep him there; and let him thence escape

If he be lucky; let him twist, and ape

Flood, fire, and demon—his adroit designs

Will strain to nothing in the strict confines

Of this sweet order, where, in pious rape,

I hold his essence and amorphous shape,

Till he with Order mingles and combines.

Past are the hours, the years of our duress,

His arrogance, our awful servitude:

I have him. He is nothing more nor less

Than something simple not yet understood;

I shall not even force him to confess;

Or answer. I will only make him good.

— Edna St. Vincent Millay, Mine the
Harvest: A Collection of New Poems
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The Past and Future of the Sciences
of Complexity

chapter 19

In 1995, the science journalist John Horgan published an
article in Scientific American, arguably the world’s leading popular science

magazine, attacking the field of complex systems in general and the Santa
Fe Institute in particular. His article was advertised on the magazine’s cover
under the label “Is Complexity a Sham?” (figure 19.1).
The article contained two main criticisms. First, in Horgan’s view, it was

unlikely that the field of complex systems would uncover any useful general
principles, and second, he believed that the predominance of computermodel-
ingmade complexity a “fact-free science.” In addition, the articlemade several
minor jabs, calling complexity “pop science” and its researchers “complexolo-
gists.” Horgan speculated that the term “complexity” has little meaning but
that we keep it for its “public-relations value.”
To add insult to injury, Horgan quoted me as saying, “At some level you

can say all complex systems are aspects of the same underlying principles, but
I don’t think that will be very useful.” Did I really say this? I wondered.What
was the context? Do I believe it? Horgan had interviewed me on the phone
for an hour or more and I had said a lot of things; he chose the single most
negative comment to use in his article. I hadn’t had very much experience
with science journalists at that point and I felt really burned.
I wrote an angry, heartfelt letter to the editor at Scientific American, listing

all the things I thought were wrong and unfair in Horgan’s article. Of course
a dozen or more of my colleagues did the same; the magazine published only
one of these letters and it wasn’t mine.



figure 19.1. Complexity
is “dissed” on the cover of
Scientific American. (Cover
art by Rosemary Volpe,
reprinted by permission.)

The whole incident taught me some lessons. Mostly, be careful what you
say to journalists. But it did force me to think harder andmore carefully about
the notion of “general principles” and what this notion might mean.
Horgan’s article grew into an equally cantankerous book, called The End

of Science, in which he proposed that all of the really important discoveries
of science have already been made, and that humanity would make no more.
His Scientific American article on complexity was expanded into a chapter,
and included the following pessimistic prediction: “The fields of chaos, com-
plexity, and artificial life will continue. . . . But they will not achieve any
great insights into nature—certainly none comparable to Darwin’s theory of
evolution or quantum mechanics.”
Is Horgan right in any sense? Is it futile to aim for the discovery of general

principles or a “unified theory” covering all complex systems?

On Unified Theories and General Principles

The term unified theory (or Grand Unified Theory, quaintly abbreviated as
GUT) usually refers to a goal of physics: to have a single theory that unifies
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the basic forces in the universe. String theory is one attempt at a GUT, but
there is no consensus in physics that string theory works or even if a GUT
exists.
Imagine that string theory turns out to be correct—physics’ long sought-

after GUT. That would be an enormously important achievement, but it
would not be the end of science, and in particular it would be far from
the end of complex systems science. The behaviors of complex systems that
interest us are not understandable at the level of elementary particles or ten-
dimensional strings. Even if these elements make up all of reality, they are
the wrong vocabulary for explaining complexity. It would be like answering
the question, “Why is the logistic map chaotic?” with the answer, “Because
xt+1 = R xt(1−xt).” The explanation for chaos is, in some sense, embedded in
the equation, just as the behavior of the immune systemwould in some sense be
embedded in aGrandUnified Theory of physics. But not in the sense that con-
stitutes human understanding—the ultimate goal of science. Physicists Jim
Crutchfield, Doyne Farmer, Norman Packard, and Robert Shaw voiced this
view very well: “[T]he hope that physics could be complete with an increas-
ingly detailed understanding of fundamental physical forces and constituents
is unfounded. The interaction of components on one scale can lead to com-
plex global behavior on a larger scale that in general cannot be deduced from
knowledge of the individual components.” Or, as Albert Einstein supposedly
quipped, “Gravitation is not responsible for people falling in love.”
So if fundamendal physics is not to be a unified theory for complex systems,

what, if anything, is? Most complex systems researchers would probably say
that a unified theory of complexity is not a meaningful goal at this point. The
science of physics, being over two thousand years old, is conceptually way
ahead in that it has identified two main kinds of “stuff”—mass and energy—
which Einstein unified with E = mc2. It also has identified the four basic
forces in nature, and has unified at least three of them. Mass, energy, and
force, and the elementary particles that give rise to them, are the building
blocks of theories in physics.
As for complex systems, we don’t even know what corresponds to the

elemental “stuff” or to a basic “force”; a unified theory doesn’t mean much
until you figure out what the conceptual components or building blocks of
that theory should be.
Deborah Gordon, the ecologist and entomologist voiced this opinion:

Recently, ideas about complexity, self-organization, and emergence—
when the whole is greater than the sum of its parts—have come into
fashion as alternatives for metaphors of control. But such explanations

the past and future of the sciences of complexity 293



offer only smoke and mirrors, functioning merely to provide names for
what we can’t explain; they elicit for me the same dissatisfaction I feel
when a physicist says that a particle’s behavior is caused by the equiva-
lence of two terms in an equation. Perhaps there can be a general theory
of complex systems, but it is clear we don’t have one yet. A better route
to understanding the dynamics of apparently self-organizing systems is
to focus on the details of specific systems. This will reveal whether there
are general laws. . . . The hope that general principles will explain the
regulation of all the diverse complex dynamical systems that we find
in nature can lead to ignoring anything that doesn’t fit a pre-existing
model. When we learn more about the specifics of such systems, we
will see where analogies between them are useful and where they break
down.

Of course there are many general principles that are not very useful, for
example, “all complex systems exhibit emergent properties,” because, as Gor-
don says, they “provide names for what we can’t explain.” This is, I think,
what I was trying to say in the statement of mine that Horgan quoted. I think
Gordon is correct in her implication that no single set of useful principles is
going to apply to all complex systems.
It might be better to scale back and talk of common rather than general

principles: those that provide new insight into—or new conceptualizations
of—the workings of a set of systems or phenomena that would be very difficult
to glean by studying these systems or phenomena separately, and trying to
make analogies after the fact.
The discovery of common principles might be part of a feedback cycle in

complexity research: knowledge about specific complex systems is synthesized
into common principles, which then provide new ideas for understanding the
specific systems. The specific details and commonprinciples inform, constrain,
and enrich one another.
This all sounds well and good, but where are examples of such prin-

ciples? Of course proposals for common or universal principles abound
in the literature, and we have seen several such proposals in this book:
the universal properties of chaotic systems; John von Neumann’s princi-
ples of self-reproduction; John Holland’s principle of balancing exploitation
and exploration; Robert Axelrod’s general conditions for the evolution of
cooperation; Stephen Wolfram’s principle of computational equivalence;
Albert-László Barabási and Réka Albert’s proposal that preferential attach-
ment is a general mechanism for the development of real-world networks;
West, Brown, and Enquist’s proposal that fractal circulation networks explain
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scaling relationships; et cetera. There are also many proposals that I have had
to leave out because of limited time and space.
I stuck my neck out in chapter 12 by proposing a number of common

principles of adaptive information processing in decentralized systems. I’m
not sure Gordon would agree, but I believe those principles might actually
be useful for people who study specific complex systems such as the ones I
covered—the principles might give them new ideas about how to understand
the systems they study. As one example, I proposed that “randomness and
probabilities are essential.” When I gave a lecture recently and outlined those
principles, a neuroscientist in the audience responded by speculating where
randomness might come from in the brain and what its uses might be. Some
people in the room had never thought about the brain in these terms, and this
idea changed their view a bit, and perhaps gave them some new concepts to
use in their own research.
On the other hand, feedback must come from the specific to the general.

At that same lecture, several people pointed out examples of complex adaptive
systems that they believed did not follow all of my principles. This forced me
to rethinkwhat Iwas saying and to question the generality ofmy assertions. As
Gordon so rightly points out, we should be careful to not ignore “anything that
doesn’t fit a pre-existing model.” Of course what are thought to be facts about
nature are sometimes found to be wrong as well, and perhaps some common
principles will help in directing our skepticism. Albert Einstein, a theorist par
excellence, supposedly said, “If the facts don’t fit the theory, change the facts.”
Of course this depends on the theory and the facts. The more established the
theory or principles, the more skeptical you have to be of any contradicting
facts, and conversely themore convincing the contradicting facts are, themore
skeptical you need to be of your supposed principles. This is the nature of
science—an endless cycle of proud proposing and disdainful doubting.

Roots of Complex Systems Research

The search for common principles governing complex systems has a long
history, particularly in physics, but the quest for such principles became
most prominent in the years after the invention of computers. As early as
the 1940s, some scientists proposed that there are strong analogies between
computers and living organisms.
In the 1940s, the Josiah Macy, Jr. Foundation sponsored a series of inter-

disciplinary scientific meetings with intriguing titles, including “Feedback
Mechanisms and Circular Causal Systems in Biological and Social Systems,”
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Norbert Wiener, 1894–1964 (AIP Emilio Segre Visual Archives)

“Teleological Mechanisms in Society,” and “Teleological Mechanisms and
Circular Causal Systems.” These meetings were organized by a small group
of scientists and mathematicians who were exploring common principles of
widely varying complex systems. A prime mover of this group was the math-
ematician Norbert Wiener, whose work on the control of anti-aircraft guns
duringWorldWar II had convinced him that the science underlying complex
systems in both biology and engineering should focus not on the mass, energy,
and force concepts of physics, but rather on the concepts of feedback, control,
information, communication, and purpose (or “teleology”).
In addition to Norbert Wiener, the series of Macy Foundation conferences

included several scientific luminaries of the time, such as John von Neumann,
Warren McCulloch, Margaret Mead, Gregory Bateson, Claude Shannon, W.
Ross Ashby, among others. The meetings led Wiener to christen a new dis-
cipline of cybernetics, from the Greek word for “steersman”—that is, one who
controls a ship. Wiener summed up cybernetics as “the entrie field of control
and communication theory, whether in the machine or in the animal.”
The discussions and writings of this loose-knit cybernetics group focused

on many of the issues that have come up in this book. They asked: What are
information and computation? How are they manifested in living organisms?
What analogies can be made between living systems and machines? What is
the role of feedback in complex behavior? How do meaning and purpose arise
from information processing?
There is no question that much important work on analogies between

living systems and machines came out of the cybernetics group. This work
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includes von Neumann’s self-reproducing automaton, which linked notions
of information and reproduction; H. Ross Ashby’s “Design for a Brain,” an
influential proposal for how the ideas of dynamics, information, and feedback
should inform neuroscience and psychology; Warren McCulloch and Walter
Pitts’ model of neurons as logic devices, which was the impetus for the later
field of neural networks; Margaret Mead and Gregory Bateson’s application
of cybernetic ideas in psychology and anthropology; and Norbert Wiener’s
books Cybernetics and The Human Use of Human Beings, which attempted to
provide a unified overview of the field and its relevance in many disciplines.
These are only a few examples of works that are still influential today.
In its own time, the research program of cybernetics elicited both enthu-

siasm and disparagement. Proponents saw it as the beginning of a new era
of science. Critics argued that it was too broad, too vague, and too lacking
in rigorous theoretical foundations to be useful. The anthropologist Gregory
Bateson adopted the first view, writing, “The two most important historical
events in my life were the Treaty of Versailles and the discovery of Cyber-
netics.” On the other side, the biophysicist and Nobel prize–winner Max
Delbrück characterized the cybernetics meeting he attended as “vacuous in
the extreme and positively inane.” Less harshly, the decision theorist Leonard
Savage described one of the later Macy Foundation meetings as “bull sessions
with a very elite group.”
In time, the enthusiasm of the cyberneticists for attendingmeetings faded,

along with the prospects of the field itself. William Aspray, a historian of
science who has studied the cybernetics movement writes that “in the end
Wiener’s hope for a unified science of control and communication was not
fulfilled. As one participant in these events explained, cybernetics had ‘more
extent than content.’ It ranged over too disparate an array of subjects, and
its theoretical apparatus was too meager and cumbersome to achieve the
unification Wiener desired.”
A similar effort toward finding common principles, under the name of

General System Theory, was launched in the 1950s by the biologist Ludwig
von Bertalanffy, who characterized the effort as “the formulation and deduc-
tion of those principles which are valid for ‘systems’ in general.” A system
is defined in a very general sense: a collection of interacting elements that
together produce, by virtue of their interactions, some form of system-wide
behavior. This, of course, can describe just about anything. The general system
theorists were particularly interested in general properties of living systems.
System theorist Anatol Rapoport characterized the main themes of general
system theory (as applied to living systems, social systems, and other com-
plex systems) as preservation of identity amid changes, organized complexity, and
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goal-directedness. Biologists Humberto Maturana and Francisco Varela
attempted to make sense of the first two themes in terms of their notion
of autopoiesis, or “self-construction”—a self-maintaining process by which a
system (e.g., a biological cell) functions as a whole to continually produce the
components (e.g., parts of a cell) which themselves make up the system that
produces them. To Maturana, Varela, and their many followers, autopoiesis
was a key, if not the key feature of life.
Like the research program of the cyberneticists, these ideas are very appeal-

ing, but attempts to construct a rigorous mathematical framework—one that
explains and predicts the important common properties of such systems—
were not generally successful. However, the central scientific questions posed
by these efforts formed the roots of several modern areas of science and
engineering. Artificial intelligence, artificial life, systems ecology, systems
biology, neural networks, systems analysis, control theory, and the sciences of
complexity have all emerged from seeds sown by the cyberneticists and gen-
eral system theorists. Cybernetics and general system theory are still active
areas of research in some quarters of the scientific community, but have been
largely overshadowed by these offspring disciplines.
Several more recent approaches to general theories of complex systems

have come from the physics community. For example, Hermann Haken’s
Synergetics and Ilya Prigogine’s theories of dissipative structures and nonequilib-
rium systems both have attempted to integrate ideas from thermodynamics,
dynamical systems theory, and the theory of “critical phenomena” to explain
self-organization in physical systems such as turbulent fluids and complex
chemical reactions, as well as in biological systems. In particular, Prigogine’s
goal was to determine a “vocabulary of complexity”: in the words of Pri-
gogine and his colleague, Grégoire Nicolis, “a number of concepts that deal
with mechanisms that are encountered repeatedly throughout the different
phenomena; they are nonequilibrium, stability, bifurcation and symmetry
breaking, and long-range order . . . they become the basic elements of what we
believe to be a new scientific vocabulary.” Work continues along these lines,
but to date these efforts have not yet produced the coherent and general vocab-
ulary of complexity envisioned by Prigogine, much less a general theory that
unifies these disparate concepts in a way that explains complexity in nature.

Five Questions

As you can glean from the wide variety of topics I have covered in this book,
what we might call modern complex systems science is, like its forebears, still
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not a unified whole but rather a collection of disparate parts with some over-
lapping concepts. What currently unifies different efforts under this rubrik
are common questions, methods, and the desire to make rigorous mathemati-
cal and experimental contributions that go beyond the less rigorous analogies
characteristic of these earlier fields. There has been much debate about what,
if anything, modern complex systems science is contributing that was lacking
in previous efforts. To what extent is it succeeding?
There is a wide spectrum of opinions on this question. Recently, a

researcher named Carlos Gershenson sent out a list of questions on com-
plex systems to a set of his colleagues (including myself) and plans to publish
the responses in a book called Complexity: 5 Questions. The questions are

1. Why did you begin working with complex systems?
2. How would you define complexity?
3. What is your favorite aspect/concept of complexity?
4. In your opinion, what is the most problematic aspect/concept of

complexity?
5. How do you see the future of complexity?

I have so far seen fourteen of the responses. Although the views expressed
are quite diverse, some common opinions emerge.Most of the respondents dis-
miss the possibility of “universal laws” of complexity as being too ambitious
or too vague. Moreover, most respondents believe that defining complexity is
one of the most problematic aspects of the field and is likely to be the wrong
goal altogether. Many think the word complexity is not meaningful; some even
avoid using it. Most do not believe that there is yet a “science of complexity,”
at least not in the usual sense of the word science—complex systems often
seems to be a fragmented subject rather than a unified whole.
Finally a few of the respondentsworry that the field of complex systemswill

share the fate of cybernetics and related earlier efforts—that is, it will pinpoint
intriguing analogies among different systems without producing a coherent
and rigorous mathematical theory that explains and predicts their behavior.
However, in spite of these pessimistic views of the limitations of current

complex systems research, most of the respondents are actually highly enthu-
siastic about the field and the contributions it has and probably will make to
science. In the life sciences, brain science, and social sciences, the more care-
fully scientists look, the more complex the phenomena are. New technologies
have enabled these discoveries, and what is being discovered is in dire need
of new concepts and theories about how such complexity comes about and
operates. Such discoveries will require science to change so as to grapple with
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the questions being asked in complex systems research. Indeed, as we have
seen in examples in previous chapters, in recent years the themes and results of
complexity science have touched almost every scientific field, and some areas
of study, such as biology and social sciences, are being profoundly transformed
by these ideas. Going further, several of the survey participants voiced opin-
ions similar to that stated by one respondent: “I see some form of complexity
science taking over the whole of scientific thinking.”
Apart from important individual discoveries such as Brown, Enquist, and

West’s work on metabolic scaling or Axelrod’s work on the evolution of
cooperation (among many other examples), perhaps the most significant con-
tributions of complex systems research to date have been the questioning of
many long-held scientific assumptions and the development of novel ways of
conceptualizing complex problems.Chaos has shownus that intrinsic random-
ness is not necessary for a system’s behavior to look random; new discoveries
in genetics have challenged the role of gene change in evolution; increasing
appreciation of the role of chance and self-organization has challenged the cen-
trality of natural selection as an evolutionary force. The importance of thinking
in terms of nonlinearity, decentralized control, networks, hierarchies, dis-
tributed feedback, statistical representations of information, and essential
randomness is gradually being realized in both the scientific community and
the general population.
New conceptual frameworks often require the broadening of existing con-

cepts. Throughout this book we have seen how the concepts of information
and computation are being extended to encompass living systems and even
complex social systems; how the notions of adaptation and evolution have been
extended beyond the biological realm; and how the notions of life and intelli-
gence are being expanded, perhaps even to include self-replicating machines
and analogy-making computer programs.
This way of thinking is progressively moving into mainstream science.

I could see this clearly when I interacted with young graduate students
and postdocs at the SFI summer schools. In the early 1990s, the students
were extremely excited about the new ideas and novel scientific worldview
presented at the school. But by the early 2000s, largely as a result of the edu-
cational efforts of SFI and similar institutes, these ideas and worldview had
already permeated the culture ofmany disciplines, and the studentsweremuch
more blasé, and, in some cases, disappointed that complex systems science
seemed so “mainstream.” This should be counted as a success, I suppose.
Finally, complex systems research has emphasized above all interdisci-

plinary collaboration, which is seen as essential for progress on the most
important scientific problems of our day.
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The Future of Complexity, or Waiting for Carnot

Inmyview complex systems science is branching off in two separate directions.
Along one branch, ideas and tools from complexity research will be refined
and applied in an increasingly wide variety of specific areas. In this book
we’ve seen ways in which similar ideas and tools are being used in fields as
disparate as physics, biology, epidemiology, sociology, political science, and
computer science, among others. Some areas I didn’t cover inwhich these ideas
are gaining increasing prominence include neuroscience, economics, ecology,
climatology, and medicine—the seeds of complexity and interdisciplinary
science are being widely sowed.
The second branch, more controversial, is to view all these fields from a

higher level, so as to pursue explanatory and predictive mathematical theories
that make commonalities among complex systems more rigorous, and that
can describe and predict emergent phenomena.
At one complexitymeeting I attended, a heated discussion took place about

what direction the field should take. One of the participants, in a moment
of frustration, said, “ ‘Complexity’ was once an exciting thing and is now a
cliché. We should start over.”
What should we call it? It is probably clear by now that this is the crux of

the problem—we don’t have the right vocabulary to precisely describe what
we’re studying.We use words such as complexity, self-organization, and emergence
to represent phenomena common to the systems in which we’re interested but
we can’t yet characterize the commonalities in a more rigorous way. We need
a new vocabulary that not only captures the conceptual building blocks of
self-organization and emergence but that can also describe how these come to
encompass what we call functionality, purpose, ormeaning (cf. chapter 12). These
ill-defined terms need to be replaced by new, better-defined terms that reflect
increased understanding of the phenomena in question. As I have illustrated in
this book, much work in complex systems involves the integration of concepts
from dynamics, information, computation, and evolution. A new conceptual
vocabulary and a new kind of mathematics will have to be forged from this
integration. The mathematician Steven Strogatz puts it this way: “I think we
may be missing the conceptual equivalent of calculus, a way of seeing the
consequences of myriad interactions that define a complex system. It could
be that this ultracalculus, if it were handed to us, would be forever beyond
human comprehension. We just don’t know.”
Having the right conceptual vocabulary and the right mathematics is

essential for being able to understand, predict, and in some cases, direct or
control self-organizing systems with emergent properties. Developing such
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concepts andmathematical tools has been, and remains, the greatest challenge
facing the sciences of complex systems.
An in-joke in our field is that we’re “waiting for Carnot.” Sadi Carnot was

a physicist of the early nineteenth century who originated some of the key
concepts of thermodynamics. Similarly, we are waiting for the right concepts
and mathematics to be formulated to describe the many forms of complexity
we see in nature.
Accomplishing all of this will require something more like a modern Isaac

Newton than a modern Carnot. Before the invention of calculus, Newton
faced a conceptual problem similar to what we face today. In his biography
of Newton, the science writer James Gleick describes it thus: “He was ham-
pered by the chaos of language—words still vaguely defined and words not
quite existing. . . . Newton believed he could marshal a complete science of
motion, if only he could find the appropriate lexicon.. . .” By inventing cal-
culus, Newton finally created this lexicon. Calculus provides a mathematical
language to rigorously describe change and motion, in terms of such notions
as infinitesimal, derivative, integral, and limit. These concepts already existed in
mathematics but in a fragmented way; Newton was able to see how they are
related and to construct a coherent edifice that unified them and made them
completely general. This edifice is what allowed Newton to create the science
of dynamics.
Can we similarly invent the calculus of complexity—a mathematical lan-

guage that captures the origins and dynamics of self-organization, emergent
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behavior, and adaptation in complex systems? There are some people who have
embarked on this monumental task. For example, as I described in chapter 10,
Stephen Wolfram is using the building blocks of dynamics and computation
in cellular automata to create what he thinks is a new, fundamental theory
of nature. As I noted above, Ilya Prigogine and his followers have attempted
to identify the building blocks and build a theory of complexity in terms
of a small list of physical concepts. The physicist Per Bak introduced the
notion of self-organized criticality, based on concepts from dynamical systems
theory and phase transitions, which he presented as a general theory of self-
organization and emergence. The physicist Jim Crutchfield has proposed a
theory of computational mechanics, which integrates ideas from dynamical sys-
tems, computation theory, and the theory of statistical inference to explain
the emergence and structure of complex and adaptive behavior.
While each of these approaches, along with several others I don’t describe

here, is still far from being a comprehensive explanatory theory for complex
systems, each contains important new ideas and are still areas of active research.
Of course it’s still unclear if there even exists such a theory; it may be that
complexity arises and operates by very different processes in different systems.
In this book I’ve presented some of the likely pieces of a complex systems
theory, if one exists, in the domains of information, computation, dynamics,
and evolution. What’s needed is the ability to see their deep relationships
and how they fit into a coherent whole—what might be referred to as “the
simplicity on the other side of complexity.”
While much of the science I’ve described in this book is still in its early

stages, to me, the prospect of fulfilling such ambitious goals is part of what
makes complex systems a truly exciting area to work in. One thing is clear:
pursuing these goals will require, as great science always does, an adventurous
intellectual spirit and a willingness to risk failure and reproach by going
beyond mainstream science into ill-defined and uncharted territory. In the
words of the writer and adventurer André Gide, “One doesn’t discover new
lands without consenting to lose sight of the shore.” Readers, I look forward
to the day when we can together tour those new territories of complexity.
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