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FOREWORD

Policy is the means and end of the Institute for Applied Economic Research. Policy 
evaluation, policy design and monitoring along with advising the State using the 
best scientific knowledge are at the core of the Institute. Thus, tools that enable 
policy-makers and academia alike to foster a deeper understanding of policy 
mechanisms and their intertwined, asynchronous, and spatially-bound effects are 
at the forefront of our interests.

Complexity is a relatively new approach to science, which has integrated 
knowledge from different fields, trying to understand collective behavior in living 
systems and complex phenomena such as emergence. It has brought important 
insights for science, but little has been done trying to explore the policy aspects 
of this new approach both in Brazil and worldwide. 

This book tries to help building this bridge between complexity and public 
policies, by bringing together an international group of prominent researchers, 
stemming from the very Santa Fe Institute, University of Maryland, University of 
Tokyo, University of Sidney, ETH Zurich, Bielefeld University, Utrecht University, 
New England Complex Systems Institute, Polytechnic Institute of Lisbon, MI-
TRE Corporation, University of Brasilia, University of São Paulo and EMBRAPA 
and Ipea researchers. By introducing the major concepts, methods and state-of-
the-art research in the area, the book is intended to be a seminal contribution to 
the application of the complexity approach to public policies, and a gateway for 
the world of complexity.

As an Institute whose middle name is policy, I think it is high time for us to 
look more and more at the policy aspects of this new approach and to explore the 
insights and applications they can bring into policy making and analysis. You are 
invited to join us in this journey.

Jessé Souza 
President of the Institute for Applied Economic Research





PREFACE

Scott E. Page1

In Norman Juster’s classic The Phantom Toolbooth, the protagonist Milo and his 
companion, a large dog named Tock, cannot figure out how to get their wagon to 
move forward. A Duke arrives and tells them that if the wagon to go, they must sit 
quietly, that it (the wagon) goes without saying. The same might be thought about 
the relevance of complexity theory to public policy – that it too goes without saying.

Given the complexity of the political and bureaucratic processes that generate 
policies and the complexity of the systems within which most policies are applied, 
it would seem that complexity’s relevance should go without saying. Yet, that’s not 
the case. The patchwork of models, concepts, and ideas that comprise the field 
of complexity studies rarely enter into policy discussions and when they do, they 
primarily engage at the fringes.2 

Therefore, unlike Tock and Milo, complexity scholars cannot sit quietly. 
If complexity scholars want their ideas to advance and improve public policy, 
they must speak clearly and loudly. In this volume, many leading scholars 
choose to do just that. Their impact should be substantial.

What follows includes contributions from many of the leading scholars in 
the field of complex social systems. It should then come as no surprise that the 
volume achieves multiple, ambitious goals: it introduces the concepts and tools of 
complex systems, it demonstrates complexity theory’s relevance to public policy, 
it contrasts the complexity approach to public policy to traditional methods, and, 
finally, it presents case studies and examples that demonstrate proof of concept by 
focusing on specific policy domains in Brazil and elsewhere.

So what are complex systems? Complex systems consist of diverse, adaptive 
actors who interact with their neighbors and over networks. These interactions 
produce both additive outcomes – aggregate oil consumption or the average 
price of #2 red wheat – as well as emergent phenomena such as traveling waves in 
traffic patterns, stock market crashes, and even Spanish culture. These aggregate 

1. University of Michigan, Santa Fe Institute.
2. Climate change models, which might be seen as a counterexample, can be seen as a type of complex system 
model, but they tend to be mash ups of standard economic models with geophysical models, lacking many of the core 
components of complex systems models.
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phenomena become part of the world and induce adaptations at the micro level. 
These in turn create new macro level phenomena. 

The resulting dynamics can take many forms. They can converge to equilibria. 
They can produce cycles or simple patterns, such as the near linear trend in the 
global output of oil over the past hundred years. They can produce complex time 
series, as is the case with oil prices. Finally, they can produce data that appears 
random, a property nearly satisfied by detrended stock prices. In brief, complex 
systems can produce anything. And because they can, they can help us understand 
almost anything.

The pitch then, the two-minute elevator speech for why we need to bring 
complexity research to policy domains, partly relies on this resonance: if we want 
to understand a policy domain produces complex outcomes such as constantly 
changing stock and housing prices, traffic patterns, or divergent paths of school 
success, then we should use models capable of producing similar types of complexity. 

Cast in a comparative frame, this logic challenges the predominant equilibrium 
paradigm: why would someone base policy in a complex domain on a model that 
assumes equilibrium? The argument extends what William Rand in this volume 
relates as the “standing under the streetlight” criticism of neoclassical economic 
models: they shine light, but not where we should be looking. Complex systems’ 
models represent flashlights to guide us to new locations in modeling space. 

The pitch also relies on the interconnectedness of policy actions. Education 
policy, environmental policy, zoning policy, infrastructure decisions, and energy 
policies all bump into one another. Put metaphorically, policies do not operate in 
silos. Put mathematically, nonzero cross partials abound. Efforts to reduce wealth 
inequality by extending home loans induce residential sorting which influences 
school quality, traffic density, crime rates, and so on. As described by Furtado 
et al. in this volume, complex systems’ approaches, “enable public policies to be 
considered comprehensively and simulated explicitly in all their multiplicity of 
sectors and scales, of cause and effect.” An observation echoed in and elaborated 
on in the excellent chapter by Claudio Tessone.

Advocacy notwithstanding, the volume takes a measured stance. No one 
denies that standard approaches to evaluating policies – equilibrium models and, 
when possible, natural experiments – are useful and often powerful tools. Complex 
systems do not represent a silver bullet, but another arrow in the policy maker’s 
quiver. More accurately, all of these tools put together can be thought of as multiple 
imperfect arrows that provide insight into what is likely to happen, what could 
happen, and how what happens might spill into other domains.
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Consider, for example, a gold standard natural experiment that reveals a 
policy to be a success. Complex systems models might suggest that the policy could 
create multiple types of outcomes. The success of the policy might well have been 
good luck – like picking up a die and rolling a six. Rather than roll out the policy 
nationwide, a prudent policy maker might run a few more experiments to see if 
in fact, the outcome was a lucky roll.

Alternatively, complex systems models might show that the policy, 
though successful, produces long-term negative feedbacks. An analysis of 
these feedbacks, as William Rand demonstrates in his chapter, provides us 
with a deeper understanding of the full effects of a policy. 

Notice that these feedbacks produce a type of nonlinear effect which along 
with heterogeneity can make a model may intractable using game theoretic or 
mathematical optimization techniques. For decades, these tractability constraints 
limited the dimensionality and realism of models. Policy makers had to rely on 
models they could solve. Those models were not complex. 

Owing to increases in computing power and the introduction of a new meth-
odology, agent based models (ABM), tractability has become less of a constraint. 
Any model that can be coded can be explored. Yet, we should be skeptical, dubious 
(dare I say dismissive) when someone claims “I have a simulation that shows (fill in 
the blank).” A vast continent of poorly constructed, spaghetti coded, invalidated, 
unverifiable, non-calibrated models surrounds a much smaller region of useful 
models. As Gentile, Glazner and Koehler’s chapter makes clear, ABMs have enor-
mous potential as a tool for policy comparisons, but ABMs must be constructed 
by people well versed in the methodology.

The resulting models can include agents who use sophisticated learning 
algorithms (see Jaime Sichman’s chapter) or they can rely on relatively simple 
rules. No one ABM model will tell us with one hundred percent certainty 
the full effects of policy, but many models with multiple levels of granularity 
and domains of interaction will give us a better understanding of the set of 
the possible and ensure more robust policies. And, isn’t avoiding surprise an 
important aim of policy makers? 

Economic policy is one domain where surprise events can have dramatic 
consequences. More than two decades ago, several leading economists advanced the 
notion that the economy would be more accurately thought of as a complex adap-
tive than as an equilibrium system. Though equilibrium models still predominate, 
those models include networks, learning, and heterogeneous agents who do not 
always make optimal decisions. Furthermore, state of the art equilibrium monetary 
models (dynamic stochastic general equilibrium models – DSGE) spend almost 
all of their time out of equilibrium. 
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At their core though, the DSGE models rely on equilibria to characterize the 
dynamics. The economy is always headed toward an equilibrium. In other words, 
the modeler and the actors in the model know where they economy is headed. 
In contrast, ABM models of the economy make assumptions and then, echoing 
ideas from Orlando Gomes’ and Rand’s chapters, the economy emerges from the 
bottom up.

Two chapters in this volume clarify this complexity approach to modeling the 
economy. Gomes both makes the intellectual case for a complexity approach and 
presents a (relatively) simple complex systems model. In contrast, Herbert Dawid 
shows how one can embrace complexity in full. He provides an introduction to 
the elaborate Eurace@Unibi model of the economy. This intendedly realistic model 
includes spatially situated consumers with budgets and firms with suppliers and 
inventories has produced meaningful policy insights, among them: policy can be 
relevant away from equilibrium, individual responses may differ from aggregate 
effects,3 outcomes can be path dependent, and institutional details can matter. 
These are not empty claims. Evidence suggests that in some domains ABMs can 
make better predictions than standard models.

But ABMs can also make worse predictions. And while it’s tempting to stage 
a horse race between complexity models and equilibrium models of the economy, 
doing so misses the earlier point about multiple arrows in the policy maker’s quiver. 
Economic models consider the economy. Complexity models have the potential 
to see the economy within a broader system in which people engage in social 
movements, confront political regime changes, respond to threats of epidemics, 
natural disasters, and climactic change. All of this can be seen as operating within 
one system. We can try to peel off the economy and study it in isolation, just as we 
could study only the circulatory system, the nervous system, the immune system, 
or the digestive system, but if we do, we miss the real show.

The real show occurs at multiple scales: from family, to city, to nation, to 
world. Cities offer one useful scale as, Luis Bettencourt shows in his chapter sum-
marizing years of scholarship. Cities, as many have noted, are the engines of the 
economy. As Paul Krugman once quipped, almost anyone can identify cities from 
an airplane on a clear night, but almost no one could draw country boundaries. 
Cities, therefore, might be a important level of activity to analyze. Bettencourt 
shows this to be true, highlighting provocative findings of scaling laws – produc-
tivity scales superlinearly and infrastructure scales sublinearly – and juxtaposing 
implications from the complexity paradigm with historical views of the city that 

3. This would be the case when an outcome is emergent as opposed to additive.  When feedbacks and nonlinearities are 
present, agent heterogeneity can produce aggregate results that differ from what would be produced by an economy 
composed of identical agents. 
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take an engineering approach. He embraces the roles of information and learning 
in thinking through policy effects and identifies criteria when local adaptation 
should outperform top down implementation. 

Yaneer Bar-Yam takes on a multiple scales – from single markets to the world 
writ large. Deregulation of a commodity (a national scale economic policy) results 
in global scale price changes. These in turn can depress firm scale revenues, which 
could under certain conditions, result in regional scale uprisings. Quoting Bar-Yam: 
“One nation’s energy subsidies can cause global food prices to spike, setting off 
political unrest halfway around the world.” The general phenomena to which he 
speaks is captured in the famous lyrics of Disney’s Richard and Robert Sherman, 
it is in fact “a small world after all.” 

Within that small world, policy makers must make choices. Inevitably, there 
will be successes and failures. The raison d’être of the volume is to increase the former 
and decrease the latter. Perhaps the single most powerful statement in the book 
appears in the chapter by Bernardo Mueller describing two case studies. Writing 
of the Brazilian policy apparatus, he writes: “I have not found any example of an 
explicit use of complex thinking in any policy in this country.” 

In Brazil, the complexity wagon does not go without saying despite the fact 
that legislative institutions within Brazil appear to be quite complex, as proven by 
Acir Almeida, who shows the relative contributions of a complexity perspective on 
legislative activity. Using models from political science and complex systems, he 
shows how ideas from complexity theory add to our understanding of emergent 
patterns of law-making in the Brazilian Congress.

That law making occurs within a Brazilian system in which, according to 
Mueller, the Executive wields enormous power. Of course, a structure of checks 
and balances, reigns in that power, but what’s most relevant is how the policies are 
formulated. Mueller finds fault with what he calls a reductionist, i.e. non-complex, 
approach. The policy domains in question: land use, public health, the environ-
ment, and transportation, these are all complex domains. Policies are developed 
and evaluated as if they were not. In his opinion, that’s a mistake.

The subsequent chapter by Dick Ettema unpacks this line of criticism in even 
greater detail. He describes the engineering approach to transportation policy with 
its focus on meeting individual level criteria of success or utility such as avoidance 
of congestion and pollution. These models level out the effects on housing markets, 
equity, and social exclusion.

Most people accept that transportation systems and stock markets are complex. 
People experience congestion and traffic jams. They watch stock prices rise for 
weeks with only small changes and then drop five to ten percent in a few hours.  
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Other systems, such as educational systems, are less obviously complex. 
Time unfolds more slowly. Phenomenological changes are more abstract and less 
easily measured. Yet, as Michael Jacobson demonstrates, schools can be usefully 
seen as complex systems. 

Policies can try to improve them by pulling levers – reducing class size or 
increasing teacher quality. Policies can also try to improve mechanisms. Both types 
of policies have a linear orientation and are presented as such leading to claims 
that an decrease of X percent in pupil teacher ratios will lead to an increase of Y 
percent in student test scores. This is yet another example of a misplaced focus on 
a single partial derivative within a complex system, a point reinforced by Sakowski 
and Tóvolli in their analysis of Brazilian education policy. 

Policies have interactions in other domains. In constructing an effective policy, 
one cannot proceed dimension by dimension. Step 1: minimize average commute 
time. Step 2: maximize student test scores. Step 3: reduce inflation. Step 4: produce 
sustainable forest management plan. Policies occur within systems and those systems 
interact. In particular, the social and the physical interact, as made abundantly clear 
in Marcos Aurélio Santos da Silva’s chapter on socioterritorial systems. 

In sum, whether we focus our lens on the forests or students of Brazil or the 
world writ large, we cannot help but see the inherent complexity. We see diverse, 
purposeful connecting people constructing lives, interacting within institutions, 
and responding to rules constraints, and incentives created by policies. These activi-
ties occur within complex systems and when the activities aggregate they produce 
feedbacks and create emergent patterns and functionalities. By definition, complex 
systems are difficult to describe, explain, and predict, so we cannot expect ideal 
policies. But we can hope to improve, to do better. Having more tools, especially 
the evolving and maturing tools of complexity science, can only make us better. 
Complex scholars can move the needle. But they can no longer sit quietly. 



PART I 
Complexity: theory, methods  
and modeling





CHAPTER 1

A COMPLEXITY APPROACH FOR PUBLIC POLICIES
Bernardo Alves Furtado1

Patrícia Alessandra Morita Sakowski2

Marina Haddad Tóvolli3

1 INTRODUCTION

Complex Systems can be defined in a broad manner and embrace concepts from 
different fields of science, from physics to biology, to computing and social sci-
ences. Mainly, the definition includes nonlinear dynamical systems that contain 
large number of interactions among the parts. These systems learn, evolve, and 
adapt, generating emergent non-deterministic behavior.4 Public policies are to be 
applied upon a vast range of issues that involve the public, the broad community 
of citizens and communities, firms and institutions. Public policies are also to be 
employed on a number of sectorial issues which are intertwined, asynchronous, and 
spatially superposed. This coupled understanding of complex systems and public 
policies suggests that most objects of public policies – be them of economic or 
urban nature, be them of environmental or political consequences – can be viewed 
as complex systems. Thus, if public policies’ objects can be seen as complex systems, 
their understanding may benefit from the use of associated methodologies, such 
as network analysis, agent-based modeling, numerical simulation, game theory, 
pattern formation and many others within the realm of complex systems. These 
methodologies have been applied to different aspects of science, but less frequently 
to public policy analysis.5 We hypothesize that the use of these concepts and 
methodologies together improves the way policies of complex objects are viewed, 
adjusted, and operated upon from a public point of view.

Given these broad definitions of complex systems and public policies, this 
chapter further describes the concepts, methodologies and computing implementa-
tion of complex systems. Then, it demonstrates the adherence of those concepts and 

1. Researcher at Diset/Ipea, Productivity researcher at CNPq.
2. Reseacher and Chief of the Planning and Institutional Articulation Advisory Board (Aspla/Ipea).
3. Research Assistant at Dirur/Ipea.
4. A didactically complete discussion of Complexity is available at Mitchell (2011). The initial concepts that compose 
the complexity sciences can be found in Furtado and Sakowski (2014). 
5. Initially, one could look at Colander and Kupers (2014) who provide a review focused on economics. Edmonds and 
Meyer (2013) give a detailed background. An earlier report can be found at OECD (2009).
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methodologies to social policies, economic, urban and environment analysis; and 
highlights some applications on transport planning, in education, on the study of 
the legislative and on territorial analysis. After having described the concepts and 
methods and why public policies’ objects can be easily viewed as complex systems, 
the chapter lists the advantages of using complex systems’ approach specifically to 
public policies. Thus, this chapter introduces and summarizes the contents of the 
book (and project) of the same name. 

In short, it is the objective of this chapter to define complex systems and 
its more prominent attributes; list the more common methodologies associated 
with complex systems; present a varied scope of applications of complex systems 
modeling to public policies and discuss yet briefly the advantages of applying these 
approaches to a public policy context. 

2 DEFINITIONS OF COMPLEX SYSTEMS AND PUBLIC POLICIES

Complex systems definition is usually attached to a specific context; however, it 
usually incorporates the following set of features. 

Firstly, the idea of interaction among parts from and across scales, space and 
time is relevant. These interactions, in turn, lead to a system that is not reducible; 
a system that cannot be described by the attributes of the parts alone. Basically, to 
quote Anderson’s classic "More is different" paper (1972, p. 395, our emphasis):  
“In this case we can see how the whole becomes not only more than but very different 
from the sum of its parts.” 

Secondly, the interaction among parts can lead to self-organization of the 
system without the need of central control. This implies that local interactions can 
generate bottom-up emergent behavior. This powerful concept can be illustrated 
for the novice reader with the example of a bird flocking. No actual bird controls 
the direction and position of all birds in a given flock flight. Each one bird only 
observes those near it and synchronizes with their immediate neighbors. As a result, 
coordinated flight emerges.

A third attribute to highlight is that complex systems can experiment feedback. 
In complex systems, interactions have effects in time: actions in a given moment 
reflect on possibilities and constraints in the following moments. That is why 
complex systems are said to be adaptive and evolutionary. 

All these briefly mentioned characteristics of complex systems seem to be use-
ful to the study of public policies. As stated below most objects of public policies 
contain similar features and can be easily labeled complex systems. The relevance 
of viewing objects of public policies as complex systems is that the associated 
methods and methodologies available for the study of such systems could be ap-
plied to public policies, helping improve their analysis.
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Essentially that means that modeling and simulation can be used to inves-
tigate public policies. This is especially relevant in areas of public policies where 
experiments are usually not simple, cheap or even viable. 

To simulate means to model the action and the interaction among citizens, firms, 
institutions, and the environment constrained by legislation and regulation, the 
budget, politics and spatial boundaries (…) working with complex systems applied 
to public policy means to create computational experimental environments in which 
the essence of the systems is present and from which one can withdraw elements 
of improvement of public policies in a relatively simple and cheap way, besides 
increasing the understanding of the effects (spatially and temporally) of the policies 
(Furtado and Sakowski, 2014).

Thus, complex systems methods have the potential to inform public policies 
and help tackle their effects, effectiveness, direct and indirect costs. 

Throughout the book, similar definitions of both complex systems and public 
policies are presented. However, each one emphasizes different perspectives which 
add up to a more complete definition as the book progresses. Fuentes recovers the 
definition of Murray Gell-Mann and Seth Lloyd of “effective complexity” as “the 
length of a highly compressed description of its regularities” (p. 68). Sichman in 
chapter 5 – focuses on interactions as “information processing.” Tessone delves into 
the concept of heterogeneity distinguishing idiosyncratic heterogeneity, such as 
cultural heritage; from endogenous heterogeneity that surfaces as a complex system 
unfolds. Dawid and Orlando Gomes discuss economics and remind the reader 
of the relevance of non-equilibrium states. Bettencourt states that the problem of 
interacting citizens inhabiting urban spaces comes down to “how to create a set 
of processes in space that makes such interactions possible at a cost that is com-
mensurate with their benefits” (Bettencourt, in this volume, p. 227). Mueller picks 
up from Sichman’s information processing idea advocating that 

policy is information-intensive when information is scarce; it tries to centralize a 
policy that is inherently local; it assumes the ability to control the process when in 
reality it can only act reactively; it requires measurement and evaluation along a series 
of diverse and subtle margins, while in reality a single and imprecise metric is used 
(the number of settled families); it deals myopically with a policy area that unfolds 
over the long-term (Mueller, in this volume, p. 268). 

Consistently, the chapters refer to the dynamics of influence between objects 
and subjects in time; the dynamics of crossed-effect causalities in which “effects and 
outcomes are, at the same time, causes and inputs of what had produced them” 
(Morin 2011, p. 74, apud Sakowski and Tóvolli, p. 321). Thus, methodologies 
have to be able to explicitly “account [for] endogenous change” (Almeida,  in 
this volume, p. 345) or “explicitly capture the underlying causal hypotheses of 
policy proposals in a way that allows us to experiment” (Gentile et al.,  in this 
volume, p. 78). 
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This discussion of dynamics also leads to a debate over the timing of the 
analysis and the timing of policy. Bettencourt argues that there are problems that 
can be managed in “its simpler, shorter-term technical management”, but also phe-
nomena that yearn for “longer-term complex challenges” (Ettema,  in this volume, 
p. 222). For Ettema, transportation may fall into both categories: a performance 
metric-based engineer-like problem, such as the frequency of a single bus line; but 
transportation would also fall well into a city-mobility long-term intricate issue. 
Still on the dynamics of processes, Jacobson says that cognitive learning takes place 
in a varied number of places, moments and experiences through minutes, hours, 
semesters and years.

Finally, Mueller also mentions that typical evaluation of public policy is im-
plicitly based on a definition of a system that can be easily tracked and measured 
upon metrics that are known a priori. This assumption leaves no room for systems 
that adapt, evolve and learn which are exactly what objects of public policies, such 
as the economy, the environment, the society and the cities (chapters 6-9) are.

3 METHODS

The methods and methodologies6 used in complex systems approach come from 
already existing disciplines and are not new themselves. However, they reflect the 
principles and concepts discussed above. 

Thus, a first thing to point out is explicitly considering the nonlinearity of 
systems. Put simply, nonlinear systems are those in which the outputs are not pro-
portional to the inputs. Nonlinearity is attached to the idea that interaction among 
elements may generate emergent behavior. Also, the system’s outcome cannot be 
entirely deductible ex ante. Approaches that include nonlinearity have been used 
in applications of physics (laser, superconductors, fluid dynamics, and engineer-
ing), biology (biological rhythms, insect outbreaks, genetic studies), chemistry and 
cryptography (Strogatz, 2014). 

Network analysis studies interactions (edges) among parts (nodes). How 
strong, how lengthy and how relevant are the links among people or institutions? 
How connected is a given network so that a change in a specific node would af-
fect the connections significantly? Those are some of the questions that network 
analysis may help answering.7

Strictly connected to the analysis of networks is information theory or, ac-
cording to Shannon (1948), theory of communication. Information theory was 
proposed before network science and it is related to the definition of what infor-

6. A detailed description of methods and methodologies is found in chapter 3.
7. See Newman (2003), Newman et al. (2006) and William and Martinez (2000).
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mation is; to the quantification and definition of the elements involved in any 
information exchange, and its storage and compression. It is from this theory (and 
probability theory8) that quantities such as entropy and mutual information come 
into play. These quantitative measures are applied to different areas of science from 
telecommunications to biology to probability theory to statistical physics, computer 
science and medicine. A central aspect of information theory and its associated 
measures is the quantification of uncertainty. Given past information, how uncer-
tain is the next bit? This is related to the notion of a measure of complexity and 
also to the definition of entropy (Crutchfield and Feldman, 2001; Gell-Mann and  
Lloyd, 2004; Szilard, 1964; Turing, 1952).

Two other very commonly used methodologies within complex systems are 
cellular automata (CA) and agent-based models (ABM).9 They are similar in the 
sense that both use agents – of free and ample design – that follow rules. The usage 
of ABMs and CA is a way to simulate the interactions in the system and the ensuing 
emergent properties. The difference between CAs and ABMs is that the former is 
fixed in space and the latter may be mobile. CAs are more relevant to study spatial 
analysis where local interactions, physically bounded, are relevant to the problem 
at hand. ABMs, in turn, can be modeled to be fixed or mobile and they can be in 
such a framework that space is completely irrelevant. They can even be thought 
so that the agents are connected through links, thus resembling network analysis. 

Finally, it is worth mentioning efforts arising from computing science and 
contemporary availability of detailed, micro, spatially-precise data. This abun-
dance of data is fertile land for the use of methodologies such as data mining, 
machine learning and artificial intelligence, which are collections of techniques 
that can be put together to help simulate complex systems and which are likely 
to improve insightfulness.

3.1 Methodologies’ tools

Most methodologies are implemented using computational methods. Actually, it 
is the availability of computing power along with databases that are temporally-
spatially-individually detailed that helped fuel complex systems in recent years.10 
There is a number of customized software developed to run specific proprietary 
and open-source models.11 

8. Such as in clustering and decision tree procedures.
9. A thoroughly review of the application of ABMs in social sciences is found in chapter 5. 
10. Journals dedicated to complex systems include: Journal on Policy and Complex Systems, Complex Systems, The 
Journal of Artificial Societies and Social Simulation, Complex Adaptive Systems Modeling, Ecological Modelling, Advances 
in Complex Systems, Computers, environment and urban systems, Complexity, Computational Economics. A list of 41 
complexity centers can be found at http://en.wikipedia.org/wiki/Complex_systems.
11. Examples include, not exhaustively: MASON, Swarm, RePast, NetLogo, Flame, MASS, and at least 78 others <http://
en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software>.
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Models can also be simulated in typical program language such as C++, Java, 
or statistical and modeling programs (Matlab or Mathematica). As a high-level, 
flexible language, Python has been used quite a lot for simulation and modeling 
(Downey, 2012; McKinney, 2012; North, Collier and Vos, 2006) – for example 
using the SimPy12 library – or associated to spatial software, such as QGIS. Spe-
cifically for network analysis, Python’s library NetworkX13 is very useful for both 
creating and analyzing networks. 

A software program that has been around for some time now is NetLogo.14 
Based on Java, it contains a user-friendly set of commands that quickly takes the 
beginner programmer to an operational modeler. It allows for cellular automata 
spatially-bounded modeling as well as for full agent-based models. More recently 
it has incorporated network-like link capabilities and it is easily coupled with other 
languages and analysis programs such as Python, R or QGIS.

4 PUBLIC POLICIES AS COMPLEX OBJECTS 

This section discusses the complex nature of objects of public policies, such as 
social, economic, urban and environmental systems. The hypothesis is that all 
these objects can be easily defined as complex systems. Chapters 6 to 9 of the 
book deepen the arguments. 

4.1 Social

Social systems can be described as a collection of heterogeneous agents (individu-
als, banks, countries etc.), whose state (opinion, liquidity, wealth, etc.) influences 
and is influenced by the state of others, and whose interactions give rise to global 
properties of the system that are more than the sum of individual behavior. These 
features characterize social systems as complex. Understanding how these systems 
respond to external influences is of particular interest for the analysis of public 
policy. For example, how does a social system respond to an external signal such 
as a change in policy? Simulating the effects of policy change is particularly useful 
to steering policy measures.

4.2 Economy 

An economic system is composed of heterogeneous actors, with different charac-
teristics, expectations and behavioral rules that interact with each other and with 
the environment. Besides, the actors are in constant adaptive learning, generating 
evolutionary systems. The traditional or classic view, based on the assumptions of 

12. Full documentation is available at: <https://simpy.readthedocs.org/en/latest/>.
13. Full documentation is available at: <https://networkx.github.io/>.
14. Full documentation is available at: <https://ccl.northwestern.edu/netlogo/>.
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market clearing, perfect foresight, and equilibrium behavior, does not focus on 
the aforementioned elements, producing a more abstract analysis, which makes it 
difficult to comprehend the system as a whole. 

In this context, alternative models that incorporate such elements are recom-
mended in order to increase the availability of alternate understanding of economic 
processes. The heterogeneity of agents and the features of institutional setups that 
drive economic interactions should not be ignored. Many methodologies, already 
presented in section 2, have been used in order to capture such elements. One of the 
most used methodologies in economic modeling has been the agent-based simulation 
approach. This method is the basis of the Eurace@unibi model,15 a closed agent-
based macroeconomic model that has been used as a unified framework for policy 
analysis in different economic policy areas, such as fiscal policy, labor market, and 
issues related to income inequality. Besides, not only Agent-based Computational 
Economics models (Farmer and Foley, 2009; Le Baron and Tesfatsion, 2008), but also 
network analysis (Jackson, 2010; Newman, 2010), and analytical approaches for the 
analysis of agent models (Alfarano, Lux and Wagner, 2008; Dawid, 1996; Delli Gatti 
et al., 2012), are useful for a clearer picture of the dynamics of economic systems.  

4.3 Cities

Cities in particular or urban spaces in general are par excellence places where people 
and institutions entangle themselves, usually, in productive and innovative ways 
(Glaeser, 2012; Jacobs, 1970). However, to reach the most out of their potential, 
people and institutions need to cover some basic functions within their shared 
space: dwell, commute, work and play.16 On top of it all, cities are politically 
managed, which reinforces the fact that even those four basic actions cannot be 
accomplished individually. All activities share a common space. Moreover, cities 
are thought out to thrive, to harvest the best (and sometimes the worst) of societ-
ies. Thus, using sectorial policies, such as housing policies, sanitation policies or 
transport policies with no theoretical and methodological background to firmly 
go through the interactions – as mentioned above – makes applying policies to 
cities very hard work. 

Even the approach to cities as an object of science may differ significantly. 
Are cities to be viewed as machines to be “fixed”, as markets to be regulated (or 
freed), as organisms in a jungle ecosystem, or as a social exercise in which political 
or religious values prevail above all? 

Mainly, the message of relevance is that attempts to change the city – and 
occasionally even inaction and omission on policies on the city – have to be made 

15. See chapter 9 and Dawid et al. (2012, 2014) for details of the Eurace@unibi model.
16. Those are the four principles of the functional city proposed by architect Le Corbusier in Charte d’Athènes in 1943. 
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with clear view of its consequences across all aspects and layers of the city. In short, 
city planning calls for integrated, connected, nonlinear, dynamic approaches. 
As those attributes are typical of complex systems, it may be of interest to apply 
them to the study and policy applications of cities.

4.4 Environment

Sustainable development is one of the major challenges for society today. How to 
manage natural resources in a world that is more and more complex, and where 
everything is interconnected? How to deal with sustainability problems, such as 
climate change or biodiversity conservation that are too complex to be tackled by 
a single discipline?

Complex systems views and methodologies can provide tools to help analyze 
these social-ecological systems and to inform environmental and sustainability 
policy making. Actually, many of the insights and concepts from complexity theory 
come from the field of biology.

Emergent behavior and information processing is often exemplified by the 
way ants forage for food, or how neurons interconnect to produce global cognitive 
behavior. The immune system is another example of self-organization, through 
which the interaction of simple cells leads to complex behavior without the presence 
of a central controller. Food webs and trophic dynamics are used to understand 
biodiversity and to analyze the implications of different types of disruptions to 
the ecosystem. 

Modeling can be a valuable approach to understanding the dynamics of en-
vironmental systems. Through modeling, one aims to identify the key factors and 
rules governing a system, allowing the simulation of different scenarios and the 
performance of sensitivity analysis. This approach has been used to study climate 
change, the spread of diseases and the change in land use over time.

Modeling can also help identifying dangerous tipping points17 in the social 
ecosystem. This can be useful, for instance, for the management of water resources, 
which might have a turning point, after which water pollution becomes costly 
and difficult to reverse.

Similarly, conservation policy can benefit from the analysis of food webs and 
the resilience of ecosystems to external shocks, such as an increase in deforestation 
or in carbon emissions.

17. Mitchell (2011, p. 253) defines tipping point as “points at which some process (...) starts increasing dramatically 
in a positive-feedback cycle.” See also Gladwell (2006).
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These and other methodologies from complex systems can help figure out how 
to manage natural resources, how to build sustainable cities, and how to promote 
more effective environmental and sustainable policies.

5 OTHER SYSTEMS AND APPLICATIONS

5.1 Education 

A considerable amount of research has been done exploring the complex nature 
of educational systems, learning and teaching. A report from Organisation for 
Economic Co-operation and Development – OECD (Snyder, 2013) investigates 
how to operationalize a complexity approach to educational reforms, and provides 
examples of educational reforms that have used complexity principles in different 
countries. Other studies (Lemke et al. 1999; Morrison 2003, Batista and Salvi 
2006; Santos 2008) focus on the complex nature of learning, with a focus on 
curriculum development, calling attention to transdisciplinarity. One academic 
journal18 is dedicated exclusively to the study of education and complexity (Davis, 
Phelps and Wells, 2004).

5.2 Transport

Transport is a typical example of a system composed by a large number of in-
teracting, independent agents, who follow some rules, and who react to their 
local environment; a system from which emergent, collective behavior can be 
observed. If a number of commuters have to travel a specific route across the city 
and they have some window interval to do that, they might probabilistically just 
decide to go at the same time. That (unlikely) decision is definitely suboptimal 
as it decreases the total capacity of flow of the system. Also, if a central traffic 
controller established a specific, precise time of departure for all travelers, one 
small disturbance might once again settle total congestion. On average, neither 
will occur. Anyway, the example shows that transport systems are complex, within 
the concepts described above. 

Planners and transport engineers have used simulation models in order to 
derive scenarios or possibilities that are not able to pinpoint exact flows of traffic, 
but that can predict the size of the demand on the system, specifying at times, 
how the system has to be dimensioned.

A more recent usage of modeling in transport attempts to simulate both the 
dynamics of the city – considered as density and land-use type – coupled with the 
dynamics of commuters. UrbanSim (Waddell et al., 2007) is a pioneer example. 
More sophisticated modeling also tries to compute location and change of the job 

18. Complicity: an international journal of complexity and education.
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market and the behavior of housing markets. Together, the models try to anticipate 
the "movement" the city is taking – along with its possibilities or “vocation” – and 
attach the planning of the transport system accordingly.

All in all, as most other modeling experience, modeling in transport may help 
policy-makers envision scenarios in which key adjusting parameters are visible and 
their consequences measured.

5.3 The legislative process

The process of law-making entails heterogeneous individuals (legislators), usually 
under no centralized control, who strategically interact with each other in order 
to produce collective decisions.19 When this interaction occurs under a majority 
rule institution, collective choice problems may arise. In this sense, complexity 
theory might help explain why outcomes vary within the context in which they 
are embodied, and how legislative institutions emerge and change. 

6 COMPLEX SYSTEMS AND PUBLIC POLICIES

This section summarizes the main insights regarding the use of complexity concepts, 
methods and methodologies to public policy. 

First, complexity concepts can prevent an oversimplified view of the objects 
of public policy. Complexity points out that, when thinking of public policy, one 
has to consider that agents are heterogeneous.

6.1 Agents are heterogeneous

Assuming a representative agent, such as an average consumer or firm, can be highly 
inaccurate and produce misleading insights for public policy. This is specially the 
case in countries like Brazil, where inequalities of different types are prevalent. 

As Claudio Tessone summarizes it, “heterogeneity can crucially affect the 
observed properties of the system, and also be the source of a priori unexpected 
phenomena in socio-economic systems.”

6.2 Everything is interconnected

This is another way of saying that "the whole is more than the sum of the parts"; 
that non-trivial complex behavior emerges from the interaction among agents; or 
that systems are nonlinear. In public policy, this brings awareness to the fact that 
many traditional linear type analyses might be inadequate or insufficient. This feature 
also points out that the connections among agents, sectors, and scales should not 
be neglected, suggesting an interdisciplinary and systemic view of policy objects.

19. This section is based on the contributions of Acir Almeida to the Project “Modeling Complex Systems for Public Policies.”
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The analysis when viewed by a multiplicity of sectors warrant that exter-
nalities, interests and perspectives are properly weighted among each other. The 
multiplicity of scales links the microanalysis – at the level of individuals, firms or 
the household – to the macro analysis of communities and parties, large sectors 
of the economy, neighborhoods, and cities and metropolis. 

The multiplicity of scales seems central given that the emergence of patterns 
or, similarly, the effectiveness of public policies tends to be specific to one scale 
and not automatically valid over other scales. There are continuous interaction 
and idiosyncrasies in interaction across scales. This is especially true when consid-
ering public policies objects, especially across federative levels. Macroeconomic 
policy, such as interest rate setting, generates results that vary by regions, sectors, 
and firm size. It may impact suppliers and buyers differently. Further, actions of 
multiple agents with multiple interests, means and views may generate results 
that can also differ in scope, speed of occurrence, qualitative characteristics and 
permanence of effects.

6.3 Policy does not work with clear, linear or immediate cause and effects

The hope for action-reaction policies might be somehow naïve, as complex systems 
do not work in a mechanical way, but change, evolve, and adapt. They are dynamic. 
Policy should thus take into consideration multiple causalities and indirect effects 
that arise as a consequence of the interaction among different agents.

Romanian philosopher Basarab Nicolescu (1999) lists three fundamental 
principles of the hard sciences that are not easily applicable to human sciences. 
They are: i) the existence of general, fundamental laws; ii) the use of experiments 
to decode such laws; and iii) the possibility that given the same conditions (coeteris 
paribus), independently, it would be possible to replicate the experiments and thus 
the laws that they attest. 

The difficulties to apply the fundamental laws, their experimentation and 
replicability is clear in social phenomena and public policies by realizing the i) 
discontinuities, jumps and ruptures; ii) unique, discrete events, that do not follow 
a clear universal pattern which could be decoded into mathematics in any immedi-
ate way; and iii) uncertainties which together with subjectivity of actors and lack 
of coherent and strict rationality leads to a non-deterministic social environment.   

Therefore, policy might be more effective if geared towards i) improving the 
resilience of the system and decreasing its vulnerabilities; ii) avoiding (promoting) 
dangerous (positive) tipping points, and iii) identifying the key actors in a network 
that can promote changes in the system. 
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In other words, an OECD document states: “(…) it is not uncommon for 
small changes to have big effect; big changes to have surprisingly small effects; and 
for effects to come from unanticipated causes” (OECD, 2009, p. 2). This means that 
policy-making should try to understand the underlying mechanisms of the system 
under analysis in order to identify how to best steer it towards the desired path.

Second, complexity methods and methodologies can help take into account 
the complex features of the systems under analysis.

1. Modeling is a good strategy to obtain better understanding of how a 
system works, and one which allows incorporating the complex features 
of the system. Modeling can help identify the important players in 
the system under analysis (agents), their different characteristics (het-
erogeneity), their interrelations (interconnectedness), and how these 
components together give rise to complex and sometimes unexpected 
behavior. Examples of such modeling techniques are cellular automata 
and agent-based modeling. Heemskerk and colleagues collect a clarifying 
sequence of modeling definitions:

A model is an abstraction or simplification of reality. Scientists often use models to 
explore systems and processes they cannot directly manipulate (Jackson et al. 2000). 
Models can be more or less quantitative, deterministic, abstract, and empirical. They 
help define questions and concepts more precisely, generate hypotheses, assist in test-
ing these hypotheses, and generate predictions (Turner et al. 2001). Model building 
consists of determining system parts, choosing the relationships of interest between 
these parts, specifying the mechanisms by which the parts interact, identifying 
missing information, and exploring the behavior of the model. The model building 
process can be as enlightening as the model itself, because it reveals what we know 
and what we don’t know about the connections and causalities in the systems under 
study (Levins 1966; Jackson et al. 2000; Taylor 2000). Thus modeling can both sug-
gest what might be fruitful paths of study and help pursue those paths (Heemskerk; 
Wilson; Pavao-Zuckerman, 2003). 

2. Modeling permits simulating scenarios as a decision-support tool to 
inform policy making. Models work as platforms for so-called in silico 
experiments, by means of which different policy options can be compu-
tationally simulated and “cheaply” tested.

3. Modeling stimulates a forward-looking, prospective view of policy, by 
allowing scenario building and testing.  Models can enable prognosis that 
are less based solely on probabilities but that include essential interactions 
at various scales and with various agents’ interests considered. Policy-
makers can thus work with spaces of scenarios and realms of probabilities 
that occur given known rupture points. 



A Complexity Approach for Public Policies  | 29

4. Models can be continuously improved, as more knowledge is gained about 
the system. Models can also be simple and provide general insights, or 
specific to help tackle a particular problem.

5. Models are a means of communicating one’s ideas and theories and can 
work as a "meeting point" for collaborative work among interdisciplin-
ary teams. “Models not only help formulate questions, clarify system 
boundaries, and identify gaps in existing data, but also reveal the thoughts 
and assumptions of fellow scientists” (Heemskerk, Wilson and Pavao-
Zuckerman, 2003).

6. The notion of multiple models contributes to the understanding of social 
phenomena in particular and of public policies in general because it is 
based on the richness of diversity, difference and dissimilarities (Page, 
2007). As Page (2007) argues, no single model can independently cover 
comprehensively the intricacies of some phenomena, especially those of 
subjective nature, complex ones. He also states that models section the 
analysis with specific parameters, be it from the theoretical, methodologi-
cal or procedural point of view. Thus, the diversity of models implies 
a larger coverage of possible scenarios that are more keen to envelope 
unexpected sequences, unlikely important events, unique tipping points.  

Third, data are a valuable resource for policy making and complexity methods 
give insights into how to use them to the best extent. 

1. Data can help visualize, describe and identify features of the system to be 
better explored. Social network analysis, for instance, relies on the visual 
representation of networks to convey complex information.

2. Data mining, machine learning, network analysis and other association 
studies can provide insights into the functioning of the system.

3. Data can help validate and improve models. 

Finally, knowledge can be viewed as a feedback process, “an endless cycle of 
proud proposing and disdainful doubting” (Mitchell, 2011, p. 295).  Modeling 
provides a way to structure this process and to improve the understanding of the 
system one wants to impact. The cycle of data analysis, modeling, validation, 
simulation, implementation, data analysis, remodeling and so on might be the 
"strange loop" that can provide decision support for tackling complex problems 
through public policy. If not a certain, determined path to be tread on, complex 
systems may illuminate the key pathways to policy-makers, clarifying what is 
likely to happen given choices of sets of paths, after so much has been traveled on.
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7 MAPPING THE BOOK

The book is organized in three parts. Part I – Complexity: theory and methods 
discusses the main concepts of complex systems, its methods and methodologies 
and brings two chapters specifically on the computational modeling needed to 
implement such an approach. 

This is the introductory chapter. The second chapter Complex systems: concepts, 
literature, possibilities and limitations written by William Rand presents the main 
concepts of complex systems, and briefly describes some complex systems´ methods. 
Besides, it discusses possibilities and limitations of complex systems analysis, in 
contrast with traditional methods, indicating the advantages of complex systems´ 
applications to public policy.  

The third chapter Methods and methodologies of complex systems by Miguel 
Fuentes presents more technical details and a guided reading of the literature on the 
methods that are commonly used in the complex systems approach. The chapter 
provides a discussion at the conceptual level and references for further reading, 
aiming to reach readers from different fields. 

The fourth chapter, Simulation Models for Public Policy, is authored by 
computer scientists James E. Gentile, Chris Glazner and Matthew Koehler. The 
chapter presents an overview of modeling and simulation, with clear statements 
for stakeholders and concerned audience. It argues that computational modeling 
can be an interesting tool for policy analysts to compare policy options. It focuses 
on ABM, and gives an overview of its benefits for policy analysis. Besides, the 
chapter discusses each step of model construction – implementation, verification, 
validation, and refinement –, pointing out the main challenges in each of them. 

Chapter 5, Operationalizing complex systems, by Jaime Sichman presents some 
concepts and tools of computational simulation, and provides a detailed panorama of 
the main tools used in the complex systems approach. The chapter aims to help the 
reader interested in implementing the methods and techniques of complex systems 
computationally. The chapter focuses on the concepts and implementation tools 
of Multi-Agent-Based Systems (MABS), but also discusses the implementation of 
other methods, such as social networks and machine learning.

Part II contains four chapters that together qualify grand objects of public 
policies as complex systems.

Chapter 6 Understanding the environment as a complex, dynamic natural-social 
system, by Masaru Yarime and Ali Kharrazi discusses the coupling-uncoupling of 
social natural systems and the implications of viewing sustainability from a system’s 
perspective. Their approach views both the quantitative and the qualitative dimen-
sions of concepts such as resilience, efficiency and redundancy. After developing 
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their conceptual framework, they move on to address actual governance cases of 
networked systems and their public policies effects.

The complex nature of social systems, by Claudio Tessone, is the theme of chapter 7. 
The chapter discusses why society should be viewed as a complex system, and 
presents the challenges involved in modeling the complex behavior found in 
social systems. Besides, the chapter discusses what the policy implications of 
this view are. It also describes the characteristics of social systems that are most 
relevant to the analysis of public policy, such as the heterogeneity of agents, the 
dynamic evolution of society by means of interaction and feedback, the systemic 
nature of society that renders its decomposition or break down in different aspects 
inadequate, and the finiteness of such systems. 

Economics is discussed in two chapters. Chapter 8 The economy as a complex 
object by Orlando Gomes presents a more general defense of economics as a complex 
object. It reviews the contemporaneous literature on complexity economics, and 
discusses why the macro economy should be analyzed as a complex system. 
The chapter also provides an illustrative example of a complex economic environ-
ment simulated with a network model. Chapter 9 Modeling the economy as a complex 
system by Herbert Dawid continues the line of thinking, focusing on how to model 
the economy under a complex systems framework. The chapter emphasizes agent-
based modeling, and discusses the advantages and disadvantages of this modeling 
approach for economic analysis. The chapter is particularly strong in discussing 
issues related to modeling the economy for policy analysis and provides insightful 
illustrations of applications to public policy, such as the Eurace@Unibi model.

Chapter 9, Cities as complex systems authored by Luis Bettencourt discusses 
why cities should be viewed and analyzed as complex systems. It presents a brief 
historical overview of the concepts of city, and how they have been perceived 
in urban planning and policy. Then it describes the main properties of cities as 
complex systems, and discusses how this new understanding of cities reveals that 
urban areas of different sizes pose different challenges to the planner. The chapter 
discusses the implications of the complex systems approach for urban planning 
and policy, and counterbalances it with problems of engineering solutions.  

Part III presents applications in the world and in Brazil, besides a number of 
applications in transport, education, the legislative process and a territorial approach.

The first chapter of the applications, Complexity theory in applied policy world-
wide, by Yaneer Bar-Yam emphasizes the importance of analysis of the potential 
effects of policy changes in one part of the world into another part, considering the 
increasingly interdependent world. The chapter highlights some methodologies of 
complex systems, such as multiscale analysis, networks, and patterns of behavior. 
It also presents the applications of such methodologies in the analyses of financial 
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and commodities markets, disease spread, and violence, and argues that complex 
systems have been proven to explain and predict global phenomena. 

Bernardo Mueller, in Complex system modeling in Brazilian public policies 
presents two case studies of policy in Brazil, one success and one failure, and 
builds on these examples to explain why a complex systems approach may be more 
adequate to evaluate public policies of complex systems rather than usual metrics 
widely disseminated. Further, the chapter presents a panorama of studies related 
to public policies' issues that have used the complex systems approach in Brazil. 
The mapping of such studies indicates the potential use complex systems’ meth-
odologies in relevant areas for the country, and also allows the reader to identify 
researches on his/her topic of interest 

Chapter 13, Complexity methods applied to transport planning by Dick Ettema, 
looks into a specific area of public policies: transport planning. It discusses why trans-
port should be viewed as a complex system, and reviews the main characteristics of 
existing complex methods in transport planning, the implementation issues related 
to these methods, and the main implications for the transport system, for cities and 
society. In general, the chapter provides an overview of traffic and transport simulation 
models, highlighting the innovations and challenges for complex transport models. 

Two chapters focus on education. The first one, Education as a complex system: 
implications for educational research and policy, by Michael Jacobson, discusses why 
education should be considered a complex system, and which are the methodologi-
cal implications of this view for researchers and policy makers. Besides, the chapter 
provides an overview of applications of complexity methods in educational policy and 
research. The second chapter, Complex approaches for education in Brazil, by Patrícia 
Sakowski and Marina H. Tóvolli, contributes to the discussion on education made 
on the previous chapter, adding to the conceptual discussion and looking specifi-
cally to Brazil. The chapter presents what has been done in the complexity area in 
Brazil, and discusses how this approach may contribute to education in the country.  

Chapter 16, Overcoming chaos: legislatures as complex adaptive systems, by 
Acir Almeida, describes the complex nature of legislatures and discusses why they 
should be seen as complex adaptive systems. It presents two main models of leg-
islative organization and discusses the limitations of these traditional approaches 
in explaining the evolution of legislative institutions. The chapter highlights the 
potential contribution of the complex systems approach for the analysis of the 
emergence and change of institutions. Looking specifically to the Brazilian case, 
the chapter points out how the complex systems approach may explain the recent 
evolution of law-making patterns in the Brazilian Congress.

Finally, chapter 17, The territory as a complex social system, by Marcos Aurélio 
Santos da Silva, focuses on the study of socioterritorial systems, and the need of 
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interdisciplinary methods for the analyses of such systems. The chapter presents 
the Sociology of Organized Action (SOA) theory to rethink the analyses of power 
and dependence relations in socioterritorial systems. The chapter then presents the 
Soclab method, which is a formalization of the SOA theory. The chapter highlights 
how the Soclab method may contribute to the analysis of social relations in social-
territorial systems through computational simulation.  
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CHAPTER 2

COMPLEX SYSTEMS: CONCEPTS, LITERATURE, POSSIBILITIES 
AND LIMITATIONS

William Rand1

1 INTRODUCTION

The goal of public policy is often to alter, or maintain the behavior of a large group of 
individuals or organizations to achieve some societally desirable outcome. The challenge 
with evaluating public policy is that every individual in a population does not react the 
same way to the introduction of a new policy or a set of incentives. Moreover, the overall 
result of a public policy is not simply the sum of the individual reactions; instead, those 
reactions interact and feed off of each other. As a result, the outcome of the implementation 
of any public policy is an emergent product of many individual decisions, and the way that 
those decisions interact with each other and the policy.

For example, a governmental organization or entity may put into practice a policy 
such as a tax policy, a speed limit, or an urban renewal incentive. Different individuals that 
are affected by that policy may react in different ways. Since individuals are not always 
perfectly rational, or necessarily law abiding, sometimes they will react in ways that the 
governmental organization never intended. For instance, some organizations may evade 
taxes, some drivers may speed, and some residents may move away from urban areas; while 
other individuals act in exactly the way intended by the policy. Moreover, individuals do 
not just react to the policy they also react to each other and may modify their behavior 
based on what they see in others. The effect of public policy is not just a one-time, static 
event, but rather it is the result of a series of actions taken by both government and citi-
zens to achieve a desired outcome. For instance, new policies may be enacted to attempt 
to corral some of the unintended behavior, or citizen action groups may form to attempt 
to alter policy. The aggregation of all these different actions results in an emergent, complex 
pattern of behavior, which will affect future policy making, and will also feedback to 
affect individual level decisions. Thus, the effect of public policy is not just a product 
of government control, and it is not just a product of market forces, and it is not just a 
product of citizen action, but rather it is a combined product of the interaction of all ac-
tors (Colander and Kupers, 2014).

1. Center for Complexity in Business, Robert H. Smith School of Business, University of Maryland, Van Munching Hall, 
College Park, MD USA 20742. E-mail: <wrand@umd.edu>.
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Studies of the kinds of complex interactions that are readily apparent in public policy 
are at the core of the study of complex systems. Complex systems are systems of interacting, 
autonomous components, where the outcome of the system is not simply the sum of 
the underlying parts (Mitchell, 2009; Waldrop, 1993; Casti, 1994). This makes complex 
systems a natural lens through which to study public policy.

One classic example of complex systems was described in chapter 1 when the process 
of bird flocking was described. Craig Reynolds illustrated in his “boids” model that 
birds can flock without any central leader dictating how the birds should flock (Reynolds, 
1987). In the boids model, the agents (birds/boids) follow three simple rules: i) avoid 
other birds; ii) head toward the center of mass of nearby birds; and iii) align your head-
ing with other birds nearby. This model is robust and will generate emergent patterns of 
behavior that resemble flocks under a wide variety of situations. However, none of the 
birds contains the notion of a “flock” and the flock as an entity does not exist, instead it 
is entirely composed of individual birds.

Another classic example of complex systems within public policy is something that 
has been explored using a variety of methods over the years, the traffic jam (Resnick, 
1994). Highway traffic is composed of many individual actors, i.e., the drivers of cars, 
trucks, and other types of moving vehicles. None of these individual actors defines a traffic 
jam. Instead a traffic jam is the emergent product of many different individual decisions. 
However, the overall emergent pattern of stuck traffic, feeds back to affect individual deci-
sions. Drivers slow down, they change their routes, and they may even alter their decision 
to drive in the first place. This system, which seems simple at first, already contains the 
basic components of a complex system, specifically emergent patterns of behavior that 
feedback to affect individual decisions.

Because of the complex interactions of these systems and the nonlinear way in which 
the elements of a complex system give rise to overall patterns of behavior, complex systems 
can be very difficult to predict, control and manage. Therefore the best use of complex systems 
analysis methods for public policy evaluation is not in the context of perfect prediction, 
but rather as a “flight simulator” (Holland, 1996; Sterman, 2000; 1994). A regular flight 
simulator is not the same as flying a plane, but nonetheless provides the potential pilot 
with an education about how a plane might react in different conditions, and different 
environments. In the same way, complex systems can give an analyst or manager the ability 
to understand how a policy might play out, and even develop contingency plans as to 
what actions to take in different contexts. Some systems cannot be easily manipulated or 
changed. A policy flight simulator can identify these places where no matter what policies 
are implemented the system still winds up in a pre-determined outcome. The incentive 
structure or the forces at work may be such that it is very difficult if not impossible to 
alter the process of the system. Though this may be frustrating, it tells the user of the 
policy flight simulator to look for alternative solutions, or to consider reprioritizing their 
goals and objectives.
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FIGURE 1 
An Agent-Based Model of Flocking Behavior implemented in NetLogo 

Source: Wilensky (1998; 1999).

FIGURE 2
An Agent-Based Model of Traffic implemented in NetLogo 

Source: Wilensky (1997; 1999).

The goal then of a complex systems analysis of public policy is to provide insight and 
understanding of how the complex system of society may be affected by the application 
of a policy. Moreover, by examining a suite of policies, it is possible to identify the policies 
that will have the greatest benefit for the least cost. Additionally, robustness and sensitivity 
analysis can be carried out, and supplementary policies can be examined to help adapt to 
unforeseen circumstances.

In this chapter, we will present the basic concepts and ideas of complex systems, 
including a brief description of the tools that complex systems employs.2 We will then 
discuss the possibilities and the limitations of complex systems analysis. Finally we will 
end with a brief discussion of the future of the complex systems approach to public 
policy evaluation.

2. A longer description of the tools of complex systems is available in chapter 3, and a detailed discussion of the application of 
complex system tools to a wider variety of application areas is available in chapters 6 through 17.
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2 CONCEPTS AND TOOLS

The basic conceit of complex systems is that many systems that we observe and want to 
understand around us, are best described through methods that enable the modeling and 
examination of the interactions of different parts of the system. To this extent a number 
of different concepts and tools that are employed by complex systems science focus on the 
interactions and properties of a large number of interacting parts. To explain this in more 
detail, we will begin this section by exploring some basic concepts in this space, and then 
move on to examine tools that are used to examine complex systems. We will then finish this 
section by describing some areas where these concepts and tools have been applied in the 
realm of public policy.

2.1 Concepts

There are several standard features that complex systems regularly exhibit that are useful to 
understand from a public policy perspective. These features help policy analysts and researchers 
describe and comprehend the properties of these systems that often make them difficult to 
manage and predict. As highlighted in the introduction, there are two main concepts that 
are important in every complex system. They are emergence and feedbacks.

Emergence is the idea that “the action of the whole is more than the sum of the parts” 
(Holland, 2014). Complex systems are inevitably composed of many different entities or 
individuals. These individuals have their own properties and actions, but an emergent 
property is something that cannot be discovered by inspecting any of the individual agents. 
Instead it is a product of the interactions of the different agents and can only be observed 
at the population level (Holland, 1999; Miller and Page, 2009). For instance, in the traf-
fic jam example none of the agents defines a traffic jam or contains the property of a 
“traffic jam” within it, however the emergent result of all the actions of many individuals 
is a traffic jam. Similarly, no single individual can be responsible for the development 
of a city. Instead, the development pattern of a city is an emergent result of developers, 
residents, employers, politicians, the environmental landscape and many other factors. No 
single entity within this system contains the property of “city development”; instead, that 
property is the emergent result of many actors acting together. Moreover, these emergent 
properties feedback to affect individual decisions. For instance, within the context of city 
development the evolution of the city will eventually affect where developers build new 
buildings, where residents decide to live, what kinds of business will move into the city, 
how politicians will position their campaign platforms, and it will even transform the 
physical environment of the city. In turn these decisions will result in new emergent 
patterns of behavior, which will in turn result in new feedbacks.

So how is a public policy analyst supposed to understand these systems? One of the 
best ways is to create a model of the underlying system. As discussed in the introduction of 
this chapter, the results of these models should not be used as perfect predictions or complete 
understandings, but rather as flight simulators. In fact, one of the best uses of complex 
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systems analysis for public policy evaluation is in the identification of leverage points 
within the overall societal system (Holland, 1996). Leverage points are places in a complex 
system where the system can be altered or changed. Modeling gives analytics the ability 
to identify these leverage points by trying out many different scenarios and interventions 
and seeing what policies have the largest positive effect on the goal that they are hoping 
to reach. By identifying leverage points, it is possible to explore a policy (Bankes, 1993; 
Lempert, 2002) and to figure out when a policy and at what magnitude a policy will be 
most effective.

Leverage points are also related to another important concept in complex systems, 
known as tipping points. Tipping points are when a system suddenly changes state based 
on a small change in a parameter of the system (Lamberson and Page, 2012; Mitchell, 
2009; Schelling, 1972). In some fields, this is also called a phase transition (Lamberson 
and Page, 2012) or bifurcation (Drake and Griffen, 2010). Systems with tipping points 
can sometimes seem like they are not responding at all to public policy that is attempting 
to alter them, and then suddenly with just a few small changes the system will change 
dramatically (Shiell, Hawe and Gold, 2008).

However, other systems may be stuck in a state they cannot escape from due to choices 
made early on in the evolution of the state. This is a concept known as path dependence (Brown 
et al., 2005a). Path dependence means that the current possibilities of the system are in some 
sense constrained by the past choices that were made. For instance, urban development 
often features path dependent effects, since residents tend to move toward where services 
are available in cities, and then cities and businesses tend to place services where there are 
lots of residents, meaning that early on when a few residents or services make a few choices 
they can dramatically alter the future development of the city (Brown et al., 2004).

A special case of path dependence is sensitivity to initial conditions (Mitchell, 2009). 
This property, which is also a hallmark of chaotic systems, states that every starting point of 
the system is very close to another starting point with a vastly different future.

This is sometimes referred to as the “butterfly effect”, i.e., as Edward Lorenz put it, 
“does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” (Lorenz, 1972). 
In other words, the exact conditions of a system must be known in order to understand 
how that system will develop in the future, and, unfortunately, from a predictability 
standpoint, knowing close to the exact conditions does not help you very much in predict-
ing the future. This is a very strong claim about a system, and in general many complex 
systems do feature some sensitivity to initial conditions, but do not have exactly this 
property. However, a weak version of this property might just state that where you start 
matters significantly, which does seem to affect most complex systems. In other words, 
many complex systems may be greatly affected by their starting conditions even though 
the resulting states of the systems may not be completely divergent from similar starting 
conditions. However, there can easily be regions of starting conditions and it may be  
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possible that altering one parameter of the system can move a system from one region into 
another. This is again similar to the concept of tipping points, but now stated in terms of 
the initial conditions of the system rather than the ongoing state of the system.

Sensitivity to initial conditions and tipping points are some of the many properties 
that arise in complex systems that are nonlinear. Nonlinearity was also discussed in the first 
chapter, but a nonlinear system is one where the inputs do not necessarily affect outputs in 
a linear manner. In other words, it may be the case that changing one input to a system in 
a gradual manner, gradually alters the output until a certain point, but suddenly it may no 
longer affect the resultant output, or it could be the case that interactions between vari-
ous inputs mean the you cannot just solve problems by breaking the problem down into its 
components assessing each component and then reassembling the parts. Nonlinearity means 
that complex systems often have to be considered as holistic systems and it is not possible to 
simply assess the impact of each of the individual components separately from each other.

In fact, in some cases you may be able to remove whole subcomponents of the sys-
tem without the system breaking down at all, or significantly altering the out- come of 
the system. This is what is known as the property of robustness (Lempert, 2002; Bankes, 
2002b). Robustness means that a system maintains its characteristic behavior even after a 
perturbation of the system (Bankes, 2002a). Robustness is a property that we often strive 
for in public policy, since it is important that policies are robust to individual actions and 
to changes in systems. Ideally policies are useful and maintain their legitimacy of long time-
frames, which would make them truly robust. However, it is quite possible that robustness 
in complex systems can be a bad thing. For instance, Ross Hammond and Robert Axelrod 
(Hammond and Axelrod, 2006) showed using an agent-based model that even under a wide 
range of parameter values there are many cases of societal evolution that lead to the primacy 
of ethnocentric behavior, i.e., individuals helping others like themselves and hurting oth-
ers who are different than themselves. This system can be said to be robust even under large 
perturbations, but this is not something that is usually considered societally desirable.

One of the hallmarks of complex systems analysis is embracing the modeling of 
diversity and heterogeneity (Page, 2010; Hong and Page, 2004; Sondahl and Rand, 2007). 
As both the first and seven chapter in this book indicate understanding the heterogene-
ity of a system can be crucial to understanding the system itself. Traditionally, modeling 
approaches have focused on assuming away as much heterogeneity as possible, since het-
erogeneity often makes systems difficult to model. However, complex systems understands 
the value of heterogeneity, and a good complex systems model will represent heterogeneity 
appropriately within the model. A fundamental assumption of many forms of complex 
system analysis is that diversity can greatly alter the outcome of a system (Sharara, 
Rand and Getoor, 2011). Many traditional approaches to system analysis have failed to  
account for sufficient underlying diversity and this can lead to incorrect or at least misleading  
understandings of the system.
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One of the reasons that modern society is increasingly diverse is because it is also fea-
tures a high level of interconnectedness and interactions between individuals (Barabási, 2014). 
The use of networks, which was also discussed in the first chapter, to examine complex 
systems is a powerful tool. We can now reach people halfway around the world for a 
phone call in a matter of seconds, and we can teleconference with individuals that we 
have never met before. These complex interactions which effect are decisions in inter-
esting ways are the very essence of what gives rise to the emergent patterns of behavior 
that are observed in complex systems. As society becomes increasingly connected and 
these patterns of communication increase, complex systems analysis becomes increas-
ingly more important. 

Now that we have a basic vocabulary to discuss the concepts of complex systems 
in public policy, it is time to look at the tools that enable the study of complex systems.

2.2 Tools

The next chapter (chapter 3) in this book by Miguel Fuentes will discuss tools of 
complex systems in more detail, but in this chapter we will briefly look at some  
of the tools of complex systems, because they are indelibly linked to the concepts and 
help us to talk about basic notions, such as agents and networks, which we will need as we 
continue to discuss the use of complex systems in public policy. It is worth noting that 
one of the goals of complex systems is to develop theories and understandings that are 
generalizable – sometimes called universal (Boccara, 2004; Holland, 2012). These theories 
can be applied to a wide variety of situations and application domains. As such, it is 
often the case that the same tools are used in many different contexts within complex 
systems, and one of the hallmarks of a good complex systems analysis is that the findings 
can easily be translated to other systems.

One tool that many people associate with complex systems is agent-based modeling 
(ABM) (Wilensky and Rand, 2015; North and Macal, 2007; Epstein and Axtell, 1996; 
Bankes, 2002a; Bonabeau, 2002; Gilbert, 2007), where computational entities are created 
that have a mapping to the real-world components of the system. This enables the modeling 
of each and every individual in a complex system, along with their interactions. ABM, 
which was also discussed in the first chapter, is a description of the process of how agents 
interact with each other and with the environment around them. In the public policy 
context, ABM has been employed in a number of different contexts, because it enables 
researchers to see what effect policies would have on the basic rules of agent behavior. 
ABM is more generally a framework for simulation; several of the other complex systems 
tools fall under the purview of simulation (Gilbert and Troitzsch, 2005; Casti, 1997), 
which enables the analysis of hypothetical scenarios. The tools of simulation are helpful 
for public policy analysis since they allow analysts to play out many different scenarios 
and to understand the ramifications of those scenarios on society.
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Another tool often used by complex systems researchers, is social network analysis 
(SNA) (Wasserman and Faust, 1994) and the related tools of network science (Newman, 
2003). The goal of SNA and network science it to understand complex systems by describ-
ing the system of interactions that occur within the system. Many public policies either 
directly affect social network ties (e.g., a policy that changes school boundaries and thus 
effects who makes friends with whom), or alternatively, information about the policies 
is diffused over social network (e.g., citizens find out about speed cameras from talking 
to their co-workers). As a result, understanding the effect of social networks on public 
policy is important in order to properly evaluate how those public policies will play out.

Geographic Information Systems (GIS) is often used in complex systems research for 
public policy evaluation, because it provides a unified way of describing complex spatial data 
(Heppenstall, Crooks and See, 2012). Since many times a full understanding of complex 
systems requires a number of different data sets, a unifying theme for these datasets must be 
identified. This enables a wide variety of data to be tied in to one unifying database. One 
example of a way to unify disparate data is to attach spatial coordinates to it, when ap-
propriate. The pattern of this data can then be described using spatial statistics and methods. 
As a result, GIS is a good description of the patterning of complex systems. Coupled with 
ABM, which describes process, GIS, which describes patterns, can make for a powerful 
tool for complex systems analysis of public policies (Brow et al., 2005b).

Another tool of complex systems, System dynamics modeling, describes high-level 
interactions between populations and resources (Sterman, 2000). System dynamics is built 
around the notion of stocks and flows, and can be used to model a complex system since it 
enables descriptions of concepts, such as positive and negative feedback. In the context of 
public policy evaluation within system dynamics, policies are often evaluated by examining 
how changing some of the flows of the system effects the output of the system.

Machine learning extracts patterns of behavior from large-scale sets of data, and attempts 
to learn an overall model that can predict what data is likely to be observed given current 
inputs based on previous data (Holland, 1975; Mitchell, 1997). Machine learning allows 
complex systems researchers to infer individual-level models from large datasets, which can 
then be used to evaluate how a new policy will affect the decisions of those individuals.

Of course, in addition to these more novel methods, complex systems research with 
regards to public policy evaluation, also employs many standard methods for understanding 
systems, such as statistical analysis, psychology experiments, surveys, game theory, dynamical sys-
tems analysis and other more traditional methods. The true value of complex systems analysis 
is not in any particular method or tool, but rather the combination of tools and methods 
that help to best answer the questions on hand. There will be several chapters in this book 
examining how to apply these various tools to a wide range of applications, and so we 
will not go in to depth at this point about the application of these tools, but complex 
systems has been applied to a wide range of areas including: social systems (Gilbert and 
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Troitzsch, 2005; Casti, 1995; Epstein, 2006), finance and the economy (Tesfatsion, 2003; 
LeBaron, 2001; Holland and Miller, 1991; May, Levin and Sugihara, 2008; Arthur and 
Durlauf, 1997), cities (Batty, 2005; Zellner et al., 2009; Benenson and Torrens, 2004), 
ecology (Schmitz and Booth, 1997; Grimm, 1999; Pascual and Dunne, 2006; Williams and 
Martinez, 2000; Grimm et al., 2005), transportation systems (Lu, Kawamura and Zellner, 
2008; Bazzan and Klugl, 2004; Balmer et al., 2004; Zhang and Levinson, 2004; Balmer, 
Axhausen, and Nagel, 2006), education (Maroulis et al., 2010; Klopfer, 2003), legislative 
analysis (Rand and Liepelt, 2009), business (Rand and Rust, 2011; North and Macal, 2007), 
and land-use and land-change (Parker et al., 2003; Brown et al., 2008).

3 ADVANTAGES AND POSSIBILITIES
Complex system methods and tools provide several unique possibilities and benefits 
that traditional methods either do not provide, or that are difficult to obtain within 
traditional methods. For instance, many complex systems methods can model a level of 
heterogeneity (Rand et al., 2003) and diversity (Page, 2010) in the underlying individual 
components that is not easily modeled using traditional methods (Goldenberg, Libai 
and Muller, 2001). Moreover, complex systems methods can incorporate models at 
multiple scale levels (North et al., 2010), which enables a modeling framework that 
is not constrained to simply looking at the policy results for one scale level.

Many complex systems methods also enable adaptive and evolutionary  
behavior (Holland and Miller, 1991; Mitchell, 2009). This allows the indi-
viduals being modeled to not only change their behavior once as a result of 
a new policy, but to adapt and evolve their behavior over time. One benefit  
of this approach is that it has the potential to help overcome the Lucas  
critique of policy (Lucas, 1976). The Lucas critique is that since models 
constructed to understand the policy effects on macro-level patterns of behavior are 
built under the current micro-level rules of behavior, the predictions that they 
make will inevitably be wrong, because the low-level behavior of individuals will 
change in the face of a new policy. Complex systems methods give analysts a way 
to model how individuals learn and adapt to new policies at the micro-level. This 
means that if the model of adaptation is valid (and assuming the policy does not 
affect the actual process of adaptation, but only the behavior an individual exhibits) 
that the model will be able to take into account changes to micro-level behavior 
in the face of the new policy, and, thus, still make accurate predictions. This by 
its nature means that public policy analysts may be able to more easily avoid the 
curse of “unforeseen consequences” when using complex systems methods.

Finally, complex systems analysis has more benefits than traditional methods as 
a communications device for stakeholders and decision makers. Complex Systems 
methods provide a number of advantages. Most complex systems methods can 
generate a large amount of data. This data is useful in constructing and creating 
powerful visualizations for the story that the researcher is trying to explore (Bankes, 
2002b; Kornhauser, Wilensky and Rand, 2009). Moreover, many complex systems 
methods have an ontology (i.e., theory of things that exist in the model) that is 
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closer to real-world systems. In other words, if the researcher is trying to describe 
an educational system using ABM and SNA, then they can actually describe 
the agents interactions with their peers in the school, and explain that interac-
tion model to a stakeholder. As opposed to a traditional equation-based model 
(Rahmandad and Sterman, 2008; Parunak, Savit and Riolo, 1998) where the 
researcher often has complex mathematical terms that describe these interaction 
properties. This makes complex system analysis easier for many stakeholders to 
understand than traditional methods.

All in all, complex systems methods provide a powerful set of tools for  
understanding public policy. 

4 RESISTANCE AND LIMITATIONS
There has been resistance to the widespread adoption of complex systems methods 
within public policy. This resistance comes from a number of different areas. First 
of all, complex systems is a fairly young field (Waldrop, 1993) and as such there 
is a lack of education in complex systems methods and how to apply them. As 
a result, researchers are resistant to use methods that they do not fully feel they 
understand. The solution to this is to continue efforts to educate public policy 
analysts and stakeholders about public policy. Increasing education about how to 
interpret and understand complex systems analysis may not only lead to greater 
acceptance of the methods, in terms of influencing public policy, but previous 
research (Cockcroft et al., 2014) has also shown that educating policymakers 
about how to interpret evidence for policy increases the effectiveness of that policy.

Another factor in the resistance to complex systems methods has been that 
traditional methods, such as equation-based modeling and classic statistics, have 
been very successful at doing what they do, and they have been able to provide 
researchers and stakeholders with a number of interesting findings and solution 
to public policy problems. As a result there is a predilection to continue using 
these methods to solve problems and examine solutions, even when these tools 
may not be well-fitted for the job. To understand why there would be an emphasis 
on methods that may not be applicable to the problem at hand, it is sometimes 
useful to examine the story of the drunk, the keys and the streetlight (Colander 
and Kupers, 2014). The story goes that a sober man is walking down the street 
when he finds a drunk man holding on to a streetlight and looking for something 
under the streetlight. When the sober man asks the drunk man what he is looking 
for, the drunk man replies that he is looking for his house keys. After helping him 
search for a while the sober man asks why the drunk man is only looking under 
the streetlight, and inquires whether the keys could be under the hedge where it 
is dark. The drunk man replies that there is no use looking in the dark for his keys 
because he would not be able to find them there anyway, so he might as well stick 
to the streetlight. In the same way, researchers and analyst often continue to use 
the methods they know well, to try to solve problems, even when those problems 
are not actually applicable to the problem at hand (Colander and Kupers, 2014). 
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The solution to this resistance is to show that complex systems approaches can 
indeed solve problems that traditional methods do not address appropriately. 
The chapters in this book on the applications of complex systems methods to 
public policy are offered partially as a first step in this direction.

Moreover, there is also a deep-seated psychological resistance to complex 
systems approaches. In the 1990s, Mitchel Resnick and Uri Wilensky carried out 
a number of psychological studies to show that from a young age people tend to 
develop what they termed the deterministic and centralized (DC) mindset (Resnick 
and Wilensky, 1993a; 1993b; Resnick, 1994). The DC mindset basically is that 
people expect that all systems have deterministic rules that govern their behavior 
and that there is a central controller in most systems. It is this mindset that leads 
some policy experts to believe that just enacting a policy with sufficient penalties 
will encourage the behavior they seek, and thus lead to the outcome they desire. 
However, complex systems shows that in many systems, there is no true deter-
ministic pattern of behavior, instead chance and opportunity play a large role. 
Moreover, not all systems require a centralized controller. For instance, the traffic 
example that we mentioned in the beginning features nondeterministic actions 
(e.g., users speed up and slow down in irrational and at times unpredictable ways), 
and distributed (not centralized) causes (i.e., there is no centralized cause of the 
traffic jam in many cases) (Resnick, 1994). These features of complex systems 
mean that some individuals face cognitive dissonance when trying to understand 
complex systems analyses.

Though complex systems provides us benefits to understanding public policy, 
there are also some legitimate limitations to complex systems analysis as compared 
to traditional approaches: i) high computational cost; ii) many free parameters; iii) 
the individual-level knowledge requirement; iv) lack of education; and v) literacy. 
Three of these restrictions (high computational cost, many free parameters, and 
individual-level knowledge) apply to the current practitioner of complex systems 
research, and two of them (lack of education and literacy) apply to the future ap-
plication of complex systems research for public policy.

A high computational cost results from the fact that most complex systems 
approaches employ simulations and large-scale data analysis. However, the high 
computational cost comes with a benefit, because it provides a lot more detail 
and models interactions at a finer detailed level than traditional methods. 
Many complex systems method do employ a large number of free parameters, 
and it is important to make sure that model results are robust to changes in these 
parameters when appropriate, and finding appropriate settings for these parameters. 
However, this limitation is also a benefit because it provides the researcher or ana-
lyst with more control over the method. Complex systems methods often require 
knowledge or at least theories about individual-level knowledge and how individual 
components will behave when confronted with new policies. Sometimes there 
is no strong knowledge and few theories describing how individuals will behave 
in such a system making complex systems methods difficult to apply at times.  
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However, it is this very limitation that enables a finer grained analysis and gives 
complex systems the ability to model detailed individual heterogeneity and adap-
tation rules for individuals. It is important to note that it is not necessary to have 
exact individual-level data, but having a theory (or two) about how individuals 
behave at the micro-level is important.

Currently, there are not many educational programs that teach students or 
re- searchers how to apply complex systems methods to public policy, and so there 
is a lack of knowledge about the practice of complex systems with respect to public 
policy analysis. As a result, it can be difficult to build up a research group or create a 
functional organization within a government that builds complex systems models. 
However, this can be rectified by increasing the emphasis on complex systems education 
in the future. This education needs to happen not only at the level of students, but also 
at the level of stakeholders and decision makers, who need to understand the analyses 
in order to make appropriate decisions. In some cases, they do not currently have 
the complex systems literacy necessary to understand the results. Education will help 
this, but so will increased efforts in visualization, since visualization can make results 
and models easier to understand. Moreover, though complex systems methods may 
be new and require learning different terminology, often complex systems methods 
employ ontologies that are closer to real world ontologies than traditional methods 
are. Meaning that it will probably be easier to increase complex systems literacy among 
policymakers than it has been to increase literacy around other technical ideas.

5 CONCLUSION
In conclusion, for a wide variety of public policy applications, complex systems 
provides a useful lens to understand the impact and policy ramifications of poli-
cies. There are many areas of public policy that do not currently employ complex 
systems, and so there is a large range of possibilities and advantages that have yet 
to be explored. If we return to the goals of public policy, complex systems does 
provide the ability to gather insight into how we can maintain or alter the behavior 
of large groups of individuals or organizations, and thus can provide a unique view 
into understanding the application of public policy.

The future for the use of complex systems for public policy is promising. 
We finally have some of the tools that are truly necessary to understand how the 
complex system of society evolves in direct response to public policy. We can not 
only describe how citizens will take different actions in response to policy, but 
also how their behavioral model will adapt; this gives researchers and analysts the 
ability to incorporate adaptation and learning in to their models. Moreover, we can 
account for the social interaction between individuals which is becoming increas-
ingly important as the cost of communication drops to near zero even over very 
long distances. Of course, there are still many challenges ahead since these models 
of learning and communication must be validated and verified if they are to be 
used to actually make policy decisions. However, the ability to actually account 
for these features at all makes the goal worth pursuing.
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In fact in some ways, the future of this application may have been foreseen 
by one of the greatest science fiction writers. Isaac Asimov in his Foundation books 
wrote about a character named Hari Seldon who used a fictional science called psy-
chohistory (Asimov, 1951). In these books, psychohistory represents a combination 
of history, sociology, and mathematics, which are fields that have also influenced 
complex systems analysis. Psychohistory was used to make approximate predic-
tions about the future behavior of large groups of individuals. Similarly, complex 
systems has the potential to help us understand how large groups of individuals 
and organizations will react to new public policy, potentially paving the way for a 
real psychohistory (Turchin, 2007). However, much like Asimov’s Seldon, the goal 
should not be to make specific predictions but rather to embrace the uncertainty 
of the future and to create policies that are robust and can be altered in response 
to changing circumstances.
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CHAPTER 3

METHODS AND METHODOLOGIES OF COMPLEX SYSTEMS1

Miguel Angel Fuentes2

1 INTRODUCTION

Complexity Science has become a major branch in the scientific landscape. It is 
highly likely that its success is based fundamentally on the root of the activity 
that a complexity scientist pursues in her/his daily agenda. Complexity Science is 
not a disciplinary branch of science; it is an inter/transdisciplinary exploration of 
nature, in almost all scales and environments. It covers fields apparently so far away 
as plasma physics at one edge, to the evolution of human languages on the other.

In the past, the frontier of science has been defined mainly by two fascinat-
ing extremes: the very small (an example is the great success of quantum physics 
from its tender appearance after Max Planck’s work circa 1900), and the very large 
(we can mention here another enormous paradigmatic change, after the relativity 
theory, an incredible contribution made by the twenty six year old Albert Einstein 
during his Annus Mirabilis in 1905). However, nowadays an important part of the 
scientific community is making great efforts to understand, in a quantitative scien-
tific manner, the phenomena that involve collective behavior in living systems. We 
can say the shore of the frontier of science has moved: we are trying to understand 
human behavior (among other types of similar systems). In this sense, the present 
book Modeling complex system for public policies focuses on a very important and 
difficult task: the intersection of science and policy. 

In the following sections of this chapter I present some of the methods used in 
complex system science. I describe methodologies coming from: nonlinear science, 
bifurcation theory, pattern formation, network theory, game theory, information 

1. In this chapter I present methods used in complex system science. This introductory chapter is addressed to colleagues 
that come from fields beyond the usual scope of this branch of science. I discuss the following subjects: introduction to 
complexity science and its importance in public policy, non-linear science, bifurcation theory, pattern formation, network 
theory, game theory, information theory, super-statistics, complexity measures, cellular automata, agent-based model-
ing and data mining. In each section, I provide several references, hoping to motivate the reader to continue to search 
for more introductory and/or formal texts.  The author thanks the support of CONICYT Project: Anillo en Complejidad 
Social SOC-1101 and FONDECYT 1140278.
2. Instituto Santa Fe, 1399 Hyde Park Road, Santa Fe, NM 87501, Estados Unidos; Instituto de Investigaciones Filosófi-
cias, Sadaf, Conicet, Bulnes 642, Buenos Aires 1428, Argentina; Instituto de Sistemas Complejos de Valparaıso, Subida 
Artillerıa 470, Valparaıso 2340000, Chile.
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theory, super statistics, measures of complexity, cellular automata, agent-based 
modeling and data mining.

It is worth noticing that some of the methods discussed here have a long 
tradition in physics and mathematics, while others (like Network Theory in its 
present form, without taking into account its connection to Graph Theory) are 
relatively new. Only the complex system approach gives a new sense to all these 
traditional methodologies, a new way to explore nature in a quantitative manner, 
always approaching the question with a deep interdisciplinary view.

Even though there is no precise, and therefore unique, definition of complex 
systems, most researchers agree on some of the essential properties a system has 
to possess to be called complex (Boccara, 2004; Erdi, 2008; Mitchell, 2009). A 
complex system: i) consists of a large number of agents interacting usually via 
simple rules; ii) exhibits emergence: a hard-to-predict collective behavior (does not 
result from the existence of a central controller, i.e. it is self-organized) (Miller and 
Page, 2007). A good discussion on these characteristics (that any complex system 
exhibits) and the mathematical models that could be used as an approximation 
for them can be found in Nicolis and Nicolis (2007). The basic idea exposed there 
is that non linear-behavior is a necessary condition for complex behavior and its 
signature is the multiplicity of different states that the system can achieve.  

2 NON-LINEAR SCIENCE

Scholars from a few decades ago had an established idea: for a given system  
(phenomena) subject to a set of conditions – say temperature, pressure, etc, for 
physical systems, or population size and mean education degree in case of human 
societies – slight changes on these conditions produce also small (or similarly 
unimportant) changes in the final behavior of the system. When studying the 
superposition of effects on the system, the expected final effect of two or more 
actions on the system will be the simple superposition of each effect taking into 
account each action separately (Nicolis, 1995).

The properties mentioned before are the laws of a linear world. Unfortunately 
linear systems are in general very rare, even though some important dynamical 
equations are linear (e.g. the Schrodinger equation, in quantum physics). Many 
body systems, such as complex and human societies, are highly non-linear. This 
basically means that in this type of systems abrupt transitions can be observed, 
i.e. the state of the system changes dramatically upon small perturbations. For in-
stance, it can collapse, go extinct or thrive. In some cases, multiple possible stable 
solutions can arise; and also, unpredictability in both, space and time, which in 
deterministic systems, is known as classical chaos (Strogatz, 2001).
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Another topic, sometimes related with thermodynamics, is scaling. An impor-
tant attribute of power laws is scale invariance. That is, given a relation of a math-
ematical function, when scaling the argument by a constant factor, it causes only a 
proportionate scaling of the function itself. It is easy to see that when logarithms 
are taken on the function and the argument, this behavior is what produces a linear 
relationship. The importance of this simple relation is that the equivalence of power 
laws with a particular scaling exponent sometimes can have a deeper origin in the 
dynamical processes that generate this behavior at a microscopical level. The critical 
exponent, as it is usually referred to in physics, is associated with phase transitions 
in thermodynamical systems. In complex systems science, it is very usual to find 
this particular characteristic. Scaling laws appear in: biological systems (for example 
the relation between metabolic rate and the size of an organism) (West, Brown and 
Enquist, 1997); fractals; social interactions; cities (an example can be the total road 
length as a function of population size) etc.

For all these reasons nonlinear science is a corner stone in complexity studies. 
The variety – and unpredictability – of solutions sometimes is referred to as emer-
gent behavior (Bedau and Humphreys, 2008), something that is usual in social and 
biological systems.

3 BIFURCATION THEORY

As I mentioned before, non-linear behavior is the usual type of dynamics observed 
in social systems. In those systems, the final stable solutions (equilibrium points 
or final states) can change drastically when some of the parameters (i.e. control 
parameters) that drive the evolution of the system reach some particular value.  
To understand this property, common to almost all non-linear systems, we will study 
a few classical bifurcations (Hale and Kocak, 1996; Guckenheimer and Holmes, 
2002). An interesting recent application to social science, particularly to economic 
geography, can be found in Ikeda and Murota (2013). As the reader can anticipate, 
a bifurcation is the structural change in the solution of a differential equation.  
I mention in this section only a few local bifurcations. In this case the dynamics of 
the complete system is reduced to what happens in the neighborhood of the bifurca-
tion point. The reduced form of the evolution equation is called: the normal form.

3.1 The saddle-node bifurcation

This bifurcation appears when two equilibrium points collide and – immediately 
after this point – they disappear. The name refers, as in all typical bifurcations, to the 
characteristics of the bifurcation. As mentioned before, in the saddle-node bifurcations 
there are two fixed points that collide. One is stable (the node) and the other unstable 
(the saddle). The equation in normal form that defines a saddle-node bifurcation is:

ẋ  = −α + x2 .                                                                                        (1)
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We have then: for α > 0 that there are two equilibrium points, a stable equi-
librium at: x=-sqrt(α) and an unstable one at x=sqrt(α). At α = 0 the two stationary 
solutions collapse to the saddle-node fixed point x = 0; finally, when α < 0 there 
are no stationary points for the system.

3.2 Transcritical bifurcation

This is a typical bifurcation that occurs when two stationary solutions change 
their stationary properties at a critical value for the control parameter α. To under-
stand what happens, let’s write down the normal form of this bifurcation:

ẋ  = x (α − x).                                                                                         (2)

The stationary points are x = 0 and x = α. It is easy to see that there will be a 
change of the stability behavior on these stationary points depending on the sign of 
α. If it is less than zero, the stable point is x = 0, while x = α is unstable. When α is 
greater than zero, the stability properties of these points change, i.e. x = 0 is unstable 
and x = α is stable. The bifurcation point in this case is also α = 0.

3.3 Pitchfork bifurcation

The case of the pitchfork bifurcation is very interesting. It can be associated to 
some symmetry properties of the involved system. It is worth to remember that 
in physical systems, for every continuous mathematical symmetry, there is a 
corresponding conserved quantity, which is indeed a very important property.  
The evolution equation for this bifurcation can be written as

ẋ  = αx ± x3.                                                                                         (3)

When the sign in the cubic term is negative, the bifurcation is called supercriti-
cal. In this case, for α less than zero there is only one equilibrium at x = 0. While 
for α greater than zero there are three solutions, one unstable, at x = 0, and two 
stables at x = ± sqrt(α). The subcritical case is when the sign of the cubic term, in 
the evolution equation, is positive. There is an inversion of the stable solutions and 
its stability properties. For the subcritical case: for α less than zero there are three 
stationary solutions, x = 0 stable and x = ± sqrt(α) unstable. For α greater than zero 
the only (unstable) solution is x = 0. Clearly, the bifurcation point happens at α = 0.

4 PATTERN FORMATION

In line with the topic previously discussed, there is a very important phenomenon, 
mathematically formulated for the first time in the context of morphogenesis.  
It is also a type of bifurcation, known as the Turing instability.

Patterns appear everywhere in nature. Spatio-temporal patterns can be observed 
in chemical reactions or in living systems such as bacteria cultures (Murray, 2007). 
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It is very important to notice that, as in almost all quantitative studies, the usual 
treatment of pattern formation is done by tracking macroscopic interactions (Hoyle, 
2006; Cross and Greenside, 2009), since in general the scale – or length – of the 
observed pattern is orders of magnitude the size of the microscopic interaction that 
generates it (I will come back to this point later, explaining agent-based models). 
After discussing the typical mathematical formulation of the Turing mechanism, we 
will give an important example of the application of this model in social sciences.

4.1 The Turing mechanism

The word diffusion comes from the Latin: diffudere, to spread out. Until the work 
of Turing in 1952, diffusion was usually thought of as a mechanism that homog-
enizes the system where it is acting. The important insight of Turing’s work was to 
demonstrate how a diffusion mechanism can concentrate elements from a system 
in a particular region, creating spatio-temporal patterns.

Let’s write down a classical reaction-diffusion equation for the Turing 
instability:

∂t u(x, t) =  f (u, v) + Du ∂xx u.                                                               (4)

∂t v(x, t) =  g(u, v) + Dv ∂xx v.                                                           (5)

I keep the discussion simple, and guide the curious readers to a more 
formal and complete discussion on the subject in the references below. In these 
equations, we have the reaction parts: the functions f and g; and the diffusion 
terms, characterized by two diffusion parameters Du and Dv. A necessary condition 
for the Turing instability is a difference in these diffusion coefficients. In particular 
the diffusion of the so called inhibitor, v, must be greater that the activator u. 
With the right conditions, there is a bifurcation point where the solution of this 
equation changes from a uniform solution to a patterned one.

In a recent work, by Lim, Metzler and Bar-Yam, the authors have studied  
Global Pattern Formation and Ethnic/Cultural Violence (Lim, Metzler and  
Bar-Yam, 2007). Using a more sophisticated model than the previously discussed, 
they predict zones of conflict – the patterns – in Eastern Europe with astonishing 
accuracy. This type of studies shows the power and universality of these concepts.

5 NETWORK THEORY

Until now I have dealt with continuous models. The case of a network is different.  
A network is a set of nodes (also called vertices) that are connected by edges 
(Newman, Barabasi and Watts, 2006). Network theory can be traced back to the 
celebrated Konigsberg Bridge problem and its solution by Euler in 1735, which 
has been treated as the formal beginning of graph theory, a mathematical theory 
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that preceded network theory. It is very important to realize that there are many 
instances where approaches of the continuous type, like the Turing mechanism 
(see equations above), are not a good approximation for the problem in hands 
and only a network view will describe the phenomena in an accurate way. Among 
this type of systems are: social networks, with connections between individuals; 
transport networks in cities or between cities, as for example airplane networks; 
the World Wide Web; food webs; neural networks; collaboration networks: sci-
entific, organizations or business communities etc. “There are a few important 
concepts to grasp when dealing with networks, some of them are” (Costa et al., 
2007; Newman, 2010):

Degree: the number of vertices connected to a node. One can easily see the 
importance of this, but after some recent works we now know that in the case of 
many systems this is not the most important concept since, for example, nodes that 
are poorly connected act only as the intermediaries between parts of a big network.

Directed or undirected: If an edge runs only in one direction, it is called 
directed, think for example in a one way road. In contrast if the edge goes in both 
directions, it is called undirected. 

Geodesic Path: Is the shortest path, following the connecting edges, between 
two nodes. This quantity is important when addressing questions such as propaga-
tion of information, spread of infectious diseases, or alike.

6 GAME THEORY

Game theory, or the theory of social dilemmas, focuses on how a group of elements 
interact using strategic decision making. Even though the history of game theory 
can be traced back to early 1700, the modern version of it appears after the work 
of John von Neumann, in 1928 (von Neumann and Morgenstern, 2007). Several 
works follow von Newmann’s efforts. For instance, I can mention the important 
work made by Nash in 1950, which introduced the idea of Nash Equilibrium, a 
mutual consistency of strategies. Nowadays this theory is also applied in differ-
ent fields such as: political science, biology, economics (Kahneman and Tversky, 
2000), computer science etc. An interesting example of a branch of this discipline 
is evolutionary theory, which focuses in the dynamics of the strategy change. In 
this context, games are called evolutionary games.

In the classical set up of game theory, the players have movement choices 
(decisions they can make with different payoffs), and the game can be in a single 
round or repetitive ones. The rules or choices the players can make are usually 
arranged in decision trees or matrixes.
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Let’s show a very simple example to see how the theory works. I will discuss 
a well known example in game theory: the prisoner dilemma. Two players are 
partners in a crime and after been captured, on suspicion of its commission, they 
are confined in different cells. The police offer them the opportunity to confess the 
crime. We can then represent the players in a two by two matrix with the different 
pay-offs of the four possible choices depending on the criminal confessions (figure 1):  
i) Prisoner A stays silent, Prisoner B stays silent: Each serves 1 year; ii) Prisoner 
A stays silent, Prisoner B betrays: Prisoner A: 3 years, Prisoner B: is released;  
iii) Prisoner A betrays, Prisoner B stays silent: Prisoner A: is released, Prisoner B: 
3 years; iv) Prisoner A betrays, Prisoner B betrays: Each serves 2 years.

The best possible outcome for the two prisoners is to not confess. If only 
one confesses, she/he gains a lot of utility while the other loses. The alternative is 
the confession of the two prisoners. What would then be the most probable final 
outcome in this scenario?

As the reader can guess, game theory can be applied also in complex networks, 
taking into account the topology where the individual interacts: the social network. 
There are many types of games, we can mention: cooperative, non-cooperative; 
discrete and continuous games; simultaneous, sequential; evolutionary games; 
perfect or imperfect information; many players, population games, etc.

It is important to realize that in all the situations, for the particular case of 
rational behavior, the players (which can be a person, a firm etc.) must anticipate 
what to do, taking into account what the other agent will infer from the other’s 
actions (Camerer, 2003). 

FIGURE 1
Matrix for the game “the prisoner dilemma” discussed in the text

Prisoner A

Prisoner A:
serves 1 year

Prisoner B:
serves 1 year

Prisoner A:
is freed

Prisoner B:
serves 3 years

Prisoner A:
serves 3 years

Prisoner B:
is freed

Prisoner A:
serves 2 years

Prisoner B:
serves 2 years

Prisoner B

stays silent

stays silent

betrays

betrays

Elaborated by the author.
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7 INFORMATION THEORY

Claude Shannon developed a theory to find the limits of signal processing; his work 
“A Mathematical Theory of Communication” was published in the Bell System 
Technical Journal in July and October 1948. This is the landmark for what now is 
called Information Theory (Shannon, 1948). Since Shannon’s work, Information 
Theory has been successfully applied to different fields (Pierce, 1980; Cover and 
Thomas, 2006): molecular genetics, cryptography, statistical inference, physics, 
biology, and in general to data analysis. In complex systems, information theory 
has been used in connection with a theory that was developed by E.T. Jaynes.  
In a series of papers circa 1952 he discussed the correspondence between statistical 
mechanics and information theory (Rosenkrantz, 1989). 

This giant step tells us that statistical mechanics (and all the applications/
predictions of this very successful body of knowledge) must be seen as a particular 
case of a more general theory: Information Theory. Jaynes’s work paid attention 
to a general principle: the Maximum Entropy Principle (or MaxEnt). Nowadays 
MaxEnt is used to understand several distributions appearing in biology and eco-
logy (from a complex system approach) as for example: size distribution, range 
distribution, energy distribution, etc. In a very recent effort I applied MaxEnt 
theory to understand social and urban systems, but this work is still unpublished 
and in progress.

8 SUPER-STATISTICS

I have emphasized the importance of the contribution of statistical mechanics and 
MaxEnt theory to the study of complex systems and natural phenomena in general. 
In a recent work, Cohen et al. introduced a natural generalization of statistical 
mechanics (Beck and Cohen, 2003; Cohen, 2004). The idea is very simple, but 
also very powerful. When dealing with complex non-equilibrium systems with 
long-term stationary states subject to spatio-temporal fluctuations of an intensive 
quantity, the probability distribution, which has very peculiar characteristics, can 
be obtained by calculating the average over these fluctuations. An example of these 
characteristics can be a long tail behavior. 

To be more explicit, suppose we have a system composed by many subsys-
tems. Each subsystem has particles diffusing with different diffusion parameters. 
In consequence, each subsystem will be characterized by a Gaussian distribution 
characterized by the particular diffusion parameter that it has. But if we consider 
the complete system (the aggregation of all subsystems) we must average using all 
these Gaussian distributions. To understand how this can be achieved, let’s take a 
look at a simple example.
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Imagine we have a brownian particle described by the following stochastic 
differential equation

,
 (6)

where  is a white gaussian noise of unit variance, i.e.,

        (7)

,      (8)
t is the time, and  is the strength of the noise. Under Ito’s calculus, this stochastic 
dynamic leads immediately to a probability evolution equation, or the Fokker-
Planck equation, this is

.      (9)

This equation has an analytical solution, which is the same that L. Bachelier 
found for non log-transformed prices in 1900 (Bachelier, Davis and Etheridge, 
2006), and which, five years after him, Einstein suggested as the distribution for 
Brownian particles: the normal distribution (Einstein, 1905). “The problem, which 
corresponds to the diffusion from a single point (ignoring the interactions between 
diffusing particles) is now mathematically completely defined, its solution is:”

     (10)

“Therefore, the distribution of the resulting displacements in a given time t 
is the same as random error”, from (Einstein, 1905, our translation).

Now, imagine the quantity , fluctuate according to a Gamma-distri-
bution, a straight forward calculation will give a final distribution for the system

   (11)

which is a variant of the Student’s t-distribution. The non-Gaussian shape of the 
distribution results from collecting r‘s from time periods separated by long intervals 
where  is different.

It is easy to realize the power of this concept and the generalization that can 
be made following these methods (Hanel, Thurner and Gell-Mann, 2011). When 
considering a compound of elements, it is necessary to first check if their interaction 
can be decomposed into subsystems. There is no formal method to do this, the 
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only tool to know what is the proper subdivision of the system is the information 
in hand of the problem. For example, in a recent paper, financial time series data 
was divided in days, i.e. a trading-day was the temporal division for the complete 
system, which was many years of trading-days (Gerig, Vicente and Fuentes, 2009). 
If this sort of subdivisions can be made, these subsystems will follow the same 
underlying dynamics (as the brownian particle in the example above), and the only 
difference will be some fluctuation in an intensive variable. Then, the behavior of 
the aggregated system will simply be an average of the subsystems. 

9 COMPLEXITY MEASURES 

Much has been written trying to define (or measure) the complexity of a system. 
The importance of this can be understood when thinking that systems with the 
same level of complexity (defined in some way) may share universal properties.

The history of the study of probabilistic regularities in physical systems 
can be traced back to 1857 with the very idea of entropy proposed by Rudolf  
Clausius. Claude Shannon derived the same functional form used almost one century 
before to introduce the concept of information entropy. Even though the intuitive 
idea of complexity and information in a physical system share some similarities, it 
was necessary to introduce several measures in order to understand various types 
of complexities, and in order to quantify properties of the system closely related 
with both of them (Lloyd, 2001): Kolmogorov complexity, logical depth, effective 
complexity, etc.

Some of these measures have been proposed to study different systems  
(e.g. strings of symbols, the data that the system produces, etc.). From all of these 
measures, I think the one that captures in a more accurate way the notion of the com-
plexity of a given system is Effective Complexity, introduced by Murray Gell-Mann  
and Seth Lloyd (Gell-Mann, 1995; Gell-Mann and Lloyd, 1996). In short, the 
effective complexity of an entity corresponds to “the length of a highly compressed 
description of its regularities”. The idea is simple, elegant, and profound: if we split 
the algorithmic information content of some data string into two components: 
one with its regularities (related to the Kolmogorov Complexity) and the other 
with its random features (related to its entropy), the Effective Complexity of the 
data will only be the algorithmic information content of its regularities.

A perceptive reader will notice a very important aspect of the theory developed 
by Gell-Mann and Lloyd, that the effective complexity of an entity is context de-
pendent (Gell-Mann, 1994). We will give a naive example to motivate the analysis 
of this aspect of the theory. Imagine we are studying a particular system: a living 
organism, then, what is its complexity? There is no doubt that we must be more 
specific mentioning exactly which characteristic or feature we want to study using 
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this concept, and what set of data we have in order to do so. Not only that, but 
to be more precise, we must have a theory that explains the data.

10 CELLULAR AUTOMATA

Circa 1950 Stanislav Ulam and John von Neumann created a model to understand 
the behavior of discrete units as a function of the behavior of its neighboring 
ones. It was the beginning of Cellular Automaton models. Cellular Automaton 
is a discrete model based on cells, each one having a set of states: on-off or alike. 
The cell positions are usually on a regular grid (but again they can be arranged in 
complex networks as the one mentioned before). Then, given an initial condition 
for the cellular automata, the next state will be an update of each grid according 
to local rules (Toffoli and Margolus, 1987; Schif, 2008).

To explain the essential ideas, let us take a look at a simple example: the one 
dimensional cellular automata. In a one dimensional cellular automaton each cell 
can be in two states: zero and one (or on and off, etc.). Given the state of a cell at 
time t, its configuration at time t +1 will depend on: its own state at time t and the 
state of the two neighbors also at time t. It is clear then that the possible values for 
a neighborhood is two to the power of three, i.e. 23=8, and then given the on or off 
option, there will be a total of 28=256 rules for a one dimensional cellular automata. 
In figure 2 we show the so-called rule 30. At the left we can see the evolution rule, 
to the right is the evolution of an initial condition with only the center cell with a 
state 1, all the rest of the cells are in a 0 state. 

FIGURE 2
An explicit view of rule 30 of a one dimensional cellular automaton

State at
time: t 111

Initial condition=1

time

110 101 100 011 010 001 000

State at
time: t+1 0 0 0 1 1 0 0 0

Elaborated by the author.
Obs.:  The figure shows the evolution rule (left) and the result in time for an initial condition which has only one cell with the 

1 state at the center (right). 

Depending on their behavior, S. Wolfram, in his book A New Kind of Science, 
defined four categories into which cellular automata can be classified. In class one 
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nearly all-initial patterns evolve quickly into a stable, homogeneous state, and any 
randomness in the initial pattern disappears. In class two nearly all-initial patterns 
evolve quickly into stable or oscillating structures, and some of the randomness 
in the initial pattern may filter out, but some remain. Local changes to the initial 
pattern tend to remain local. Class three has nearly all initial patterns evolving in 
a pseudo-random or chaotic manner. Any stable structure that appears is quickly 
destroyed by the surrounding noise. Local changes to the initial pattern tend to 
spread indefinitely. Finally in class four nearly all initial patterns evolve into struc-
tures that interact in complex and interesting ways, with the formation of local 
structures that are able to survive for long periods of time.

Applications of Cellular Automata can be found in different fields such as 
computer processors used to understand pattern formation in biology, epidemio-
logy, and models to simulate urban dynamics through the local actions of cellular 
automata (Batty, 2007), etc.

11 AGENT-BASED MODELING

With the arrival of new technologies and the increasing computational power, it is 
straightforward to consider computational models to study the evolution of many 
agents, at different scales and scenarios. Agent-based modeling can be thought of 
as the evolution of cellular automata models. This can be considered as a bottom-
up approach due to the fact that the properties observed in the system as a whole  
(i.e. emergent properties) are the result of the interactions of the microscopic com-
ponents of the system. Such view differs from the others discussed in this chapter, 
as for example the Turing mechanism, where the diffusion of particles is modeled 
through a spatial operator that acts on a macroscopic scale. 

There is no specific recipe to apply agent-based modeling, since it can be used 
in many different scenarios and systems in general. Usually they can be studied at 
various levels, such as individuals (Axelrod, 1997), population (Gustafsson and 
Sternad, 2010), organizations etc; models for decision making (notice that game 
theory can be applied as well); the topology of interactions, regular or irregular 
lattices, complex networks; the environment where the interaction happens and 
learning rules (or adaptive processes). 

It has been argued that the main benefits of agent-based modeling are the 
following (Bonabeau, 2002): i) it captures emergent phenomena. This is because in 
principle emergent phenomena come from microscopic interactions (or individual 
entities), and when using agent-based models any macroscopic characteristic will 
be by definition a result of microscopic rules acting on a great number of agents. 
These emergent phenomena can appear when: individual behavior is nonlinear, 
agent interactions are heterogeneous and can generate network effects, agent-based 
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models can amplify fluctuations (something that is difficult to achieve aggregating 
differential equations) and when individual behavior exhibits path dependence 
and/or memory (like in the case of a traffic jam); ii) In many cases agent-based 
modelling provides the most natural way to describe the dynamics and rules of 
the system, focusing on the individual rules of the agents. 

Some of the areas where agent-based modeling is being applied are: diffusion 
of innovation and adoption, operational risk, organization design, stock market, 
flows (as for example traffic or evacuation, see figure 3 for an example), etc.  

FIGURE 3
Agent-based simulation of a fire escape

Exit Exit

Source: Helbing, Farkas and Vicsek (2000).   
Obs.:  People are represented by open circles. On the right the room has a column represented by a black circle. The simulation 

shows that the flow of people leaving the room with a column in the exit is more efficient, this means that the flow that 
the column generates allows more people to exit per unit of time. 

12 DATA MINING

There are many systems where the underlying dynamics are unknown. These 
are in some way very different forms of the classical type of dynamical sys-
tems, where first-principle models can be proposed to describe them. In these  
systems, Newton’s equation of motion, for classical systems; Maxwell equations, for 
electromagnetic systems; quantum or relativistic equations, can be the starting point 
to build models that will describe the phenomenon using a bottom-up approach. 
For other systems, this type of reduction is impossible due to: the complexity of 
the problem, which sometimes makes it almost impossible to create a mathematical 
model; the lack of information since sometimes the data or output of the system 
is available only at a very high and macroscopic level, etc.

Nowadays there is much data available: from scientific institutions, 
governments, different type of businesses, the worldwide web, etc. All these avail-
able data can be stored and studied, but as the reader can guess for some of them 
the first-principle approach is far from being achieved.  

The term data mining does not refer to the extraction and collection of a 
huge amount of data, as usually is believed. Data mining refers to the extraction 
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and recognition of patterns in large data sets. In this sense, data mining has two 
primary goals (Kantardzic, 2003): prediction and description. To achieve them, 
data mining uses the following task: classification, regression, clustering, summa-
rization, modeling and deviation detection.

Even though the recognition of patterns and sometimes the detection of 
signs of causality in some interactions has been a research topic using old methods  
(e.g. correlation and regression analysis); data mining explores a huge amount of 
data available thanks to the increment of computer power and storage. Data min-
ing identifies unknown (patterns) properties present in the data, by using (among 
others) artificial intelligence and machine learning techniques (Hastie, Tibshirani 
and Friedman, 2009). Due to the variety of data available nowadays, thanks to 
the internet, cellphones communications, etc., data mining is becoming a power-
ful tool to study social patterns in urban systems. Common applications of this 
branch of computer science can be seen in astronomy, genetics, social behavior, 
transport, financial systems, telecommunication, etc. 

13 CONCLUSIONS

As we can see every day, the world around us and the society where we live are full 
of very complex networks of relationships at many scales. There is an entangled 
interaction between people, companies, cities, ecological systems, etc., and in order 
to understand them and make good predictions, and specifically public policy, it is 
hard to imagine solving a problem in complete isolation. To do this it is necessary 
to have a good representation of the system, taking into account its constituents 
and the interactions between them. 

The methods shown in this chapter are some of the ones used in complexity 
science, which, at the same time, is probably the best scientific methodological 
way to deal with the kind of problems concerning public policy. 

It is very important to realize that none of the methods included in this 
chapter define complexity science, neither the agglomeration of them. Beyond the 
concepts, tools and methods presented, complexity science offers a new way to 
think about policy making. It focuses attention on dynamic connections, evolution 
and interdisciplinary thinking. 
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CHAPTER 4

SIMULATION MODELS FOR PUBLIC POLICY
James E. Gentile1 

Chris Glazner2 
Matthew Koehler3

1 APPLICATIONS OF COMPUTATIONAL MODELING TO POLICY ANALYSIS

Public policy analysis wrestles with the challenge of identifying and implementing 
a desired change in our social and governmental systems. Defined by (Weimer and 
Vining, 1996), it is the “systematic comparison and evaluation of alternatives available 
to public actors for solving social problems”. We often turn to policy analysis to help 
us understand which available options lead to the most “desirable” outcomes. To be 
able to compare policies or outcomes, however, we must be able to understand how 
an action will result in a change, and we must be able to agree on what is desirable.

Given the complexity of even the smallest of social systems, this analysis is 
not trivial. Social systems are comprised of autonomous people who do not behave 
in perfectly rational ways, and they have different explanatory mental models 
for how society works. Social systems do not behave in deterministic ways that 
lend themselves to a simple spreadsheet analysis or a closed form mathemati-
cal formulation at the causal level. The behavior of social systems cannot be 
neatly constructed, as a watchmaker would build a watch to keep time. Given 
these challenges, how can the policy analyst compare among policy options, 
with unclear relationship between cause and effect?

The relationship between a cause and its effect can be understood through 
models. At its most basic form, a model can simply be a mental concept, a 
description of a belief for how a system will respond to a change. A mental model 
can be shared on a simple napkin or via an elaborate slide presentation, but does 
not have the ability to provide defensible comparisons of how effectively policies will 
result in desired outcomes. Quantitative analytical models, from simple spreadsheet 
models through more advanced mathematical representations as used in classical 
economics, usually contain rigid assumptions about behavior, as exemplified by 
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2. Ph.D. E-mail: <cglazner@mitre.org>. 
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the perfectly rational actor model frequently used in classical economics. While we 
know that deterministic, quantitative models are not valid (people are not fully 
rational, nor do they have perfect information, nor are they homogeneous), they 
have served the basis for much of policy analysis of our time. Furthermore, they 
implicitly assume that the system can be known and controlled.

Policy operates in a highly complex space, beyond what can be controlled 
or observed in a deterministic way. In forming policy, we must consider beyond 
what we can control and closely examine what we can influence. We must be able 
to explicitly capture the underlying causal hypotheses of policy proposals in a way 
that allows us to experiment, and provides a way for stakeholders to share and 
test their own hypothesis and ideas with others in an analytically defensible way.

Simulation modeling has the potential to provide this capability. Some of 
the earliest simulation models that captured the complex relationships in policy 
were created using the System Dynamics methodology, developed by Jay Forrester 
at MIT in the 1950s and 1960s. System Dynamics models systems using 
differential equations, paired with an easy to learn diagramming technique (Causal 
Loop Diagramming) that makes it feasible for subject matter experts to participate 
in the modeling process, rather than relegate it to mathematicians or computer 
scientists alone. The approach is particularly well suited to policy modeling in 
that it visualizes causal relationships, and explicitly gives the policy maker access 
to “levers”, such as funding to a program or production rate. This control creates 
a clear linkage between policy and behavior in the model output. The models are 
simulated using computers, and critical metrics are graphed over time, in contrast 
with the often static cost benefit calculations prevalent in policy analysis. 
The models themselves run quickly, encouraging policy makers to build an 
intuitive understanding of cause and effect via experimentation.

Forrester became very interested in urban policy after discussions with the 
mayor of Boston, John Collins. He authored the book Urban Dynamics in 1969 
(Forrester 1969), which examined the long-term impact of housing policies in 
urban areas stemming from policy modeling done for Boston. His model gave 
policy makers the tools to share mental models and discover counter-intuitive 
policy effects that had not been popularly addressed. It invited criticism, and 
provided policy analysts with a framework for quantified comparison.

Forrester’s students, lead by Donella Meadows, created one of the most 
controversial policy models built to date, World3, documented in the book Limits 
to Growth in 1974 (Meadows et al., 1974). This model examined the relationship 
between population growth and our planet, and predicted dire consequences given 
the resource policies of the day. It was met with vehement critique, stemming 
from both the available data as well as assumptions made about how individuals and 
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technology will be able to adapt to future change (Nordhaus, 1973). It presents 
a “top down” perspective of policy, driven by the structure of the system with 
direct, deterministic causal relationships. While this may be true of some policy 
systems, it is not true of many: societal behavior does not emerge from a top 
down edict. While System Dynamics still has a community of practitioners and 
still has great utility to policy modelers, it never became a primary tool of policy 
makers in the wake of the controversy surrounding Limits to Growth.

A way forward emerged from the thought experiment of Thomas Schelling, 
a future Nobel laureate in Economics who, like Forrester, was very interested 
in urban policy in the late 1960s. As opposed to Forrester, Schelling looked 
at the problem not from the perspective of the policy maker, but from the 
perspective of a citizen. Using a simple model of “agents” arrayed on a piece 
of graph paper using coins, he was able to demonstrate that it took only a very 
slight preference among populations to live among similar races to produce 
a dramatic segregation in the population over time. Schelling later published 
this work in the book Micromotives and Macrobehavior in 1978 (Schelling, 
1978). While Schelling’s models are not prescriptive for policy makers, nor do 
they give specific policy levers to encourage experimentation by policymakers, 
they highlight the emergence of macrobehaviors driven by motivations at the 
individual level that may seem contradictory. This is a powerful lesson for policy 
makers to understand.

Since Schelling’s first explorations using coins and paper, a class of 
computational models known as Agent-Based Models have become popular. 
This class of models examine the emergence of macrobehaviors from interacting 
software agents. Once in software, agents can take on a range of behaviors, such as 
geographical location, path dependence, communication with social networks, and 
even artificial intelligence. This greatly opens up the doors to what can be done with 
models, and over the past 20 years it has found wider acceptance as the workhorse 
tool in the study of complex adaptive systems (Holland, 1992) and more recently, 
in the field of behavioral economics (Arthur, 1994; Tesfatsion, 2006) and social 
science (Epstein and Axtell, 1996; Miller and Page, 2007).

Agent-Based Modeling is a paradigm, rather than a tightly knit toolkit 
with an associated policy engagement tools as found in System Dynamics. 
The flexibility of agent-based models has made them extremely powerful, but the 
learning curve associated with creating simulations, and the lack of tools for sharing 
results, have inhibited their use as a common tool for policy analysis. To truly 
understand the complex adaptive relationships so often associated with policy, 
we must further develop the tools and methods needed to support agent-based 
modeling as a practical tool for policy analysis. 
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2 REASONING CAUSAL BEHAVIORS

Understanding generating mechanisms is important for two reasons (at least). 
First, if you can uncover the potential generating mechanisms of a dynamic, then 
you can begin to determine how to affect the system to cause a particular change 
(the ultimate goal of policy analysis). Without an understanding of the generating 
mechanisms it would be very difficult to know which policy lever would produce 
the desired impact. Second, generative methods will allow one to understand, or 
at least characterize, the temporal dynamics over time. This, in turn, will help you 
to design a monitoring regime that is sensitive to the changes you are interested 
in making.

Now we will add a bit more formality to the discussion and define ab-
ductive reasoning. Fundamentally, agent-based models (ABMs) are a type of 
simulation, no better, no worse. What differentiates it as a tool for policy analysis 
is that it focuses on the individuals and their interactions. It explicitly repre-
sents each individual within the system and how they all interact (Axtell, 2000),  
(Epstein, 2006). In this way ABMs can handle adaptive, boundedly rational humans 
and outliers that may have a disproportionate impact on the evolution of the system. 
Given the enormous potential expressiveness of ABMs, this tool must be applied 
in a principled way especially when used to impact public policy. Moreover, this 
allows the policy analyst to embrace outliers and other low base-rate events that 
may drive the system rather than, often, ignoring them with statistical methods.

Typical closed form optimization analysis of a system is a mathematical 
deduction. One starts with a set of statements about a system and then deduces 
an optimal solution. Unfortunately, given the open and stochastic nature of the 
systems typically studied with ABMs a single deductive solution may not be not 
useful. Rather, many runs of the ABM must be performed each mapping to a 
particular outcome. At this point, one might be tempted to argue that “big data” are 
the solution. One could simply analyze enough data from a system to understand 
all of its potential dynamics to include outliers. However, from a policy perspective 
this analytic approach is of limited utility. What a big data analysis can provide 
is the correlative structures present within a dataset. This is quite different than 
the causal structure. Moreover, policy analysis is typically undertaken to inform a 
desired change to the system. This being the case, the potential new system would 
be “out of sample” from the big data analysis and how the old and new systems 
relate may not be clear.

ABMs, on the other hand, allow one to investigate potential generating 
mechanisms and experiment with causal structures. As Epstein has termed it: 
“If we did not generate x, we did not explain x” (Epstein, 2006). As pointed 
out by Axtell, growing a particular outcome only demonstrates sufficiency  
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(Axtell, 2000). One can demonstrate what will cause an outcome but, likely, 
will not be able to prove that is the actual mechanism being used by the sys-
tem under study. This observation does call into question the utility of the 
ABM method. A mathematical deduction leads to one and only one outcome 
that can then be used to support decision-making. Use of ABM requires 
a more nuanced logical structure making use of deduction, indication, and 
often abduction.

As stated above, and ABM is a type of simulation. Therefore, when one 
properly controls for any stochasticity within the model, each execution of the 
model is a strict deduction and leads to one and only one outcome (Epstein, 
2006). As one changes various settings or random numbers contained within 
the ABM one can build up a set of mappings (sufficiency theorems) from 
ABM inputs to outputs.

As deductions accumulate, they can then be used to inductively produce 
hypotheses about the causal relationships that may exist in the system under 
study, a statistical and data mining exercise. As with most induction one can 
only fail to reject a causal hypothesis, you are never guaranteed to uncover 
the actual causal structure of the real system with these methods. One must 
run the model many times to explore and define the mapping between model 
inputs and model outputs. As the ABM’s dynamics are better understood the 
outputs can be categorized into three basic bins: expected valid, expected invalid 
(known input values that cause degenerate behavior), and unexpected results. 
These unexpected results are what create insight into the system (Koehler, 
2006). However, in order to know how much faith one should have in them 
as much of the parameter space as possible should be explored to provide a 
full understanding of the behavior of the model.

Often the results generated from multiple runs of an ABM are used as 
part of an abductive investigation of a phenomena, such as the well known 
study about segregation completed by Thomas Schelling (1978), discussed 
supra. Abduction is simply a method to discover a missing component of our 
model of the behavior of a system (Aliseda, 2006). An abductive investigation 
is typically preceded by observing surprising or seemingly mutually exclusive 
behaviors from the system. For example, in the Schelling study the two system 
signals were: i) segregated settlement patterns; ii) population self-reporting a 
desire to live in integrated neighborhoods. The amount of information used 
to define the initial system, and the specificity of the surprising dynamic, will 
constrain the potential new components, and also dictate the needed data.

If the system is reasonably abstract and the surprising dynamic is a general 
macroscopic observation of the system; then, too, the new sufficient feature will 
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be abstract. Using Axtell’s Levels of Empirical Relevance (Axtell, 2005) what 
would be produced under these conditions is, likely, an agent-based model 
of Level 1 (macro-level qualitative correspondence to the referent) Empirical 
Relevance. As the specificity of the system and the surprising dynamic 
increase, it is likely that the specificity of the new feature will need to increase, 
as well. Now, the ABM is likely trying to achieve Level 2 Empirical Relevance 
(macro-level quantitative correspondence). There are two additional Levels 
in Axtell’s framework: Level 0 (micro-level qualitative correspondence-agents 
that behave plausibly for a given system), and Level 3 (micro-level quantitative 
correspondence-agents that behave identically to their “real-world counterparts”). 
Level 0 ABMs are, essentially, thought experiments and are unlikely to be 
used for policy making. Level 3 ABMs, on the other hand, would be ideal 
for supporting policy making as they are a near perfect representation of the 
system in question. However, given the data needs to create a Level 3 ABM, 
it is unlikely to be possible to create such a model. This implies particular 
standards for the ABM based upon its intended use. Thought experiments 
and initial investigations are well served by Levels 0 and 1. Whereas ABMs 
used for helping to define policies to be implemented should achieve Level 2 
at least. This is discussed further in the next section.

As implied above, understanding how well an ABM represents the system 
under study is extremely important as this will help to inform a decision 
maker on how to use the results of the ABM as part of their decision’s support. 
In addition to the level of detail and amount of data used to create the ABM, 
the model can, and likely should, be compared to a referent (the real world or 
another model). The correspondence with the referent system can be characterized 
using the Docking Framework created in (Axtell et al., 1996). In their Docking 
Framework there are three levels of correspondence: identity (where the 
simulation produces identical results to the referent data from the real system 
or another simulation), distributional (where the simulation produces results 
that are statistically indistinguishable from the referent), and relational (where 
the simulation produces results that are statistically distinguishable from the 
referent but are qualitatively similar). As discussed above, ABMs used for 
thought experiments may be thought of as adequate if they have relational 
equivalence to the human system being studies. ABMs used for informing 
decisions that will impact human systems should relate to said system at least 
at the distributional level (additional details of the use of docking and the 
empirical relevance framework for ABM evaluation can be found in (Egeth 
et al., 2014; Koehler, 2006; Barry et al., 2009).
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3 MODELING AND SIMULATION

Modeling and simulation (M&S) provides scientists with a toolset to solve 
problems without analytical, numeric solutions. However, this approach has 
its own set of challenges where relevance is likely principal. The relevance of 
an M&S effort hinges on stakeholder buy-in and often determines the project’s 
longevity and impact. Stakeholder engagement is often dependent on how they 
consider the conceptual model. Many academic models may fail in this regard 
and can be quickly dismissed as too assumptive.

The simulation scientist must balance the tradeoff between constructing 
a very simple, toy model and generating a model that is too cumbersome to 
explain and understand. A very large, very inclusive model can quickly lead 
researchers to make many simplifying assumptions out of their domain of 
expertise (such as guessing how persons would react in various situations). 
A good model for policy is likely somewhere between these two extremes, a 
model that is built to include many of the key characteristics of the systems 
while not capturing lesser dynamics. The modeling and simulation process 
helps the researcher know what should be included.

Modeling and simulation is an iterative process where simulation scientists 
often work closely with domain experts. At each round of the cycle, the results 
of a model are verified, validated and refined (seen in figure 1). Models should 
begin with a research question that is directly relevant to a real world problem, 
then a conceptual model is constructed. Normally, this conceptual model is 
a natural-language description of the dynamics of the model. The conceptual 
model is implemented, generally in computer code, and the results are analyzed. 
The simulation output should first be compared to the conceptual model to 
check that the code is properly implemented, this is known as verification. 
Here, scientists should scrutinize the simulation’s output until they believe the 
implementation correctly describes the conceptual model. Then the simulation 
output is validated to external data sources, this can include analytical forms 
of validation and fitting as well as face validity among the domain experts. 
If the implementation fails to answer the initial research question, the conceptual 
model should be refined, this often requires capturing more dynamics.

The M&S process can give us great insights but its methods require us to 
focus on the engineering processes behind model construction since our results 
will only be reproducible with clear and concise structures and documentation. 
Modeling complex systems can require researchers to characterize very 
complicated behaviors and interactions in programmatic logic but these 
implementations can be non-trivial.
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FIGURE 1
Modeling and simulation is an iterative process that has many cycles – each step can 
incorporate new technologies and skills
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The modeling and simulation team must ensure that their implementation 
represents the conceptual model and this can be a cumbersome process when we 
consider that many agent-based models are used to study emergence and emergence 
is not always known a priori. Here the verification challenge is compounded 
because the simulation model’s results cannot be compared to a known, conceptual 
outcome. In cases like this, the model can be disassembled into components and 
each component can be independently verified. This process is often known as 
unit testing where a component’s operation is compared to a formal functional 
specification. As the components are reassembled, portions of the system can be 
validated by bringing the system to known steady-state phases (Gentile et al., 2012).

The process can be further complicated by a series of pitfalls that often beset 
projects (Barth et al., 2012) from stakeholder engagement to overly detailed simulation 
models. To avoid some of these, teams can be encouraged to frequently revisit 
the task’s research question, engage and communicate with stakeholders, always 
look for ways to simplify the model, and follow the best practices of software and 
systems design.

Axelrod (1997) mandates that the programming of a simulation model should 
be verified (referred to as internal validity), useful and extendible. None of these 
requirements are easy to achieve with any model, especially not as simulations 
scientists iterate in the simulation process and incorporate more and more dynamics 
in their conceptual model. Each new dynamic often carries a new set of assumptions 
and a limited interface to the whole model. For usability and extensibility, the user 
must be able to easily interact with existing dynamics and add new ones.

It is best practice to maintain a log of the simulation’s model, complete with 
a list of assumptions. A standard process for documentation logs a model ele-
ments’ overview, design concepts and details (Grimm et al., 2010). This template 
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is extremely useful in maintaining many design decisions behind modeling and 
often gives the simulation team a better understanding of how the elements 
and sub models work, which can decrease the time required for verification. 

4 CONCLUSIONS

Modeling and simulation techniques have a long history with policy analysis, most 
of these methods involve System Dynamics models and closed-form mathematical 
equations. These methods do not expose underlying micro-level behaviors that 
cause the observed macro-level dynamics. Many policy options can efficiently 
affect these micro-level choices which can lead to very different systemic outcomes. 
In order to change the system at the micro-level, we need to understand which 
individual behaviors cause different emergent properties of the system.

Agent-based modeling (ABM) provides a toolset for analysts to test which 
underlying behaviors could cause macro-level dynamics. This is performed through 
abductive reasoning exercises where plausible explanations are tested in silico, over 
many repetitions. ABM’s goal is not predicting an outcome but, rather, explaining 
how an outcome can be achieved through the choices and interactions of many actors.

This experimentation method is unique because we build the system we 
observe.  Generally, this is all done through computer simulation models where 
a conceptual model is expressed is computer code and executed. Modeling and 
simulation is an iterative process where simulation scientists add complexity 
into their models until the output seems valid. This rapid iteration can challenge 
development and cause software bugs to creep into the simulation. These errors 
are of large concern because the goal of a system is to study emergence which is 
not known a priori. Therefore, we must check and recheck our implementations, 
always looking for ways to simplify our model, verify the simulation’s operation 
and validate the simulation model’s output to the real-world system. Researchers 
need to understand the potential of complexity tools for public policy but we must 
also accurately convey the proper use and limitations of these methods. 
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CHAPTER 5

OPERATIONALIZING COMPLEX SYSTEMS1

Jaime Simão Sichman2

1 COMPLEX SYSTEMS AS MULTI-AGENT SYSTEMS

In this introductory section, we characterize social and complex systems, and show 
how multi-agent systems (MAS), a theoretical and applied branch of artificial intelligence 
(AI), are considered as the ideal computing realization for these kind of systems. 
We then introduce a simulation technique based on MAS, called multi-agent-based 
simulation (MABS), presenting its goals, advantages, and limitations.

1.1 Social systems as complex systems

As seen in the previous chapters of this book, complex systems present as a major 
characteristic the fact of being composed of a collection of a great number of 
individuals that interact with each other, following different rules and taking into 
account different contexts. The main characteristics of such systems are the following:

1) nonlinearity: interaction patterns among different individuals rarely 
follow linear rules;

2) multiple abstraction levels: one can view and analyze such systems by 
adopting the perspective of different abstraction levels, ranging from 
individuals to collective entities;

3) emergence: the behavior of the overall system can hardly be predicted a priori, 
since local interactions may result in some dynamic emergent phenomena;

4) open systems: in real complex systems, it is quite often the case that individuals 
can enter and leave dynamically the system, without a global governance.

Thus, certain physical, biological and social phenomena may be characterized 
as complex phenomena. If we consider specifically human social systems, these 

1. The application examples shown in this chapter and the SimCog survey were developed within a cooperative research 
with Prof. Helder Coelho, from Universidade de Lisboa, Portugal, and were carried on by some previous students, Diana 
Francisca Adamatti, Nuno David, Maria das Graças Bruno Marietto, Júlio de Lima do Rego Monteiro and Luis Gustavo 
Nardin, to whom the author is very grateful.
2. Laboratório de Técnicas Inteligentes (LTI) Escola Politécnica (EP) Universidade de São Paulo (USP). E-mail: <jaime.
sichman@poli.usp.br>.  Jaime Simão Sichman is partially funded by CNPq, Brazil, grant 303950/2013.
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present at least two further dimensions, 2nd order emergence and social constructs. 
By the term 2nd order emergence, we denote the following process:

1) interactions at the individual level create patterns at the global level;

2) however, unlike other complex systems, some of such global patterns 
may continue to exist even when the individuals that originated them 
leave the system;

3) such patterns are then recognized by other individuals, who name and 
represent them as part of the social reality, and respond to them adequately;

4) in this way, there is a feedback from the global level to the individual 
level, generating what is called 2nd. order emergence.

Moreover, since people exchange their subjective representations of reality 
by using natural language, we can consider that these global patterns are socially 
constructed by the individuals.

As an example, a public land occupation policy that deforests a certain area 
for constructing a new highway generates a unique global phenomenon. A GPS 
system can detect a clearing in the woods, a significant area without green coverage. 
However, the social constructs created by the individuals involved can be very 
different: probably, local residents interested in a faster displacement will consider 
these phenomena as positive (“they are performing well the task of the highway 
construction”), whereas the inhabitants of the region concerned with sustainability 
will adopt a negative bias (“they are destroying the forest”). Such social constructs 
are taken into account in the next decision cycles of these agents (“I will/I will not 
vote for this candidate because of this fact”).

Such characteristics make it difficult the use of conventional computing 
techniques for the development of such systems. No predefined algorithm can 
predict the emergence of collective phenomena, neither the feedback occurrence 
between individual and collective levels. Thus, more specific modeling and implementation 
techniques should be used, as explained next.

1.2 Multi-Agent Systems (MAS)

Multi-agent systems (MAS) is a well-established branch of theoretical and applied 
research, whose origin comes from artificial intelligence (AI), and which tries to 
solve problems encountered when one decides to resolve a set of interacting tasks in 
a distributed computational environment. Named in the early days as distributed 
artificial intelligence (DAI), a comprehensive synthesis of the MAS domain is out 
of scope of this chapter, please refer to Ferber (1995) and Wooldridge (2002) for 
more details.
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DAI soon revealed the need for a certain degree of autonomy to its components: 
the more autonomous the local units of the system are, the more efficient the 
distribution of tasks and operation is, and consequently the lower the computational 
load of the global system is as well. This discovery stimulated AI researchers and 
designers to focus their attention to certain intriguing and seemingly philosophical 
issues, such as how to conceive, design and develop an autonomous system. More-
over, the development of autonomous systems raised a second question, maybe 
even more complicated than the first one: how to get coordination and cooperation 
between autonomous systems that perform a common task? In other words, how to 
orchestrate cooperative behaviors in societies of self-interested agents? Interestingly, 
these issues are also fundamental for policy makers, as illustrated in the latter 
examples of this chapter.

Thus, the MAS domain is characterized by the study, design and implementation 
of artificial agents societies. These agents can be very different, ranging from very 
simple ones, called reactive agents, to more complex ones, endowed with some 
cognitive skills, called deliberative agents.

In particular, DAI and MAS provided architectures and platforms to design 
and implement autonomous agents. This fact contributed significantly to 
establishing a simulation technique called multi-agent-based simulation (MABS), 
an approach that has produced a large body of simulation results of social and complex 
phenomena; in particular, the reconstruction of the more traditional approach of 
cellular automata, thanks to new MABS technical and theoretical instruments. 
For a review of simulation studies based on cellular automata, see Hegselmann, 
(1997), and for a comprehensive view of MABS, please refer to Sichman (2008).

The multi-agent-based simulation approach strengthened the potential of 
computer simulation as a tool to theorize about scientific issues in complex and 
social systems. In particular, the notion of a computational agent, implementing 
cognitive capabilities (Doran, 1998), is encouraging the construction and operation 
of artificial societies (Nigel and Conte, 1995; Epstein and Axtell, 1996).

1.3 Multi-Agent-Based Simulation (MABS)

In Davidsson (2002), Paul Davidsson defines the Agent-Based Social Simulation 
(ABSS) domain research as “the use of agent technology for simulating social 
phenomena on a computer”, and characterises it by the intersection of three 
scientific domains: agent-based computing, social sciences, and computer simulation, 
as shown in figure 1.

Agent-based computing is considered to be a computer science subdomain, 
whose goal is to model, design and implement artificial agents. On the other hand, 
social sciences aim to study interactions among social entities, like social psychology, 



Modeling Complex Systems for Public Policies88 | 

management, policy, and some areas of biology. Finally, computer simulation 
proposes different techniques for simulating any phenomena on a computer, as 
discrete event, object-oriented, and equation-based simulation. It provides a more 
detailed understanding of the phenomena, allowing experiments that cannot be 
made in the real world, or whose cost and time involved would be prohibited.

FIGURE 1 
The intersections of the three areas defining ABSS 
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Source: Davidsson (2002).

Any combination of two of these domains presents interesting challenges 
and has some interesting work being currently carried on:

• Social Aspects of Agent Systems (SAAS): intersection between social sci-
ences and agent-based computing, it is mainly concerned with the study 
of social constructs of both human and biological societies, that can 
serve as inspiration to develop computational models for implement-
ing social-based techniques, such as norms, institutions, organizations, 
cooperation, competition etc.

• Multi Agent Based Simulation (MABS): intersection between computer 
simulation and agent-based computing, it aims to use agent technology 
for simulating any phenomena on a computer.

• Social Simulation (SocSim): intersection between the social sciences and 
computer simulation, it is interested in simulating social phenomena 
on a computer, using any simulation technique; typically, it uses simple 
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models of the simulated social entities, like cellular automata and objects, 
resulting in interactions that are not too much complex.

Hence, ABSS could be seen as a particular specialization of SocSim, by 
aggregating software agents, with more powerful cognitive models and richer 
communications and interaction mechanisms.

Quoting Davidsson (2002), the MABS approach, as well as other micro 
simulation techniques, present some advantages to simulate complex phenomena:

The contribution from agent based computing to the field of computer simulation 
mediated by ABSS is a new paradigm for the simulation of complex systems with 
much interaction between the entities of the system. As ABSS, and other micro 
simulation techniques, explicitly attempts to model specific behaviors of specific 
individuals, it may be contrasted to macro simulation techniques that are typically 
based on mathematical models where the characteristics of a population are averaged 
together and the model attempts to simulate changes in these averaged characteristics 
for the whole population. Thus, in macro simulations, the set of individuals is viewed 
as a structure that can be characterized by a number of variables, whereas in micro 
simulations the structure is viewed as emergent from the interactions between the 
individuals. Parunak, Savit and Riolo (1998) compared these approaches and pointed 
out their relative strengths and weaknesses. They concluded that (...) agent-based 
modeling is most appropriate for domains characterized by a high degree of localization 
and distribution and dominated by discrete decision. Equation-based modeling is 
most naturally applied to systems that can be modeled centrally, and in which the 
dynamics are dominated by physical laws rather than information processing. 

Hence, we think that the same conclusions derived by Davidsson for the 
advantage of using MABS techniques to address social phenomena hold if we 
consider other complex, but not necessarily social, phenomena. In other words, 
if we substitute in figure 1 the social science domain by other one related to the 
complex phenomena we want to study, like Physics, Environmental Sciences, or 
Traffic Engineering, we would possibly have the same advantages of using agent-based 
techniques to analyze this phenomena.

Thus, we believe that MABS techniques may be seen as a major substrate for 
simulating any complex phenomena.

1.3.1 MABS Advantages and Limitations 

The main advantages of a MABS approach are the following ones (Nigel and 
Troitzsch, 2005):

1) The experimental hypotheses are expressed at the individual level, 
and thus easier to model, implement and visualize;

2) By specifying the interaction rules between the agents, in a simple way, 
one can model complex dynamics patterns in the societal level;
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3) The models themselves are the experimental objects, i.e., they are 
simulated, which increases the understanding of their positive and 
negative aspects.

One the other hand, their major drawbacks are the following ones (Nigel 
and Troitzsch, 2005):

1) The exact reproduction of the complexity of the real system, including 
2nd. order emergence (micro/macro link) is very difficult to obtain;

2) Due to the great number of local interactions, possibly distributed  
in several abstraction levels, it is very difficult in some cases to understand 
how the results are produced;

3) Validation is a hard task, as discussed in section 2.2.

1.3.2 MABS Goals 

An exploratory survey of the structure of interdisciplinary research in Agent-Based 
Social Simulation is presented in David et al. (2004). One hundred and ninety six 
researchers participated in a survey, called SimCog survey, completing an on-line 
questionnaire. The questionnaire had three distinct sections: a classification of 
research domains, a classification of models, and an inquiry into software requirements 
for designing simulation platforms.

The survey results allowed to disambiguate the variety of scientific goals and 
modus operandi of researchers with a reasonable level of detail, and to identify a 
classification of agent-based models used in simulation.

In particular, researchers were motivated to use MABS for different reasons;

 - Artificial social models: to model and simulate artificial societies that do 
not necessarily reference a concrete target or specific theory about the 
real world, but only some theory or proposed idea of abstract nature;

 - Social-scientific models: in this trend, researchers use the theoretic framework 
of social and/or environmental sciences to model social and environmental 
phenomena. The target systems are directly observable, or those for which 
there is some meaningful evidence about their existence. Two main 
directions can be detected:

• Socio-cognitive models: to model socio-cognitive or sociological theories 
and implement computational animation of logical formalisms, 
in order to refine/extend social theories and check its consistency;

• Socio-concrete models: to model and simulate concrete social systems 
based on direct observation and statistical data, in order to understand 
social and institutional processes and phenomena;
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 - Prototyping for resolution: to model and simulate multiagent systems to 
explore multiagent system requirements and intended behaviours, for 
use in real environments and general-purpose engineering.

On the other hand, Amblard (2010) classifies the possible goals of MABS 
in three distinct groups:

• Comprehension: the goal is to have a better undertanding of a social/
complex phenomena. This goal can be achieved by the test/elaboration 
of hypotheses, which can be considered as a kind of prospective simula-
tion, and by the formalization/verification of complex systems theories;

• Decision: the goal is to use MABS as a tool to help stakeholders to 
makedecisions in complex settings. This can be achieved by doing 
predictive simulation for decision-making in order to test different 
scenarios through simulation, and/or by constructing artifacts for helping 
negotiation and/or coordinated management;

• Participatory Simulation: the goal is to use MABS as a tool for enhance 
stakeholders and/or students to interact in a common complex environment, 
aiming training or teaching purposes. This feature is also known in the 
management domain as Serious Games.

2 MABS DEVELOPMENT METHODOLOGY

In this section, we show the several steps that one must face to design, implement 
and test a MABS experiment. We also briefly discuss some fundamental issues, 
like verification, validation and calibration. In the sequence, we indicate how one 
can enhance the experiment’s readability and repeatability.

2.1 Development steps

Considering the class of socio-concrete models introduced in section 1.3, the classic 
steps to develop a MABS of a complex phenomenon are the following (Hassan, 
Pavon and Nigel, 2008):

1) real-world data collection;

2) development of an agent model and a simulation model driven by an 
underlying theory and by empirical data collected;

3) definition of initial parameters, based on surveys and censuses;

4) implementation of simulation and generation results;

5) validation of the simulation model by comparing the results with the 
data collected, which must necessarily be different from those used to 
construct the model.
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FIGURE 2
MABS development steps
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Figure 2 illustrates these sequence of steps. In step 1, we collect real world 
data. Traditionally, this has been an ad hoc process, and basically collected data 
remained static. As it became common the spread of new forms of human interaction 
heavily based on the Internet and providing thousands of individuals opinions and 
relations, it has then become possible to capture dynamic data flows, which reflect 
the change in the behavior of individuals over periods of time. Such a scenario 
seems more suitable for social simulations, since society is essentially a complex 
system as a result of dynamic processes, implying that the simulation should 
consider that people have the ability to identify and respond to emerging phenomena. 
This means that it is necessary that the input data should reflect changes in the 
communication structure and its impact on human behavior. However, currently 
there are no well established techniques that allows to incorporate flows of data 
restricted to specific periods, i.e. time windows in social simulation models are 
still in the border of the state of art.

Step 2 consists on defining the agents behavior. At this step, the rules and 
external conditions that guide the behavior of agents are defined on the basis of 
those aspects that are considered relevant in the context of the simulation. The huge 
number of previously developed theories then gains a considerable importance, since 
these theories indicate the relevant factors in the human decision making process. 
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However, this modeling process becomes almost a craft process when deciding on 
which aspects are discarded and which are incorporated into the agent decision 
making process. Furthermore, in situations where MABS is used to test possible 
scenarios, one needs to ensure a homomorphism between the simulation model 
and the real world, i.e., there must be a mapping between simulated and real data. 
When analyzing data collected from the real world, there must be a judgment on 
which factors in the process of the agents’ internal decision making are crucial for 
determining the behavior of the system as a whole. Being a complex phenomenon, 
and given the nonlinearities of the system, such a task is far from being trivial. 
In the state of art, there is no formal method yet to help defining these factors.

In step 3, data obtained from surveys and censuses are used as MABS inputs. This 
usually requires some definition of the simulation parameters, such as initial conditions 
values and exogenous factors. In general, parameters such as the percentage of the society’s 
agent profiles distribution are defined in two ways (Hassan, Pavon and Nigel, 2008):

• randomly, based on a uniform distribution, which may not represent 
the real world. Typically, the simulation final result is considered as the 
aggregation of partial simulation results generated from several rounds, 
each of them initialized with a different random value. In this approach, 
it is considered that the real world probably has similar values to those 
obtained in several simulation rounds, which is not necessarily true;

• based on empirical data collected through research. In this case, micro-
simulations techniques, such as Gupta and Kapur (2000) may be used 
to guide the choice of simulation parameters. This approach was quite 
successful in traffic simulations, but it seems inappropriate to social 
simulations, since parts of the system captures constituents i) individually, 
i.e. without considering the social interaction and interference of 
communication structures on the behavior of agents; and ii) statically, thus 
reflecting a momentary picture of the system at a given point in time.

After running the simulation, the results must be validated with the data 
collected in the real world to establish its reliability. This activity, represented in 
step 4, is extremely important, although still very controversial. 

Step 5 shows the simulation correction module, that attempts to calibrate 
the system whenever a predefined error threshold is exceeded. By applying some 
techniques, it is possible to identify whether the divergence of data is systemic, i.e. 
the agent decision rules should be changed, or it is merely a normal discrepancy 
caused by different initial random conditions. In figure 2, the output dashed line 
of this module indicates that this improvement is optional, and does not need 
to be performed necessarily if the deviation in the simulation results is within 
acceptable limits.

These two last steps are discussed in detail in the sequence.
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2.2 Verification, validation and calibration

As mentioned by David, Sichman and Coelho (2005), the first thing that should be 
borne in mind is that the computer science meaning of the terms verification and 
validation is quite different from the meaning usually given in the social sciences. 
Nevertheless, both terms are used in social simulation, often with disparate semantics.

For the classical theory of computation, the role of program verification is to 
ascertain the validity of certain output as a function of given input, regardless of 
any interpretation given in terms of any theory or any phenomenon not strictly 
computational. The execution of a program is understood, in this sense, as a calculus 
of formal inference, which manipulates symbols without regard to their content.

Another kind of experimental evaluation, which may be confounded with 
the latter, is called program validation. The role of validation is to ascertain that the 
execution of a program behaves according to the relatively arbitrary expectations 
of the program end-users.

In their book (Nigel and Troitzsch, 2005), Nigel Gilbert and Klaus Troitzsch 
state that in the case of SocSim (and MABS) verification is difficult since many 
simulations include random number generators; hence, every run is typically 
different and only the distribution of results can be theoretically anticipated. 
One hence needs to “debug” the simulation carefully; this may be done using a 
set of test cases, for instance those corresponding to boundary conditions and/
or threshold values, when the outcomes values can be easily predicted. A good 
practice is to repeat these test cases whenever a major change in the model is 
done, to ensure that the outcomes are still correct. If possible, an automatic 
mechanism to run the test suite and record the results is desirable; this mechanism 
may even highlight differences that need attention, using a version control 
system, as provided in some programming environments, to identify the versions 
responsible for the results.

On the other hand, validation aims to assess whether the simulation is a 
good model of the target phenomena: if a model can be relied on to reflect the 
behaviour of the target, then we can say that it is “valid”.

Typically, validation is performed by comparing each simulation result, on 
an individual basis, with the corresponding real value. Several statistical methods 
can be used for this purpose, such as R2 and mean absolute error. It should be 
emphasized, however, that this type of point-to-point validation is rarely obtained 
in scenarios with random variations of their conditions; particularly in chaotic 
systems, small fluctuations in the initial conditions change dramatically the system 
final trajectory (Sterman, 2000). Thus, usually a simulation model is considered 
sufficiently faithful when it presents the same variations observed in the real world 
in the frequency, amplitude and phase of the system’s oscillations.
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According to Nigel and Troitzsch (2005), validation is extremely hard in 
SocSim, for several reasons:

• sometimes, both the model and the target are likely to be stochastic pro-
cesses, and consequently validation would depend on the expected statisti-
cal distribution of the output measures. Unfortunately, in SocSim these 
distributions are rarely known in advance and are not easy to estimate;

• many simulations are path-dependent, i.e., their outcomes depend on 
the initial conditions, and these latter may be very sensitive to the values 
of some models’s assumptions;

• there are always some aspects of the target that are irreproducible by 
the model;

• sometimes, the model may be correct, but the data about the target are 
not, or are a result of some assumptions and estimations.

Artificial social models, as shown in section 1.3, do not refer to a concrete 
target, and in this case verification and validation are hardly distinguished.

Once a model is verified and validated, one needs also to perform a sensitivity 
analysis, i.e., trying to infer the extent to which the behaviour of the simulation 
is sensitive to the initial assumptions which have been made. The user must 
change the initial conditions and parameters of the model by a small amount, 
rerun the simulation, and observe eventual sensible differences in the outcomes. 
This is done repeatedly, while systematically changing the parameters. In SocSim, 
as the number of parameters is very high, this leads to a combinatorial explosion. 
One technique to avoid this problem is to vary these parameters randomly, thus 
generating a distribution of outcomes.

Model calibration is another important issue in any simulation experiment. 
It consists on adjusting an already existing model to a reference system. In general, 
this is done by adjusting model parameters to a set of given samples from the reference 
system. A formal approach to simulation calibration is proposed in Hofmann 
(2005), where the author shows that this problem is NP-complete.

Regarding MABS calibration, a nice work is described in Fehler, Klügl and 
Puppe (2006). The authors state that calibration of MABS models pose big problems 
for standard calibration techniques, due to the large parameter search spaces, long 
simulation run times, different observation levels upon which the model needs 
to be calibrated and uncertainties in the structural model design. Regarding this 
latter, sometimes it is not clear what properties and behavior, i.e. modeled structure 
of the real-world agent, that actually lead to the measurable aggregate values. 



Modeling Complex Systems for Public Policies96 | 

Therefore, this leads to a rather high uncertainty about a valid model structure and 
consequently about a valid parameter setting. In their work, they present some 
methods to improve the calibration process of agent-based simulations.

Another interesting approach is presented in Windrum, Fagiolo and Moneta 
(2007), where the authors describe three alternative methodological approaches used 
in agent-based economics to calibrate and empirically validate agent-based models.

2.3 Readability and repeatability

A criticism that MABS methods suffer, when compared to traditional analytical 
methods, is the issue of repeatability of experiments. While a mathematical equation 
generates the same solution as many were the times it resolves, it probably does 
not occur with a simulation.

The ODD (Overview, Design concepts, and Details) protocol (Grimm  
et al., 2006) was published in 2006 to standardize the published descriptions of 
individual-based (IBM) and agent-based models (ABMs). The primary objectives 
of ODD are to make model descriptions more understandable and complete, 
thereby making ABMs less subject to criticism for being irreproducible. According 
to the authors, “the basic idea of the protocol is always to structure the information 
about an ABM in the same sequence.”

The protocol is composed of seven elements, which can be grouped into 
three blocks:

• the Overview block consists of three elements: Purpose, State variables 
and scales, and Process overview and scheduling. They provide an overview 
of the overall purpose and structure of the model;

• the Design concepts block provides a common framework for designing 
and communicating ABMs. The protocol also include some checklists 
related to such design concepts, that are not mandatory, but give a better 
idea of the design philosophy: emergence, adaptation, fitness, prediction, 
sensing, interaction, stochasticity, collective and observation;

• the Details block specifies information about the initialization, inputs 
and eventual submodels.

In 2010, the protocol was reviewed and gained an update, due to some 
feedback suggestions given by the protocol users (Grimm et al., 2010). Figure 3 
presents the original and updated elements of the protocol.
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FIGURE 3 
The seven elements of the original and updated ODD protocol
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3 MABS PLATFORMS

In this section, we present the main characteristics of some of the most used 
computational tools to implement MABS. We start by characterizing the pattern 
that the development of these platforms has followed. We then detail six platforms, 
chosen by their different main concepts, underlying programming languages and 
programming skills required from the users. We then conclude by presenting a 
comparative analysis of these tools.

1.1 Historical evolution

As pointed out by Nigel and Bankes (2002), the evolution of MABS platforms 
have followed the same pattern previously traced by statistical software.

In a first phase, started in the early 1990s, most researchers developed their 
models using conventional programming languages, such as C, Java and Smalltalk. 
Such an approach presented many disadvantages: basic models and algorithms 
had to be continuously reimplemented, graphical libraries were not adapted to 
dynamic modeling and understanding and accessing the code was a task limited 
to the experts on the language and/or the compiler.

In a second phase, libraries of routines were designed and implemented, so 
that they could be more easily included in one’s own purpose-build program. 
Although having a great advantage compared to the task of writing (and validating) 
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an own program, they still required a suitable programming knowledge from the 
developer in order to use/adapt/enhance the library code.

Finally, the breakthrough came with the design and development of packages’, 
i.e., a set of routines assembled and accessed by a common standardized user inter-
face, of which SPSS and SAS are the best-known early examples. Obviously, this 
approach has a limitation: quoting the authors of the article, “However, to ensure 
that they are sufficiently straight-forward for the target audience, some sacrifices 
in functionality have had to be made.”

We have had a great advance in the last 10 years since the publication of this 
article. Several MABS platforms have been proposed in this period. In the following 
subsections, some of these platforms will be described, highlighting their major 
characteristics. This description is based on the documentation of the platforms and 
on some surveys (Railsback, Lytinen and Jackson, 2006; Allan, 2010). After presenting 
the platforms, we provide in section 3.8 a comparative analysis of their characteristics.

3.2 Swarm

Swarm3 (Minar et al., 1996) was the first agent based modeling and simulation 
platform released. It was created at the Santa Fe Institute in 1994, and it was 
specifically intended for artificial life and complex systems applications. Recently, the 
project development and management moved to the Swarm Development Group.

Swarm was designed as a general language and toolbox for MABS, intended 
to be used in different scientific domains. In its design, there is a clear conceptual 
separation between the pieces of software that implement a model and those 
others aimed for observing and conducting experiments on the model. Differently 
from other platforms, this distinction between the actual model and the software 
needed to observe and collect its data facilitates to change one part without 
influencing the other.

Another key concept is the design of a model as a hierarchy of swarms. 
A swarm is composed by a set of objects and a schedule of the actions that these 
objects execute. Swarms can be defined hierarchically: they can contain lower level 
swarms, and be part of higher level swarms. In this way, emergent phenomena can 
be easily modeled. When composing these swarms, their corresponding schedules 
are conveniently integrated. A very simple model, for instance, may be formed by 
one single “model swarm” associated to an “observer swarm”, that serves to assess 
the model behavior.

Swarm was designed before the domain of Java as a standard object-oriented 
language, and it was implemented in Objective-C, since this language, differently 

3. Available at: <http://savannah.nongnu.org/projects/swarm>.



Operationalizing Complex Systems  | 99

from C++ for instance, do not have strong typing, and hence allows that a model 
schedule can request some actions to a list of objects of unknown types. By using 
its own internal data structures and memory management to implement model 
objects, a user is able to design observer swarms that implement “probes”, thus 
allowing users to monitor and control any simulation object. These objects can 
provide both real time data presentation and storage of data for later analysis.

Swarm provides a set of libraries for building models and analyzing, displaying 
and controlling experiments on those models. Since these libraries are coded in 
Objective-C, a user would have to program in this language to modify/enhance 
these libraries. Recently, a version called Java Swarm was designed to provide, 
with as little change as possible, access to Swarm’s Objective-C library from Java. 
However, this is not a Java version of the platform: it simply allows Java code to 
pass messages to the Objective-C library with workarounds to accommodate strong 
typing in the Java language.

Swarm is probably still the most powerful and flexible MABS platform. 
However, it has a very steep learning curve. In order to use efficiently the platform, 
a modeler must have at least some previously acquired programming skills in 
Objective-C, and possibly in Java, and must be familiar with object-orientated design.

3.3 Repast

RePast4 (Recursive Porous Agent Simulation Toolkit) (North et al., 2005) is a 
platform that was developed at the Social Science Research Computing Lab of 
the University of Chicago. It seems that its development aimed different objectives: 
i) to implement in Java a system whose functionality would be equivalent to 
Swarm; ii) to provide libraries and tools specifically designed for the social science  
domain; and iii) to deliver a system that would enable inexperienced users to build 
models more easily.

Repast did not adopt all of Swarm’s design choices: for instance, it does not 
implement swarms. It is a Java-based platform, and hence the user developing a 
simulation ideally needs skills to program this language.

The authors report in North, Collier and Vos (2006) three implementations 
for the system: i) Repast for Java (Repast J), the original Java language 
implementation of the Repast specification; ii) Repast .NET, a Microsoft .NET 
implementation of the Repast specification written in the C# language; and 
iii) Repast for Python Scripting (Repast Py), which is a rapid application development 
(RAD) tool for producing Repast simulations in which agent behavior is scripted 
using the Python computer language. As a RAD tool, Repast Py differs significantly 

4. Available at: <http://repast.sourceforge.net>.
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from Repast J and Repast.NET. In Repast Py, user services are presented in a 
visual manner through a separate application whereas Repast J and Repast .NET 
are frameworks that are accessed through standard programming languages such 
as Java or C#. It is quite useful for novices when they need to begin to construct 
a simulation model.

More recently, a new release was delivered, called Repast Simphony 
(Repast-S). This free and open source toolkit was developed at Argonne National 
Laboratory, and it presents several tools for visual model development, visual 
model execution, automated database connectivity, automated output logging, 
and results visualization. Finally, there is also a C++ based implementation release, 
called Repast for High Performance Computing (Repast-HPC), which is intended 
to be used in massive simulations running in distributed computers. This release, 
however, do not present all then graphical interfaces of the other releases.

Quoting Railsback, Lytinen and Jackson (2006):

Repast-S probably now has the greatest functionality of any AMBS package. It 
supports a wide range of external tools for statistical and network analysis, visu-
alization, data mining, spreadsheets, etc. Point and click modeling in 2D and 3D 
is supported. Models can be checkpointed in various formats including XML. 
The discrete event scheduler is concurrent and multi-threaded, various numerical 
libraries are available, e.g. for random numbers and distributed computing is supported 
using the Terracotta Enterprise Suite for Java.

3.4 Mason

Mason5 (Luke et al., 2005) is an open source and free Java-based platform, 
developed by a joint effort of two units of George Mason University: the Computer 
Science Department and the Center for Social Complexity. It is not based on any 
other previously developed toolkit. It is a general purpose platform, not aimed 
to a specific domain. 

The main goal of the system is to offer a more concise and performant (faster) 
option to Repast. It focusses on models whose simulations take a long time, that 
are computationally demanding, and that involve a huge number of agents whose 
number of interactions is very high. Design choices seem to have been driven largely 
by the goals of maximizing execution speed and assuring complete reproducibility 
across hardware. Hence, the ability to dynamically attach/detach graphical interfaces 
to a simulation and to resume/stop a simulation while moving it among different 
computers was considered a priority requirement in its design. Consequently, core 
models run independently of visualization modules.

5. Available at: <http://cs.gmu.edu/_eclab/projects/mason>.
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In summary, Mason is a fast, easily extendable, discrete event MABS platform 
written in Java. It was designed to serve as the basis for a wide range of MABS 
tasks, ranging from swarm robotics to machine learning and to social complexity 
environments. Mason contains both a model library and an optional suite of 
visualization tools in 2D and 3D.

3.5 NetLogo

NetLogo6 (Wilensky, 1999) is a MABS platform originally conceived in 1999 by 
Uri Wilensky, developed at the Center for Connected Learning and Computer-
Based Modeling, Northwestern University. NetLogo, which originally was called 
StarLogoT, is a high level platform, and provides a simple yet powerful programming 
language, built in graphical interfaces and comprehensive documentation.

The platform is based on the Logo language, which is a dialect of Lisp; 
consequently, it does not present all the rich control and commands of a standard 
programming language. NetLogo aimed to develop a certain class of models, i.e., 
agents that move and act concurrently on a spatial grid, and whose behaviors result 
from local interactions.

Quoting Allan (2010), “NetLogo clearly reflects its heritage from StarLogo as 
an educational tool, as its primary design objective is ease of use. Its programming 
language includes many high level structures and primitives that greatly reduce 
programming effort.” Hence, it is the ideal platform for modelers that do not have 
programming skills and for beginners in the field.

NetLogo is a really professional platform, both in its product design and 
associated documentation. It also comes with a library of models, containing a 
huge set of pre-written simulations addressing different domains in the natural and 
social sciences, including biology and medicine, physics and chemistry, mathematics 
and computer science, economics and social psychology.

An example of use of the NetLogo platform, in the context of game theory 
and learning, is presented in section 5.2. 

3.6 Cormas

Developed by the Green team in CIRAD, France, whose main interest is to develop 
and test models for managing natural renewable resources, Cormas7 (Bousquet et 
al.,1998) is a powerful platform when one wants to focus on interactions between 
stakeholders about the use of natural renewable resources.

6. Available at: <http://ccl.northwestern.edu/netlogo/>.
7. Available at: <http://cormas.cirad.fr>.
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According to the information available in the project site:

Cormas is a simulation platform based on the VisualWorks programming environment 
which allows the development of applications in the object-oriented programming 
language SmallTalk. Cormas pre-defined entities are SmallTalk generic classes from 
which, by specialization and refining, users can create specific entities for their own model.

The Green team is influenced by the ideas of two different research associations: 
the International Society of Ecological Economics (ISEE) and the International 
Association for the Study of Common Property (IASCP). The former is interested 
to integrate ecological systems within economic frameworks, and their models 
are often based on dynamic systems modeling to represent the flow of energy, 
information or money. The latter focus on the management of common property, 
particularly renewable natural resources, whose techniques are quite often based 
on game theory in which individual behaviors and interactions are taken into 
account. Lastly, a regional approach uses GIS (Geographical Information Systems) 
as its main modeling tool. Cormas was therefore developed to cope with these 
different influences.

Particularly, the group has developed a framework called companion-modelling 
(Barreteau, 2003), which enables stakeholders to decide long-term objectives on the 
basis of a shared conception of how the present situation should evolve. The entire 
mediation approach presupposes that the stakeholders are well informed of the issues 
dividing them and of the fact that they all have an interest in solving the original 
problem. From a technical point of view, the framework uses both MABS and role-
playing games. Other authors called this junction of technologies as participative 
simulation (Guyot and Honiden, 2006). 

An example of use of the Cormas platform, in the context of participative 
simulation, is presented in section 5.3.

3.7 Gama

Gama8 (Grignard et al., 2013) is a MABS platform developed by several teams 
under the umbrella of the IRD/UPMC international research unit UMMISCO, 
comprising the Vietnam National University (Vietnam), CNRS/University of 
Rouen (France), CNRS/University of Toulouse 1 (France), University of Can Tho 
(Vietnam) and CNRS/University Paris-Sud (France). It is one of the more recently 
developed MABS platforms.

Gama’s main two differences with respect to other MABS platforms are 
i) a richer integration of geographical vector data (series of coordinates defining 
geometries); and ii) the facility to define multi-level models. By using a modeling 

8. Available at: <http://doc.gama-platform.org/>.
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language based on XML, called GAML, the platform facilitates the definition of 
rather complex models, which integrates individual agents, other entities of 
different scales and geographical vector data. By providing such integration, Gama 
allows the use of more powerful tools, like Geographic Information Systems (GIS) 
spatial analysis, to manage these data.

According to the authors, there are three different ways to integrate geographical 
vector data in a MABS platform, from a simpler to a richer representation:

• geographical vectors can simply be read/written from/to external files 
and databases, thus integrated seamlessly to the underlying platform;

• the platform can represent these data as a “background layer”, constituted 
of geographical objects. Agent can thus move, evolve and interact according 
to the constraints defined in this layer;

• an agentification process is carried out, meaning that each geographical 
object is considered as an agent as well.

Regarding multi-scale representation, the platform enables to model an “agent” 
to represent any individual or aggregation/structure of individuals of the reference 
system, at any spatial scale and across different time horizons. In this way, the modeler 
can choose freely the reference entities that will be represented by agents; the choice 
depends exclusively on the abstraction level that the modeler wants to work with.

According to the authors, current MABS platforms lack support to represent 
these multi-level structures as explicit entities in the model, as well as tools to detect 
them. Consequently, when modelers need to represent these structures and follow 
their dynamics during the simulation, they face some difficulties. The development 
of the Gama platform intends to cover this gap.

3.8 Comparative Analysis

The set of ABS and MABS platforms presented in the last subsections is far from 
being complete. In fact, in the last fifteen years the community has developed a 
huge number of libraries, toolkits and platforms, each one with different purposes 
and characteristics: some are built for general purpose modeling, while others focus 
on a particular domain; some are open source, some are closed source, and others 
are proprietary; some of them offer a simple user interface, while others require 
from the user skills in programming techniques.

As a consequence, several surveys were produced to compare ABS and MABS 
platforms, in order to make it easier for a modeler to choose which would be the “best 
option” for modeling his problem. Unfortunately, there is not an easy answer for this 
question, since we can compare these platforms along different dimensions and aiming 
to different purposes. 
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Perhaps the most seminal survey was the one produced by Railsback, Lytinen and 
Jackson (2006). These authors examine in detail four platforms: NetLogo, Mason, Repast, 
and Swarm. To illustrate how difficult is to compare these systems, the authors showed 
that they differ even in the terminology adopted, as shown in figure 4.

FIGURE 4
Terminology difference among platforms

Concept
Term

MASON NetLogo Repast Swarm

Object that builds and controls simulation objects model observer model model swarm

Object that builds and controls screen graphics model-WithUI interface (none) observer swarm

Object that represents space and agent locations field world space space

Graphical display of spatial information portrayal view display display

User-opened display of an agent’s state inspector monitor probe probe display

An agent behavior or event to be executed steppable procedure action action

Queue of events executed repeatedly schedule forever procedure schedule schedule

Source: Railsback, Lytinen and Jackson (2006).

In order to evaluate how easy would be for a modeler to use such platforms, they 
created a template, called “StupidModel”, composed of various levels, and they used 
their experience in simulating this model to evaluate and compare the platforms. 
In each new level, more capabilities were added in order to see how the platforms 
performed when dealing with more complex issues. In the first level, for instance, they 
checked just the underlying environment and verified how the agents were displayed 
in their environment. In level 2, agent had more actions added to their repertory and 
they examined how the scheduling of these actions was implemented by the different 
platforms. They finished by reaching 15 different levels, through which they examine 
characteristics such as environmental issues, model structure, agent scheduling, file 
input and output, random number generation, and statistical capabilities.

A second survey was presented in Tobias and Hofmann (2004). It compares 
four different Java-based SimSoc platforms, using three different criteria that were 
conveniently weighted to give a final result: i) general criterion, composed of license, 
documentation, support, user base and future viability; ii) modeling and experimen-
tation criterion, composed of support for modeling, support for simulation control, 
support for experimentation, support for project organization, ease of use, support 
for communication and ease of installation; and iii) modeling options criterion, 
composed of large number of complex agents, inter-agent communication, generation 
of agent populations, generation of networks, management of spatial arrangement, 
and dynamic structure change. By combining and weighting these criteria, Repast was 
the highest scored platform, as shown in figure 5.
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FIGURE 5 
Weighted total scores of the evaluated simulation frameworks

Criterion RePast Swarm Quicksilver VSEit

General (78) 71 62 48 44

Support for modeling and experimentation (186) 113 95 94 80

Modeling options (168) 127 109 99 103

Total 311 266 241 227

Source: Tobias and Hofmann (2004).

In Castle and Crooks (2006), the authors were interested in finding 
principles for MABS with the aim of developing geospatial simulations, in 
particular to aggregate Geographical Information Systems (GIS). However, 
according to the authors, “GIS are not well suited to dynamic modeling (e.g. 
ABM). In particular, problems of representing time and change within GIS 
are highlighted”. Having this goal in mind, they analyzed several MABS 
platforms. Figure 6 presents the results obtained for some shareware/freeware 
simulation/modeling systems.

More recently, in Nikolai and Madey (2009) one can find a kind of compilation/
extension of these previous surveys, considering both additional criteria and other 
platforms. The authors have analyzed fifty three different platforms, and examined 
the following five main dimensions: i) language required to program a model and 
to run a simulation; ii) operating system required to run the toolkit; iii) type 
of license that governs the toolkit; iv) primary domain for which the toolkit is 
intended; and v) types of support available to the user.

Another excellent recent survey is the one presented in Allan (2010), where 
the author has analyzed thirty one MABS platforms, and more thirteen generic 
multi-agent systems frameworks. The author also presents some applications 
of MABS in different areas as biology, chemistry, security and supply chain. 
Some issues about performing MABS in high-performance computers (HPCs) 
are also addressed.

4 OTHER TECHNIQUES

In this section, we present other computational techniques that may be used to 
model and analyze complex systems. In particular, we will address two techniques: 
machine learning and social networks. As these techniques have a huge theoretical 
background, we have chosen just to introduce their main ideas in a very high-level 
abstraction level and present some computational tools that could implement some 
algorithms useful for complex systems. 
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FIGURE 6
Comparison of shareware/freeware-simulation/modelling systems

Open Source Simulation/Modelling Systems

SWARM MASON Repast

Developers
Santa Fe Institute / 
SWARM Development 
Group, USA

Center for Social Complexity, George 
Mason University, USA

University of Chicago, Department of Social 
Science Research Computing, USA

Date of Incep-
tion

1996 2003 2000

Website
<http:/www.swarm.
org>

<http://es.gmu.edu/~eelab/projects/
mason>

<http://repast.sourceforge.net>

E-mail List
<http://www.swarm.
org/mai lman/listinfo>

<https://listserv.gmu.edu/archives/
mason-interest-l>

<https://lists.sourceforge.net/listis/listinfo/
repast-interest>

Implementation 
Language

Objective-C / Java Java Java / Python / Microsoft.Net

Operating 
System

Windows, UNIX, 
Linux, Mac OSX

Windows, UNIX, Linux, Mac OSX Windows, UNIX, Linux, Mac OSX

Required 
programming 
experience

Strong Strong Strong

Integrated GIS 
functionality

Yes (e.g. Kenge GIS 
library for Raster data: 
<http://www.gis.usu.
edu/sw arm)>

None

Yes (e.g. OpenMap, Java Topology Suite 
and GeoTools). Repast simulations can also 
be run within ArcGIS through an extension 
called Agent Analyst

Integrated chart-
ing / graphing / 
statistics

Yes (e.g. R and S-plus 
statistical packages)

None
Yes (e.g. Colt statistical package, and basic 
Repast functionality for simple network 
statistics)

Availability of 
demonstration 
models

Yes Yes Yes

Source code of 
demonstration 
models

Yes Yes Yes

Tutorials / How- 
to Documenta-
tion

Yes Yes Yes

Additional 
information

Minar et al. (1996) Luke et al. (2004)

Agent Analyst Extension <http://www.
institute.redlan. ds.edu/agentanalyst>

Useful  weblog: <http://www.gisagcnts.
blogsp ot.com>

Source: Castle and Crooks (2006) adapted from Najlis, Janseen and Parker (2001); Parker (2001).

4.1 Machine learning

In the last decade, society has produced huge amounts of data. Interestingly, from 
a user point of view, both an absence of data and many non-processed (raw) data 
are quite equivalent: data are useless, unless we extract information from them; by 
information, we mean to find regular patterns underlying these data.
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According to Mitchell (1997) and Witten and Frank (2011), the goal of 
machine learning (ML) is to build efficient algorithms that change their behavior 
with experience, in a way that makes them perform better in the future.

4.1.1 Basic concepts 

There are basically three ML paradigms:

• supervised learning, where correct examples, i.e., (input, output) pairs 
are presented to the system;

• reinforcement learning, where just a performance indicator (good, bad) is 
presented to the system;

• unsupervised learning, where no prior information is given to the system, 
who looks for regularities and statistical measures to learn.

Inductive learning is a type of supervised learning, where the system tries 
to find a concept description that fits the data. In other words, the system tries to 
build an hypothesis to map inputs to outputs, generalizing the training examples 
presented to the system.

Clustering is a type of unsupervised learning, where the system tries to group 
similar instances into clusters. Depending on the model adopted, these clusters 
may be disjoint/overlapping, deterministic/probabilistic and flat/hierarchical.

These two techniques are the best candidates to be used in complex systems 
and MABS. The first normally is used to help to design different agents stereotypes, 
representing real agents in the simulated environment. The second technique is 
used to identify emergent patterns produced by the simulation in the meso and 
macro levels.

As mentioned by Witten and Frank (2011), ML is deployed in several practical 
applications, like processing loan applications, screening images for oil slicks, 
electricity supply forecasting and diagnosis of machine faults, among others.

4.1.2 Implementing machine learning 

Classical algorithms for inductive learning are fully described in the litterature, 
like ID3 (symbolic) and Neural Networks (non-symbolic).

This is also the case for clustering, including the well known k-means algorithm. 
This algorithm tries to group data into a predefined number of k clusters. 
The algorithm considers the clusters to be disjoint, deterministic, and flat. 
Basically, its steps are the following:
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1) Choose initially k cluster centers, for instance randomly;

2) Assign instances to clusters, based on their distance to the cluster centers;

3) Compute centroids of the clusters;

4) Repeat previous steps until obtaining convergence.

The algorithm basically minimizes an instance squared distance to cluster 
centers. Results can be very sensitive to the initial choice of seeds, and sometimes 
the algorithm can stop at a local minimum. A good technique to increase the 
chance of finding the global optimum is to restart the algorithm with different 
random seeds.

One important aspect in using k-means is to choose “the best” k. Possibles 
techniques include: i) to choose a k value that minimizes cross-validated squared 
distance to cluster centers; ii) to use penalized squared distance on the training data; 
and iii) to apply k-means recursively, starting with k = 2, and to stop increasing 
its value based on some evaluation error (Hall et al., 2009).

There are other well-established hierarchical, agglomerative, and incremental 
clustering algorithms available in the literature. A more detailed description of 
such algorithms may be found in Mitchell (1997) and Witten and Frank (2011).

4.1.3 Weka 

Perhaps the best well-known repository for ML is Weka9 (Hall et al., 2009). 
According to the information available in the site:

Weka is a collection of machine learning algorithms for data mining tasks. 
The algorithms can either be applied directly to a dataset or called from your own 
Java code. Weka contains tools for data pre-processing, classification, regression, 
clustering, association rules, and visualization. It is also well-suited for developing 
new machine learning schemes.

Weka was developed by the Machine Learning Group at the University of 
Waikato, New Zealand. The name Weka comes from a flightless bird with an 
inquisitive nature, found only on the islands of New Zealand.

Weka is open source software issued under the GNU General Public License. 
It may be used for Data Mining, and can be applied to process Big Data. Recently, 
the authors have provided a 5 week MOOC, called “Data Mining with Weka”, 
which contains video lectures and other useful information for using the repository.

9. Available at: <http://www.cs.waikato.ac.nz/ml/weka/>.
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4.2 Social Networks

In their book (Wasserman and Faust, 1994), Wasserman and Faust characterize 
social network analysis as the following:

Social network analysis is based on an assumption of the importance of relationships 
among interacting units. The social network perspective encompasses theories, models, 
and applications that are expressed in terms of relational concepts or processes. Along 
with growing interest and increased use of network analysis has come a consensus 
about the central principles underlying the network perspective. In addition to the 
use of relational concepts, we note the following as being important:

• Actors and their actions are viewed as interdependent rather than independent, 
autonomous units ;

• Relational ties (linkages) between actors are channels for transfer or “flow” of 
resources (either material or nonmaterial);

• Network models focusing on individuals view the network structural environment 
as providing opportunities for or constraints on individual action;

• Network models conceptualize structure (social, economic, political, and so 
forth) as lasting patterns of relations among actors.

The unit of analysis in network analysis is not the individual, but an entity 
consisting of a collection of individuals and the linkages among them.

4.2.1 Basic concepts 

According to Gretzel (2001), several types of social relations can be represented 
through network data, like social roles (boss of, teacher of, friend of ), affective 
relations (likes, respects, hates), and cognitive relations (knows, views as similar), 
among others.

From a formal point of view, social networks can be represented by graphs, 
where nodes represent individuals and links their relations. By adopting such 
representation, one can profit from the huge amount of available graph algorithms 
in order to calculate some network interesting properties. From an implementation 
point of view, due to performance issues, graphs may be implemented by matrices.

According to Wasserman and Faust (1994), the main concepts and levels of 
analysis in the domain are the following:

• main concepts

• Actor/Node/Point/Agent: social entities such as persons, organizations, cities, etc;

• Tie/Link/Edge/Line/Arc: represents relationships among actors;

• Dyad: consists of a pair of actors and the (possible) tie(s) between them;
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• Triad : a subset of three actors and the (possible) tie(s) among them;

• Subgroup: subset of actors and all ties among them;

• Group: collection of all actors on which ties are to be measured;

• Relation: collection of ties of a specific kind among members of a group;

• Social Network: finite set or sets of actors and the relation or 
relations defined on them.

• levels of analysis

• Actor level: centrality, prestige and roles such as isolates, liaisons, 
bridges, etc;

• Dyadic level: distance and reachability, structural and other notions 
of equivalence, and tendencies toward reciprocity;

• Triadic level : balance and transitivity;

• Subset level : cliques, cohesive subgroups, components;

• Network level : connectedness, diameter, centralization, density, 
prestige, etc.

Other interesting references to social network analysis are Borgatti, Everett 
and Freeman(2002); Hanneman and Riddle (2005) and Carrington, Scott and 
Wasserman(2005). An interesting recent work focusing on how social network 
analysis can be used to craft strategies to track, destabilize, and disrupt covert 
and illegal networks is described in (Everton, 2012).

4.2.2 Implementing social networks 

In Kirschner (2008), an overview of the most common SocNet platforms is presented. 
The report was developed by the Philanthropy and Networks Exploration,10 a 
partnership between the Packard Foundation and Monitor Institute, whose aim 
is to investigate how networks can facilitate greater philanthropic effectiveness.

The analysed platforms were identified from several sources, including the 
literature survey presented in Huisman and Duijn (2005). They were divided in 
four groups (Kirschner, 2008):

• Advanced Academic platforms: often used in academic environments, 
these tools aim to deal with sophisticated types of social network analysis, 
generally prioritizing performance as opposed to usability. User guides 
and help files are not comprehensive or are written for more sophisticated 

10. Available at: <http://www.philanthropyandnetworks.org>.
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audiences. Examples are UciNet/NetDraw, Guess, Iknow, NetVis module, 
Otter, Pajek, SoNIA;

• Advanced Accessible platforms: used in more general settings, including 
corporate environments, these tools tend to be more intuitive and easier 
to use than the tools for academic applications. Software help files are 
more comprehensive and user guides are written for a general user audience. 
Examples are NetMiner, Visone, InFlow (Valdis Krebs), Network 
Evaluation Tool (Rob Cross), Sentinel Visualizer;

• Simple Easy to Use platforms: these tools can be used by users less familiar 
with social network analysis, they are built without complex functionality 
and are very easy to navigate and use. Help files are simple and clear. 
An example is Smart Network Analyzer;

• Online Visualization tools: these tools are used to analyze existing data 
made available by users, and are quite often simple to use, with intuitive 
functionality. Examples are Xigi.net, TouchGraph, Network Genie.

In the sequence, we will detail two of these platforms.

4.2.3 UciNet/NetDraw 

UciNet11 is a downloadable software program that can read and write social 
network data files. NetDraw is bundled with UciNet and it is used to read and 
display network visualizations. UciNet is widely used in academia: its file format 
can be used with a number of other analysis and visualization platforms.

Although primarily used in academic environments, UciNet is also used by 
consultants that have developed customized versions of the software to suit more 
specific needs. UciNet is free for individual use, but has a cost for a business license.

Its main advantages are the following: i) it is flexible and can import 
data from different files formats, including Excel; ii) it supports more complex 
types of network analysis; and iii) it is compatible with many different 
visualization platforms.

On the other hand, its major drawbacks are the following: i) it is more 
difficult to use for simple social network analysis tasks; ii) the online help resources are 
intended for more sophisticated audiences; iii) it is quite difficult to filter data that 
is being viewed; and iv) NetDraw’s visualization does not allow output formatting.

A nice chapter describing how to get started in UciNet/NetDraw, among 
other tools, is presented in Everton (2012).

11. Available at: <http://www.analytictech.com>.
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4.2.4 NetMiner 

NetMiner12 is a software tool for exploratory analysis and visualization of network 
data. It can handle large amounts of data and enables the user to conduct both 
simple and more advanced types of analysis, including a number of statistical 
procedures. Data can be visualized based on several different types of network 
visualization algorithms, and statistical results can be charted using graphs.

NetMiner is suitable for a range of audiences including academic, corporate, 
and general consumer. It is a proprietary platform, but student use licenses are 
very cheap.

Its main advantages are the following: i) it presents a convenient and intuitive 
user interface, easy to use for less advanced users; ii) it offer a good user support 
through help files built into the platform, as well as documentation on using the 
software online; and iii) it offers advanced functionalities to conduct multiple 
types of statistical analyses and visualizations.

A drawback is the fact that it requires a basic level of technical sophistication 
and familiarity with social network analysis.

5 MABS APPLICATION EXAMPLES

In this section, we present very briefly three different MABS application examples 
to illustrate how this technique can be efficiently used in different complex systems 
scenarios. These applications were chosen because they address different goals, as 
discussed in section 1.3, and use different platforms, as discussed in section 3.

5.1 Social Networks

PartNet+ (Monteiro, 2004; Monteiro and Sichman, 2005) is a multi-agent-based 
simulation tool whose aim is to understand partnership formation among 
heterogeneous agents. It is an extension of a previous tool, called PartNet, developed 
by Conte and Pedone (1998).

The simulator implements a social reasoning mechanism based on dependence 
networks, developed by Sichman (Sichman et al., 1994) and inspired on Castelfranchi, 
Conte and colleagues’ dependence theory (Castelfranchi, Micelli and Cesta, 1992; 
Conte and Castelfranchi, 1992). By representing internally the goals, plans, actions 
and resources from each other, agents can detect their complementarity regarding 
the actions and resources they need in order to achieve their goals, and calculate 
who are the agents they depend on and who are the ones who are more susceptible 
to cooperate, i.e., those who also depend on them. Based on this calculus, agents 

12. Available at: <www.netminer.com>.
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interact by sending proposals to each other, in order to establish partnerships to 
achieve each other’s goals.

FIGURE 7
PartNet+ interface 

Source: Monteiro (2004).
Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 

the original files provided by the authors for publication.

When choosing preferred partners, each agent in PartNet+ follows a strategy 
that dictates what kind of partnerships will be sought. There are three different 
strategies available, that cover most of the reasonable stereotypical choices that an 
agent may have when choosing partnerships: 

• Utilitarians, that try to maximize the importance of the achieved goal 
while minimizing the cost of the action used;

• Substantialists, that choose partnerships with most important goals, no 
matter what the cost is;

• Misers, that seek the partnerships with minimum cost, no matter the 
goal importance is.
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In figure 7, we can see the PartNet+ interface. In the main window, the simulation 
parameters like the agent’s goals, plans and actions can be set and simulation be 
controlled. Additional overlay windows show graphics containing the simulation 
results, as the accumulated net benefit, and the dependence graph, enabling the 
user to visualize what dependence relations have been used in partnerships.

As discussed in section 3.1, one may use different approaches to implement 
MABS. In the case of PartNet+, the simulator was developed using the Java 
programming language. This choice was made because there was already a version 
of the original software to calculate dependence relations and networks available 
in this language. Hence, it may be the case that a legacy piece of software can 
determine such a choice.

Using the types proposed in section 1.3, the goal of the simulation was to 
implement a socio-cognitive model. Validation was not addressed by the behavior 
of individual agents, but rather by some aggregated values. An example of an 
hypothesis that was tested and validated, as expected by previous results in social 
sciences, is that substantialists gets better accumulated net benefits when there are 
more goals in the society.

This application is an illustration of the use of multi-agent-based simulation 
techniques in the social networks domain, namely to predict partnerships formation 
between agents in self-centric networks.

5.2 Game theory and learning

In Nardin and Sichman (2012), we present a simulation model for a land 
expropriation scenario. Such model integrates both concepts of coalition and trust, 
allowing the analysis of how trust influences coalition formation in the case of 
land expropriation.

The environment consists of a population of self-interested agents, representing 
landowners, that are positioned in a square lattice which represents the land properties. 
Each landowner agent interacts with its neighbors by playing the Prisoner’s Dilemma, 
choosing either to cooperate or to defect.

Initially, agents play independently of each other, but by analyzing their 
outcomes they may decide to join (or leave) a coalition. Members of a coalition 
cooperate with the other coalition members and defect with other agents that 
do not belong to the coalition. Moreover, a model parameter tax represents the 
amount that coalition members must pay for their leader in order to have the right 
to remain in the coalition.

The decision to join, to remain or to leave a coalition is largely based on the 
trust value that the landowner has gathered about its coalition leader. Such value 
is updated in each round, mainly based on the received payoff from the coalition 
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leader. This variation depends on a model parameter called DeltaTrust, that 
represents the agents’ trust volatility of their coalition leaders. Hence, when agents 
join a coalition they attribute an initial trust value to the coalition leader, which 
may increase or decrease depending on the coalition outcome. If this trust value 
reaches a minimal threshold, which a model parameter called trustThreshold, the 
agent decides to leave the coalition.

The main objective of the work is to identify the influence that trust exerts on 
landowners coalition formation, by varying the trust input parameter values and 
analyzing the coalition formation macroscopic patterns, calculated by considering 
the average value of the 10 executions of each simulation scenario. A parameter 
considerTrust represents the percentage of agents that take the notion of trust 
into account to decide to join, remain or leave a coalition. We were particularly 
interested in evaluating three macroscopic patterns at the end of the simulation: 
the number of remaining coalitions, their sizes, and the number of Independent 
agents. For that, three different agent trust intolerance levels were considered, 
corresponding respectively to trustThreshold values of 25 (liberal), 50 (moderate), 
and 75 (conservative).

FIGURE 8
Number and size of coalitions x considerTrust [tax = 25% and trust Threshold= 75] 

Source: Nardin and Sichman (2012).
Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 

the original files provided by the authors for publication.

Briefly speaking, the results showed that for high tax rates, above 50%, the 
system was highly dynamic, with a rapid formation and dissolution of small coalitions, 
and a great number of independent landowners. However, when the tax was set 
to 25%, the macroscopic behavior varied depending on the combination of the 
model parameters, in particular of the trust Threshold value. This can be observed 
in figure 8. In particular, in fully heterogeneous scenarios, where only half the 
agents take trust into account to decide to remain or leave a coalition and when 
trust intolerance level and trust volatility are high, respectively 75 and 20 (figure 8), 



Modeling Complex Systems for Public Policies116 | 

fewer coalitions remained, with a higher number of agents. These values indicate 
that in conservative landowners and low tax scenarios, the moderate use of trust 
is beneficial to the formation of bigger coalitions.

In this application, simulations were performed using NetLogo (Wilensky, 
1999), described in section 3.5. It also implemented a socio-cognitive model, as 
mentioned in section 1.3. Validation was addressed just by comparing different 
models’ outputs, using statistical techniques, as presented above.

This application is an illustration of the use of MABS techniques that combines 
game-theoretic and learning approaches, namely to predict agent coalitions stability 
in an expropriation land scenario.

5.3 Participative simulation

In Adamatti, Sichman and Coelho (2009), we describe a methodology called 
GMABS (Games and Multi-Agent-Based Simulation) that integrates MABS and 
Role-Playing Games (RPG) techniques. It was applied in a participative simulation 
scenario, whose goal was to evaluate the impact of the agents’ actions in the 
environment. It combines the dynamic capacity of MABS with the discussion 
and learning capacity of RPG. This methodology is illustrated in figure 9, and is 
composed of 6 steps:

FIGURE 9 
GMABS methodology 

RPG
MABS

1. Inform initial scenario

5. Return new scenario

2. Individual
Decision making and

bilateral and Collective
Negotiations

3. Inform actions

4. Process actions

Source: Adamatti, Sichman and Coelho (2009).

1) Players receive all the information about the game: the roles they can 
assume, the actions and rules available to these roles, their common 
environment, and the topological constraints. When the game starts, 
each player defines the role he/she is going to play. At that time, each 
participant knows what actions he/she can execute, and the benefits 
and/or damages their actions can cause to the common environment. 
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The initial scenario also defines where the participants are physically 
located within the common environment and what their initial possessions 
are, like money, land, etc.;

2) In this step there are three different activities:

a) Players may reason and decide about individual actions that just 
depend on themselves. As an example, in the natural resources 
domain, land owners may change their land use;

b) Players have all the necessary information to initiate bilateral nego-
tiations with each other. In order to negotiate, they may exchange 
information and make their decisions, according to the rules that 
must be followed by the roles they are playing. In the natural resources 
domain, for instance, land owners can sell their plots. Normally, these 
two previous activities (a and b) take place simultaneously, and their 
duration is defined in the beginning of the game;

After deciding about their individual actions and concluding the bilateral 
negotiations, players can negotiate about collective strategies for the next rounds. 
These collective strategies should benefit everyone or just a subgroup of players. 
Once more considering the natural resources domain, players are able to demand 
improvements in infrastructures, more jobs, lower tax values, and so on. This negotiation 
process of collective strategies is just a “predisposition” to define future actions: 
players are not really committed to keep their word and really use these strategies in 
further rounds. This process is very important for each player to better understand 
the others’ objectives and strategies;

3) Players inform to the MABS tool, possibly mediated by a human operator, 
which individual actions were chosen and which bilateral negotiations 
were concluded;

4) The MABS tool computes the data, and as a result the players’ actions 
may modify the initial scenario. Therefore, the environment properties 
are modified, which implies the modification of each player’s data;

5) The MABS tool gives the new scenario back to the players, once again 
mediated by the operator. If the game deadline is not reached or the 
maximum number of rounds has not been achieved, the game returns 
to step 2.

6) If the game has reached its end, a debriefing session is carried on.

Using GMABS, two prototypes in the natural resources management 
domain were developed. The first prototype, called JogoMan, is a paper-based 
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game: all players need to be physically present simultaneously in the same place, 
and there is a minimum needed number of participants to play the game.

In order to avoid this constraint, a second prototype, called ViP-JogoMan, 
was built. This second prototype enables the insertion of virtual players that can 
substitute some real players in the game. These virtual players can partially mime 
real behaviors and capture autonomy, social abilities, reaction and adaptation of 
the real players.

The BDI (Belief-Desire-Intention) architecture [51] was chosen to model 
these virtual players, since its paradigm is based on core concepts that easily map 
to the language that people use to describe their reasoning and actions in everyday 
life. ViP-JogoMan is a computer-based game, in which people play via Web, play-
ers can be in different places and it does not have a hard constraint regarding the 
minimum number of real players. The architecture of Vip-JogoMan is presented 
in figure 10.

FIGURE 10
Vip-Jogoman Architecture
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Source: Adamatti, Sichman and Coelho (2009).

In this application, the agent-based simulations were performed using Cormas 
(Bousquet et al.,1998), described in section 3.6. The application’s goal, as 
mentioned in section 1.3, was to implement participatory simulation. Validation was 
addressed by questionnaires and by comparing the number of negotiations between 
the agents, in different settings, with or without the presence of virtual agents.

Briefly speaking, the results obtained have shown that the use of behavioral 
profiles based on BDI architecture to model and implement virtual players seems 
to be well suited to make their decisions believable, since most real players did not 
identify the virtual players during the tests. Moreover, in some particular scenarios, 
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the simple presence of virtual players has enhanced the number of negotiations 
between the agents.

This application is an illustration of how the use of MABS techniques, 
combined with RPG, can help the concertation of social actors aiming to improve 
the quality of water in metropolitan regions.

6 CONCLUSIONS

In this chapter, we addressed the question of how to build operational models and 
implementations of complex systems. We have described several techniques and 
tools that could be used for this goal; we have focused on MABS platforms, since 
we believe that these are the most suitable tools to implement such systems. 
We would like to finish this chapter by quoting Robert Axelrod (Axelrod, 1997), 
when he has given his influential opinion on the important role of simulation in science:

Simulation is a third way of doing science. Like deduction, it starts with a set of 
explicit assumptions. But unlike deduction, it does not prove theorems. Instead, a 
simulation generates data that can be analyzed inductively. Unlike typical induction, 
however, the simulated data comes from a rigorously specified set of rules rather than 
direct measurement of the real world. While induction can be used to find patterns 
in data, and deduction can be used to find consequences of assumptions, simulation 
modeling can be used as an aid intuition.
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CHAPTER 6

UNDERSTANDING THE ENVIRONMENT AS A COMPLEX, DYNAMIC 
NATURAL-SOCIAL SYSTEM: OPPORTUNITIES AND CHALLENGES IN 
PUBLIC POLICIES FOR PROMOTING GLOBAL SUSTAINABILITY

Masaru Yarime1 
Ali Kharrazi2

Complex systems are characterized by the interactions between heterogeneous 
agents and the surrounding environment, emergence and self-organization, the 
importance of non-linearity and scaling, the use of simple rules, the emphasis on 
dynamics and feedback, and the notions of adaptation, learning, and evolution 
(Furtado and Morita-Sakowski, 2014). In this sense, our environment can be 
regarded as a complex system in which inputs, including materials, energy, and 
biological species, undergo dynamic, complex transformation involving natural 
and social interactions, producing outputs as a result (Fath, 2015). It is crucial 
that during this process the environment endures and maintains its vital functions 
in the presence of various kinds of fluctuations and disturbances, which would 
involve a considerable degree of uncertainty.

Contemporary environmental challenges require new research approaches 
that include the human dimension as an essential part when studying the natural 
environment (Bodin and Tengö, 2012). It is therefore increasingly recognized that 
our environment should be understood as coupled human and natural systems or 
social-ecological systems, involving complex and diverse patterns and processes 
(Ostrom, 2009). As such, its proper analysis requires effective integration of the 
concepts and methodologies employed in natural and social sciences. While several 
conceptual frameworks have been recently developed for integrating human society 
with nature, there remains a significant extent of potential available for making progress 
on methodological and theoretical approaches to examining the complexities of 
social-natural interdependencies and interactions quantitatively.

Recent case studies covering different parts of the globe reveal that couplings 
between human and natural systems vary across space, time, and organizational units 
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(Liu et al., 2007). They exhibit key characteristics of complex systems, including 
nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, 
heterogeneity, and surprises. Coupled human and natural systems in the past also have 
legacy effects on present conditions and future possibilities. Hence it is important 
to deal with our environment as a complex adaptive system, the sustainability of 
which is as a dynamic, continuous process, not as a static state of the system, with 
significant implications when we consider public policies.

For exploring the sustainability of our environment, sustainability science 
has been proposed as a new academic field, specifically aimed at understanding 
the fundamental character of complex interactions between natural and social 
systems (Kates et al., 2001; Clark and Dickson, 2003; Komiyama and Takeuchi, 
2006; Kajikawa et al., 2007; Jerneck et al., 2011; Yarime et al., 2012). The primary 
interests of sustainability science include dynamic interactions between natural 
and social systems, vulnerability or resilience of the nature-society system, 
scientifically meaningful limits or boundaries, system of incentive structures, 
involving markets, rules, norms, and scientific information, and integration of 
operational systems for monitoring and reporting on environmental and social 
conditions. Hence the challenge of sustainability requires an appropriate and 
effective use of data, information, and knowledge on diverse aspects, ranging from 
the nature to economy and institutions (Yarime, Takeda and Kajikawa, 2010).

As a variety of academic disciplines including natural sciences, engineering, 
and social sciences are involved in sustainability science, various types of concepts 
and methodologies have been proposed so far. Despite the diversity in approaches, 
the systemic character of sustainability is emphasized in most of the approaches. 
Many issues related to sustainability are mutually connected and interdependent; 
climate change and biodiversity loss are among the prime examples of complex 
linkages and interactions, which requires systemic understanding and interventions. 
It is also recognized that long-term time frameworks are fundamental in sustainability. 
As sustainability concerns impacts and influences in the future, dynamic 
processes of change and transformation are of critical importance, with the issue 
of equity between different generations inherently involved. The dimension of 
action-oriented research is also emphasized. Implementing knowledge for strategies 
and public policies is explicitly expected to address the pressing sustainability 
challenges our societies face.

Systems approaches to sustainability requires us to take into account the re-
lationship between system sustainability and renewal of components (Voinov and 
Farley, 2007; Voinov, 2008). Systems are parts of hierarchies where systems of higher 
levels are made up of subsystems from lower levels, and renewal in components is 
an important factor of adaptation and evolution. If a system is sustained for too 
long, it borrows from the sustainability of a super-system and rests upon lack of 
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sustainability in subsystems. By sustaining certain systems beyond their renewal 
cycle, the sustainability of larger, higher level systems could be compromised. This is 
illustrated clearly by biological organisms, which undergo continuous replacement 
at the level of cells. Also the collapse and renewal of firms and industries would 
be necessary to sustain the vitality of the larger economic system in a capitalist 
economy, as discussed in Schumpeter’s theory of creative destruction.

To systematically analyze the complexity of coupled natural-social systems, 
it is useful to regard them as networks (Janssen et al., 2006). The ecosystems, 
for example, can be considered as networks of material or energy flows such as 
food webs or nutrient exchanges (Ulanowicz, 1986). For natural-social systems, a 
theoretical framework building on the rapidly growing interdisciplinary research 
on complex networks has been developed to define and formalize ways in which 
societies and nature are interdependent (Bodin and Tengö, 2012). A set of basic 
building blocks, each of which represents a simplified social-ecological relationship 
of two social actors and two ecological resources, can show all possible patterns 
of the natural-social system characterized by social and ecological connectivity, 
resource sharing, and resource substitutability. Based on that unit of analysis, an 
empirical case study was conducted on the network of a rural agricultural landscape 
in southern Madagascar by utilizing theoretical insights related to the management 
of common-pool resources and meta-population dynamics.

The dynamics of network systems can be represented by two complementary 
aspects of growth and development (Fath, 2015). Growth is a quantitative change 
in a system property as measured by an extensive variable such as total system 
throughput, which is the sum of all exchanges within the system and between 
the system and its outside. Development is a qualitative change in the system as 
measured by an intensive variable such as information or network connectivity or 
cycling. As in physics, the total capacity of some feature is the combination of how 
much and what quality, an extensive variable times an intensive variable. Therefore, 
when we try to understand the nature of a network system, it is important to 
consider both growth and development, in other words, quantitative and qualitative 
dimensions. Considering this perspective, we can distinguish two dimensions 
in the sustainability of a coupled natural-social system, that is, a quantitative or 
extensive dimension, which encompasses the total resource throughput within the 
system, and a qualitative or intensive dimension, which describes the robustness 
or resilience of the system of resource flows (Kharrazi, et al. 2013).

A number of natural as well as social processes tend to accelerate its own 
growth in a way that actively drains the broader system (Ulanowicz, 1995). 
It is hence important to understand the dynamic mechanism of positive feedback 
which can erode systemic sustainability. These processes include the following 
phases: selection, a natural tendency to augment elements that increase flow 
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through the epicenter circuit and to eliminate elements which do not; increasing 
efficiency honed by this selection and elimination; self-amplifying growth created 
by increasing efficiency, influx and pull; erosion of the surrounding network caused 
by the massive draw of resources into the epicenter hub; brittleness caused by 
the elimination of backup resilience; and rigidity cause by increasing constraints 
on options and behavior. There are many examples in which this dynamics of 
positive feedback can be demonstrated to function in the natural environment 
(Goerner, Lietaer and Ulanowicz, 2009). The massive algae bloom in the Gulf of 
Mexico today shows what happens when unchecked growth in one circuit creates 
a resource concentrating vortex that actively erodes the broader network upon 
which systemic health ultimately depends. Fertilizer and agricultural wastes flowing 
down the Mississippi River triggered massive algae growth that has depleted nearly 
all the oxygen in water, which caused an equally massive die-off of marine life, 
notably fish, shrimp and shellfish.

Therefore, in response to the challenge of establishing the sustainability of our 
environment as coupled human-natural systems involving complex and dynamic 
interactions, it is increasingly recognized that decision makers in the public as well as 
private sectors need to take the issue of strengthening resilience seriously, particularly in 
the context of climate change, biodiversity loss, and disaster risk reduction (PwC, 2013; 
World Bank, 2013). While there is no single definition of this important concept that 
can be applied universally and the methods to quantify and measure the progress of this 
concept are still in their infancy, here we conceptualize resilience as a balance between 
efficiency and redundancy (Goerner, Lietaer and Ulanowicz, 2009; Lietaer, Ulanowicz 
and Goerner, 2009; Ulanowicz et al., 2009). Efficiency is defined as the network’s 
capacity to perform in a sufficiently organized and efficient manner as to maintain its 
integrity over time. Redundancy is considered to be the network’s reserve of flexible 
fallback positions and diversity of actions that can be used to meet the exigencies of 
novel disturbances and the novelty needed for on-going development and evolution. 
Understanding the tradeoff between efficiency and redundancy for resilience would 
help us design public policies for the environment towards a more appropriate balance.

The study of resilience has developed rather independently in various academic 
fields, including, notably, engineering and ecology (Folke, 2006). Accordingly, the 
current literature on resilience can be grouped into two overarching categories of 
engineering resilience and adaptive or evolutionary resilience (Holling, 1996). 
In engineering resilience, the aim is to develop the capacity to withstand a stress 
and to return to what is considered as a normal state. Engineering resilience can be 
easily understood in its application to transportation infrastructure. For example, 
under the stress of a heavy snowstorm, flood, fire, or earthquake, infrastructures 
such as bridges, roads, and highways are designed to withstand various levels of 
such stress and return to a normal functioning state. In this definition of resilience, 
the main idea is to restore normal conditions.
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This definition, however, has its limitations. Systems that are subject to a 
stress may in fact continue to survive, but at a notably altered state and far from 
their normal conditions. In other words, the concept of resilience also needs to 
incorporate the element of adaptability. Here, the objective becomes the resilience 
of a function that would make the system continue to operate under the existence 
of changes and disturbances. Various vital functions in our day-to-day lives such as 
waste disposal, emergency medical services, and policing, for example, dispose the 
notion of having a concrete normal state. Rather than maintaining an identical state, 
the resilience of these functions needs to be measured in their ability to continue 
delivery and operation after a stress or shock to the function of the urban system. In 
this context, resilience would be different from just returning to what is perceived 
as normal, but instead indicates an adaptive capacity to reorganize into a different 
operating structure while maintaining the function.

Adaptive or evolutionary resilience allows for a system to maintain distinct 
configurations. In ecological studies this is known as multiple attractors, where an 
ecosystem can switch from one resilient configuration to another, each of which 
maintains a distinct ecological equilibrium. The existence of multiple attractors is 
not limited to ecosystems and can be related to all systems. By defining the various 
possible attractors of a system, one can predict with more precision what configurations 
the system will switch to after a disturbance or stress to its system. This is extremely 
useful for quantifying the adaptive aspect of resilience. To identify the various attractors 
of a system, however, is a challenging task. First, the long-term records of the system’s 
behavior might be unavailable. Second, a certain system can simply be too complex to 
identify its various attractors or even evolve into new attractors. Third, the magnitude 
and nature of the stress to a system may also be unique and without any precedence.

In the absence of a reliable measurement of resilience, especially adaptive 
resilience, it is important to understand the dimensions that influence the general 
resiliency of a system. The principles for building resilience in social-ecological 
systems suggest us to maintain diversity and redundancy, manage connectivity, 
manage slow variables and feedbacks, foster complex adaptive systems thinking, 
encourage learning, broaden participation, and promote polycentric governance 
systems (Biggs, Schlueter and Schoon, 2015). A careful examination of these 
principles will allow policy makers to assess whether the resilience of a system is 
properly managed and maintained. Particularly important approaches would include 
increasing the diversity and redundancy of the components of a system, managing 
connectivity and modularity in the system, and improving feedbacks within the 
system for regulatory response. Knowledge of these approaches for a given system 
provides policy makers with powerful tools to manage resiliency within a system 
in order to withstand a shock or disturbance, reduce risks, improve recovery, and 
enhance regulatory feedback.
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Diversity is an important concept with strong applications in various disciplines. 
As a basic definition, diversity is the degree of variation in a system. This can include 
the degree of variation in components maintaining similar functions, which can 
be called functional diversity, and that in the components maintaining different 
responses to disturbances, which is response diversity (Folke et al., 2004). Diversity 
allows a system to be more flexible in its options when faced with a disturbance.

For example, by promoting diversity in energy systems, both in terms of 
energy production and energy consumption, the resilience of these systems will 
be increased as a result. This can be achieved in terms of advancing technologi-
cal diversity, where, in addition to the traditional energy supplies of oil, natural 
gas, coal, nuclear, and hydro, new technologies, most of which would be related 
renewable energy sources, are developed and diffused. These new types of tech-
nologies include solar, wind, geothermal, biomass, and ocean power technologies 
for generating energy. Diversity can be further promoted by using a wide variety 
of energy sources at multiple scales, for example, solar panels owned by households 
or a small and medium-sized enterprises operating a wind farm. Diversity both in 
technology, that is, functional diversity, and also in different scales, which means 
response diversity, will permit for a more flexible response to disturbances.

From the perspective of ecology, biodiversity can be considered to be the 
generator of redundancy as well as efficiency, thereby contributing to improving the 
resilience of the ecosystem.3 Biodiversity can make an ecosystem more resistant to 
impacts, that is, more resilient, as it allows for different responses and redundancies. 
Redundancy can be considered as the ability of different species to hold 
key positions; given their biochemical, morphological or behavioral differences, 
diverse species are not equally impacted by a single external shock. On the other 
hand, biodiversity allows for the colonization of different ecological niches; in 
other words, different species may use different forms of matter and energy. 
Yet the residuals of a species may become inputs for other species. This allows for 
efficiency gains, at least to a certain extent. Excessive diversity in biological species 
would make the connections and interactions between them within the ecosystem 
so complex that the efficiency of the transfer and use of matter and energy would 
be reduced after reaching a particular point. In terms of transferring matter and 
energy, generally it would be more efficient when the network structure of pathways 
are relatively simple and straightforward (Ulanowicz, Bondavalli and Egnotovich, 
1996; Goerner, Lietaer and Ulanowicz, 2009).

Connectivity within a system can be understood well by introducing the 
concept of modularity. Modularity refers to the degree to which a system’s 
components can be decomposed into separate individual units but also matched 

3. We are grateful to Dr. Bernardo Furtado for pointing out this important aspect of biodiversity.
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and recombined. Modularity can help contain the spread of a shock or disturbance 
through a system. For example, the breakout of a deadly virus or fire is more 
likely to be contained with the implementation of modular mechanisms such as 
quarantines and firebreaks. A system with too much or too little modularity has 
fundamental trade-offs. On the one hand, a system with too much modularity will 
not benefit from economies of scale associated with larger scale systems. On the 
other hand, a system with little modularity might be prone to cascading failures 
where a shock or disturbance can spread with high speed throughout the system.

In the context of energy systems, distributed energy systems where electricity 
is generated from many small energy sources is very modular. Currently, most 
countries generate electricity in very large scale and centralized location, e.g. gas 
or nuclear power plants. While these plants maintain the benefits associated with 
economies of scales, they are also unsecure, brittle and prone to failure in case of 
a disturbance. A related concept to modularity and distributed energy systems is 
the micro grid. The micro grid, which has received a particular attention since 
the North India blackout in 2012, envisions a localized collection of energy 
generation, storage, and transmission which, while connected to the traditional 
centralized grid, is mainly targeted to a specific geographical area. In the wake of 
a disturbance or shock in the centralized grid, the link between the micro grids 
can be disconnected, and thereafter the micro grid can function autonomously on 
its own. Micro grids and distributed energy systems allow for greater modularity 
and subsequently more reliable energy in lieu of disruptions.

Feedback refers to the transfer of changes in one part of a system to other parts. 
A resilient system maintains strong feedback mechanisms for identifying thresholds 
and regulating the system’s ability to move from one trajectory to another. Feedback 
is a common phenomenon in natural systems. Especially in evolutionary biology 
and ecological fluctuations, regulatory feedback mechanisms are fundamental to the 
resilience and survival of systems. In human systems feedbacks lead to learning and 
self-organization towards different solutions or attractors as the new conditions arise. In 
traditional energy systems, there is very little regulatory feedback. Specifically, there 
is little real-time information exchange on the level of energy supply and demand. 
This lack of information necessitates a constant oversupply of electricity incurring 
high costs. Furthermore, without dynamic information there is little regulatory 
control of the system to avoid collapse in case of a disturbance. To address the need 
for regulatory feedback in energy systems, what is described as smart technologies 
is now increasingly being utilized for this purpose. Smart meters involve real-time 
sensors that enable two-way communication between the meter and central system, 
functioning as the cornerstone of the proposed smart grid system. A smart grid is 
a modernized electrical grid that leverages the constant feedback of information 
from all of its meters, sensors, and devises for quick regulatory reaction to both 
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technological and human behavior. These smart energy technologies and systems 
are expected to improve the resilience of energy systems, in addition to contributing 
to the three targets of sustainable energy, that is, providing access to energy for all, 
increasing energy efficiency, and promoting renewable energies (Secretary-General’s 
High-Level Group on Sustainable Energy for All, 2012; United Nations, 2014).

The ecological information-based approach, derived from the probability 
theory and the graph theory, can be utilized for quantitatively analyzing the overall 
structure of a system in which nodes are connected with each other through flows 
between them in a network (Kharrazi et al., 2013; Kharrazi et al., 2014). 
This approach adopts a system-oriented paradigm that emphasizes holistic properties 
of a network. Those properties may not be evident from focusing on parts of the 
network in isolation, requiring, instead, consideration of the transfers between 
nodes. This approach is well established in ecology, for example, for investigating 
food webs, comparing ecosystems, and measuring stress levels in an ecosystem. 
This approach has been recently employed to quantitatively explore the resilience 
of network systems from the perspective of their structural and organizational 
relationships (Goerner, Lietaer and Ulanowicz, 2009; Lietaer, Ulanowicz and 
Goerner, 2009; Ulanowicz et al., 2009).

While the ecological information-based approach has been mainly applied 
to ecological systems, there have been very few attempts to apply it to coupled 
natural-social systems so far (Bodini, Bondavalli and Allesina, 2012; Tumilba 
and Yarime, 2015). The characteristics of natural-social systems can be examined 
in details by utilizing this methodology. In particular, it would be very useful to 
explore the applicability of the normative criteria which have been derived from 
sustainable ecological systems for evaluating the sustainability of natural-social 
systems. The trends in the system-level measurements can also reveal the efficiency 
and redundancy dimensions of the resilience of such complex systems from a 
long-term perspective. An analysis of complex natural-social systems with the 
ecological information-based approach would be best illustrated in the field of 
resource networks.

Global resource networks, with the intertwined nature of environmental 
impacts of production, trade, and consumption, pose significant knowledge gaps 
relating to the complex connections and interactions in natural-social systems 
(Tukker and Jansen, 2006). Ecological footprint accounting has been proposed as 
a comprehensive resource accounting tool that compares demand for renewable 
natural resources and services with the ability of the biosphere to generate them 
(Borucke et al., 2013). As the ecological footprint is a measure of consumption 
that incorporates information on domestic production as well as international 
trade, comparing total demand, that is, ecological footprint of consumption, with 
demand met from domestic production, which is ecological footprint of production, 
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and the regenerative capacity of the domestic biosphere, biocapacity, allows a 
classification and assessment of risk in a country (Hill Clarvis et al., 2014). 
While the difference between the ecological footprints of consumption and production 
represents a country’s net trade in renewable natural resources and services, which 
would be subject to risks linked with availability and prices of resources on inter-
national markets, the difference between the ecological footprint of production 
and biocapacity represents either an overuse of domestic bioproductive land and 
marine areas or a reliance on global commons to absorb waste in the form of 
carbon dioxide emissions.

Different countries exhibit a wide range of resource profiles (United Nations 
Environmental Programme Financial Initiative and Global Footprint Network, 
2012). For example, Brazil possesses the largest amount of biocapacity of any country 
in the world and is a biocapacity creditor. In contrast, Japan demands seven times 
more biocapacity than it has within its borders. There are also significant variations 
in how the ecological footprint and biocapacity situations have evolved among 
the countries. While Japan’s ecological footprint has remained stable over the past 
two decades, the biocapacity of Brazil has declined to less than half of that of 20 
years ago, due to its growing consumption and exports. As the role of trade varies 
from one country to another, Brazil is a net exporter of commodities derived from 
natural resources as measured by its biocapacity, whereas Japan is a net importer.

As illustrated in the ecological footprint approach, previous approaches to 
quantifying the sustainability of coupled natural-social systems tended to focus on 
the accounting of various kinds of volume, primarily focusing on the availability 
of resources and the amount of consumption (Kharrazi et al., 2014). Therefore 
the main attention has been paid to how to increase a system’s growth, without 
giving sufficient consideration to negative effects of excessive growth of the system 
concerned. Sustainability, however, also requires resilience as a critical dimension 
to maintain the functioning of the system by withstanding disruptions and 
disturbances. As the origins of production, routes of trades, and destinations of 
final consumption of resources constitute a very complex network, the ecological 
information-based approach can provide a useful framework for examining the 
resilience of the global resource systems with quantitative measurements.

The global resource systems can be understood as networks with nodes of 
countries and flows of water, energy, biodiversity, and various types of natural 
resources embodied in goods traded between different countries in the world. 
A better understanding of global networks of them, which collectively can be called 
natural capital, allows us to evaluate the resilience of the complex social-ecological 
system. Although researchers have traditionally used a single region input-output 
analysis to capture embodied flows, the accelerating globalization of economic 
activities has made production and consumption spatially separate. Despite the 
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increased global economic connectivity, consumers have not evolved in line with 
the origin of production, and the relationships between origin and destination have 
become obscure and difficult to see. Studies comparing multiple versus single region 
input-output analysis demonstrated that multipliers and embodiments between these 
two methods could substantially differ from one another (Wiedmann et al., 2007).

The ecological information-based approach can be applied to analyze the 
structural resilience of networked systems in which virtual flows of resources connect 
in complex ways (Kharrazi et al., forthcoming). From this perspective, we can 
consider the possibility of absorbing shocks and disturbances in the global energy 
systems through trade networks connecting different countries and regions with 
diverse endowments and environments, wich could be analogous to virtual power 
plants connected with each other (Yarime et al., 2014). Given the diversity in 
the characteristics of countries and regions with regard to economic, social, and 
environmental conditions, the sustainability of global resource systems can be 
promoted through networks involving diverse geographical locations.

More generally, this approach to promoting the sustainability of natural-social 
systems through network governance will have significant implications for public 
policies at the global level. Network governance intends to address the grand 
challenge of global sustainability by identifying potentials and problems in different 
locations within the network, depending upon the availability and specificities of 
natural capital, including energy reserves, water stress, and biodiversity. By pursuing 
complementarities between weaknesses and strengths present in the network from 
a systemic perspective, it would be possible to coordinate our technologies, 
behavior, and institutions collectively so that the sustainability of the whole 
system will be enhanced. The possibilities and challenges in network governance 
need to be explored for obtaining implications for public policies in pursuing 
sustainability at the national as well as global levels.

The sustainability of our environment as a complex natural-social system 
requires that the system is durable and stable for generations with a sufficient 
capacity of resilience. Research findings in the field of sustainability science about 
change, disturbance, uncertainty, and adaptability emphasize the capacity to 
reorganize and recover from change and disturbance without a collapse of the 
system; in other words, we need to establish a system that is “safe to fail” (Ahern, 
2011). Strategies and public policies for building resilience capacity would require 
multi-functionality, redundancy and modularization, bio and social diversity, 
multi-scale networks and connectivity, and adaptive planning and design.

In the context of establishing governance for sustainability, earth system 
governance is understood as “the sum of the formal and informal rule systems and 
actor-networks at all levels of human society that are set in order to influence the 
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co-evolution of human and natural systems in a way that secures the sustainable 
development of human society” (Biermann, 2007). Governance for sustainability 
thus can be defined as formal and informal networks with interactions among 
actors, and systems composed by them, that influence sustainability by integrating 
various dimensions (Shiroyama et al., 2012). Hence network governance 
for sustainability requires knowledge integration as a means to deal with diverse 
and uncertain dimensions of sustainability and multi-actor governance involving 
public-private collaboration and multi-level interactions. That would be crucial 
in reaching consensus on concrete actions among different stakeholders for design-
ing and establishing sustainability. As our environment is inherently embedded 
in coupled natural-human systems with all the complexities and uncertainties, 
any implementation of policies aimed at achieving sustainability in the systems 
demands serious engagement and active collaboration of stakeholders, which will 
contribute to moving towards societal transformations.
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CHAPTER 7

THE COMPLEX NATURE OF SOCIAL SYSTEMS
Claudio J. Tessone1

1 INTRODUCTION

In many cases, social and economic systems are composed by agents (be they 
individuals, firms, countries etc.) whose actions cannot be considered in isola-
tion. Instead, their state (opinion, choice, health state, wealth) and concomitant 
behaviour is influenced by the state of others. As an outcome of the interaction, 
the global properties of these systems are not just the aggregation of individual 
behaviour, but richer. When this occurs, it is said that such a system is complex.

Some aspects of social systems exhibit large-scale regularities, like the emer-
gence of languages, social norms and cultural traits. They also display persistent 
inhomogeneities, like social segregation and inequality of wealth distribution.  
In some cases, they evince evolving patterns, like waves of product adoption, 
spikes of attention in social media, disease propagation, or cascade of bankruptcies  
in financial crises. All these are paradigmatic examples of systems that can be studied 
by recourse of stylised models whose constituents are simple, yet the outcome of 
their interaction is a rich emergent behaviour. In this chapter, I will review complex 
systems models that account for the above mentioned behaviour.

The following is not conceived as a comprehensive review of the approaches 
to social systems from a complex science point of view. Achieving this would be 
impossible in its bounded extension. Therefore, it is structured to serve as a gateway 
to the actual sources containing the relevant research. In the following sections, I 
will introduce what can be considered the set of most paradigmatic models and 
ideas in this realm, and also some of the main conclusions that can be drawn for 
them, and some interesting extensions.

1.1 Complex systems models

A model is an abstract, and to some extent idealised, description of reality that 
still captures a specific phenomenon. It is therefore limited by construction. 
This is true in particular for the complex systems approach to social systems. 

1. Chair of Systems Design, D-MTEC – ETH Zürich Weinbergstrasse 56, CH-8092 Zürich, Switzerland. URPP Social 
Networks, Universität Zürich. Andreasstrasse 15, CH-8050 Zürich, Switzerland.
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Models in this realm are not intended to reproduce society as a whole, but to 
shed light on mechanisms behind social phenomena. Therefore, along this 
chapter I will refer to the subject of study as social systems or, when appropriate, 
socio-economic systems.

On the one hand, a wealth of studies have analysed complex systems from 
theoretical and methodological points of view in mathematics and physics. 
As an example, complex systems appear naturally in statistical mechanics, the 
branch of physics that studies the global properties of systems composed of many 
interacting elements. This kind of research complements collective behaviour 
described in social sciences and economics. From an epistemological point of 
view, however, natural and social sciences approach research differently, and 
each of them has resorted on tools and methods normally used and accepted in 
their own discipline. While in some cases it is crucial for the discipline that new 
research is placed in existing logical frameworks with the aim of being formally 
sound in the context of what is already known, in others the researchers lack the 
quantitative tools needed to extend the qualitative description of phenomena 
into quantitative knowledge.

Research in complex social systems should be a cross-disciplinary endeav-
our, but the rule rather than the exception has been for the knowledge to remain 
within each discipline. It is important to mention that in some cases, different 
disciplines have resorted on the same tools to reach some level of description of 
disparate systems. These advances, unfortunately, have been almost systematically 
overlooked by the other fields, frustrating the cross-pollination between them.  
It is important for researchers and practitioners to bear this in mind while delving 
on what is already known.

This chapter is organised as follows. In section 2, I review the key ingredients 
of social systems that make them amenable to a complex systems approach: finite-
ness, heterogeneity and interaction. Then, section 3 contains some of the most 
paradigmatic models of complex social systems and the realm of their application. 
The following section 4 overviews the network of interactions in social systems 
with some of its topological properties and mechanisms behind them. The final 
section 5 provides an outlook of the complex systems approach to social systems.

2 COMMON FEATURES OF SOCIAL SYSTEMS

There exist common traits to socio-economic systems that render them unique. One 
of them is the pervasive heterogeneity of its elements, which can be either intrinsic 
or an outcome of the dynamic evolution of the system. This is in stark contrast 
with classic systems in natural sciences, where either the elements are identical 
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(like atoms or molecules), or they can be described by a representative element 
(like in biological models where the heterogeneity between individuals of the same 
species can be often neglected). Depending on the context, the constituents can be 
named agents, individuals, voters, nodes, etc. I will use these terms interchange-
ably. Another important characteristic was already advanced above: the current 
state of an agent, the action it performs and its outcome depend, either directly or 
indirectly, on the actions of other agents in the system. Regardless of how simple is 
the individual behaviour of the system constituents, complex behaviour is triggered 
by the interaction between them. Finally, these systems are finite, and in some cases 
very small. Therefore, the actual results can greatly differ from those expected from 
studying the (in some cases mathematically tractable) infinite-size limit.

One of the important questions addressed when modelling socio-economic 
systems is how they react to external influences. By this, it is understood that the 
agents under study do not act just based on their internal state and the interac-
tions they have with others. In many cases, the agents are subject to influences 
that are common to all the system constituents. These are signals, which can be of 
different origins. From a modelling point of view, a change in policy is exactly a 
signal applied to a social system. It can be common to all agents, or act differently 
on different agents, but it is in general exogenous to the system. Another example 
of these signals is the role of advertisement and/or media in costumer behaviour 
or public opinion.

2.1 Finite size

Researchers in statistical physics are used to taking routinely the limit of infinite-size 
(what in that realm is called thermodynamic limit ) in which the number of con-
stituents N goes to infinity (Pathria, 1996). When methods of statistical physics are 
applied to explain the properties of macroscopic matter, it is clear that the number 
N is always finite, but very large (think of the Avogadro number 6.023 × 1023).  
Consequently, the nowadays widely used computer simulations of physical systems 
always struggle to get to larger and larger systems with the continuous increasing 
demand in computer resources.

When studying problems of interest in social sciences (Ball, 2003; Castellano, 
Fortunato and Loreto, 2009; Weidlich, 2002), the fact that the number of agents 
considered can never be that large has to be taken into account. In most cases, 
realistic values of N range in the hundreds or thousands, reaching at most a few 
million. The thermodynamic limit might no be justified in this case, as the results in 
that limit can vary with respect to those of finite-size systems. For infinite systems, 
normally deterministic descriptions can be formulated. However, if the system is 
finite, an intrinsic randomness persists, what is sometimes called demographic noise 
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(Nisbet and Gurney, 1982). Furthermore, new and interesting phenomena can  
appear depending on the number of individuals or agents considered. For example, 
it can create a strong non-linear response to a small external signal (Tessone and 
Toral, 2005) or oscillatory behaviour in cooperation models (Bladon, Galla and 
McKane, 2010).

2.2 Heterogeneity

Another of the properties that make socio-economic systems a challenging and 
exciting realm of research is the inherent heterogeneity of its constituents. When 
considering systems composed of voters, investors, firms or countries, it is clear that 
all the elements are not identical, but clearly diverse (Page, 2011). This heterogene-
ity cannot be neglected, as it is an integral part of the agents. When modelling in a 
quantitative way these systems, a simple replacement of one agent’s characteristics 
by a kind of average or representative value may limit excessively the descriptive 
power of the model. Indeed, in some cases, the extent of this diversity is so large 
that such substitution is also inaccurate from a conceptual point of view.

The sources of heterogeneity at individual level may differ depending on 
the system under consideration. Often, heterogeneity is due to an intrinsic  
(or previously acquired) property of the agent. For example, when the system under 
consideration is a process of opinion formation, different people have disparate 
preferences (based on idiosyncrasy, cultural background, etc.) (Castellano, Fortunato  
and Loreto, 2009); this preference can play a role in their process of decision mak-
ing (Schneider and Stoll, 1980). In other cases, heterogeneity is something that 
builds up during the evolution of the system. For example, in a social context, 
the number of social contacts (being in real life or in on-line social media) spans 
several orders of magnitude (Newmann, 2010), even if for all individuals, it starts 
from an empty set.

One of the crucial insights brought by complex systems modelling is the 
following: in many social systems, heterogeneity is not something that, while 
present, simply distorts or blurs the outcome obtained if identical representative 
agents replace a diverse population. Instead, heterogeneity can crucially affect 
their observed properties, and be the source of a priori unexpected phenomena in 
socio-economic systems.

2.3 Network of interaction

Central to social systems is that their constituents do not act in isolation: Agents 
interact with others (Bavelas, 1948; Wasserman and Faust, 1994). With whom do 
agents interact, how do these interactions change global properties of the system 
(Boccaletti et al., 2006), and how (Holme and Saramaki, 2012) and why (Galeotti 
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et al., 2009) do they appear or disappear are questions that must to be assessed to 
have a proper understanding of the system under consideration. In some cases, it 
is possible to assume that an agent interacts with all the others. This is the case, for 
example, in price formation in open markets, where the demand by one individual 
affects the price for the others. In social systems, it occurs when individuals react 
to aggregated information at the population level, like in polls, etc.

In most systems, however, agents interact only with a subset of others and 
these interactions can be decomposed into dyadic2 exchanges. In these cases, these  
relations can be described as a network, whose nodes are the agents of the system 
and the links (or edges) between them describe the interactions. Some simple 
examples are: in opinion formation, an individual may discuss the issue at stake 
with his acquaintances which amount to a restricted subset of the whole system. 
Other examples of particular relevance are that of networks of proximity (for 
processes opinion formation), and that of sexual contacts (for the unfolding of 
disease propagation).

3 COMPLEX SOCIAL SYSTEMS

The opinions held by individuals and decisions are not the simple outcome of 
their own reflections, but to some degree are affected by those of their environ-
ment, on what is termed social influence. Social influence can be readily observed 
in common collective decision processes, e.g. political polls (Mutz, 1992), panic 
stampedes (Helbin, Farkas and Vicsek, 2000), cultural markets (Salganic, Dodds 
and Watts, 2006), or aid campaigns (Schweitzer and Mach, 2008). Some of these 
collective decisions can trap a population in a suboptimal state, for example in 
a financial bubble due to financial actors’ herding behaviour (Prechter, 2001).  
Alternatively, they may steer a system into positive directions, such as increased 
tax compliance rates (Wenzel, 2005). However, understanding how such collec-
tive decisions are formed, evaluating their benefit for the population, and even 
directing their outcomes, is conditional on quantifying how people perceive and 
respond to social influence.

Based on incomplete information, how does an agent make his decision 
on a particular subject? A utility maximisation strategy is impossible because 
in many social situations the private utility cannot be quantified easily. In 
order to reduce the risk of making the wrong judgement, it seems to be ap-
propriate to copy the decisions of others. Such an imitation strategy is widely 
found in cultural evolution and recognised as such more than a century ago 
(Tarde, 1903): Humans imitate the behaviour of others to become successful 

2. Dyadic refers to interactions involving only two individuals or agents (from dyad, or pair).
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or just to adapt to an existing community (Dugatkin, 2000). A voluminous 
Literature has studied the effects of imitative and herding behaviour in the 
most variegated contexts. Imitation is in general an interesting example of 
complex bahaviour. On the on hand it is a local rule, but it can indeed create 
collective phenomena, like consensus.

The following are models that explain complex social phenomena, and 
go beyond this simple example.

3.1 Social sciences and emergent phenomena

The fact that social systems exhibit a behaviour that nowadays would be 
termed as “complex” was indeed recognised by social scientists and economists 
long ago. Most of the times, the portrayal of the properties of such systems 
remained, however, at the descriptive level. There are few counter-examples 
that do not follow this rule, and provide sound insights of mechanisms under-
lying phenomena with very simple and elegant considerations. These models 
have become paradigmatic in the context of complex social systems and have 
triggered numerous extensions. I briefly review those that are among the most 
important ones, with the intention that the interested reader will deepen the 
information provided here by following the concomitant references.

3.1.1 Schelling’s model of segregation

In modern societies is it not uncommon for people to segregate themselves 
into neighbourhoods with others that share some common trait like skin co-
lour, country of origin, religion, etc. This effect is in some cases the result of 
some kind of discrimination – for example, when a correlation exists between 
income and racial group belonging. Beyond these external factors, Thomas 
Schelling (1969;1971) showed that a bias in the preference of individuals to 
be surrounded by others which belong to his same group, is enough to give 
raise to segregation at the global level (Schelling, 2006).

FIGURE 1
Snapshots of the evolution of the Schelling model in a bidimensional lattice

Obs.:  A population initially distributed largely in a homogeneous manner eventually segregates into well-defined domains 
where a clear local majority emerges.
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There is a crucial insight about this setting (Schelling, 1969): “Locally, 
in a city or a neighborhood, a church or a school, either blacks or whites 
can be a majority. But if each insists on being a local majority, there is only 
one mixture that will do it: complete segregation.” When the dynamics is 
run on this model, even a small preference to be surrounded by others of 
the same group is enough to trigger a situation where agents form segregated 
clusters. Only those near an interface between the two groups may still have 
an incentive to move.

This model is paradigmatic of the complex systems research that per-
vaded other areas of social systems later: There is no need to understand all 
the factors behind people moving around, nor to have a detailed descrip-
tion of their spatial configuration, to learn that a simple local decision is 
enough to produce the macroscopic behaviour observed. Empirical analyses 
(Clark, 1991) have shown that the basic mechanism is at work in reality. The 
phenomenology observed was later shown to be connected to coarsening 
phenomena (Dall’Asta, Castellano and Marsili, 2008; Vinkovic and Kirman, 
2006), even if criticised for its intractability (Stauffer, 2012).

3.1.2 Granovetter threshold model

The segregation model previously discussed has imprinted in it the concept of 
local spatial interactions. Some years later, Granovetter (1978) introduced a 
celebrated model for decision making processes. In it, each individual has an 
idiosyncratic threshold; if the number of agents in the group who have decided 
the opposite to him exceeds said threshold, then the agent will change his deci-
sion and conform with the opposite one. The original context of application 
encompassed: i) diffusion of birth control techniques (where different thresholds 
may arise from different cultural backgrounds, position in the local hierarchy, 
own preferences etc.); ii) strikes, where workers will attend to see how many 
others have already committed to participate; iii) “chain migration”; iv) educa-
tional attainment, where the local cohort will condition the decision to  pursue 
higher levels of education, etc.

The ingredients of the model are minimal, indeed:  Consider a system 
composed of N agents, each one endowed with a threshold θi. These agents have 
to make a decision, e.g., on whether to participate (+) or not (−) in a riot. Initially, 
all agents are in state (−). At each time, each agent confronts the fraction of agents 
who have already decided to participate in the riot N+/N with his own threshold 
θi. If N+/N ≥ θi, then the agent decides to participate as well. It is rather obvious 
that, in an homogeneous system with θi = θ0, i and θ0 > 0, nobody would join 
the riot. As a second example, let us consider the situation θi = (i − 1)/N , i.e. a 
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uniform threshold distribution in the interval [0, (N − 1)/N ].  In this case, all 
agents end up rioting.  As a third example, let us consider a small modification 
of the second case. Now, all agents but one have the thresholds as in the second 
case; the sole change is that agent i = 2 has a threshold θ2  = 2/N (cf. this with θ2 
= 1/N in the second case). In this latest scenario, the number of agents joining 
the riot is only one individual, the one with threshold equal to 0. According to 
Granovetter the media could report the latter two examples – composed to most 
practical matters by identical crowds – respectively, in the following way: “a crowd 
of radicals engaged in riotous behaviour”, and “A demented troublemaker broke 
a window while a group of solid citizens looked on”. This enormous macroscopic 
change appears due to tiny differences in individual composition of the two crowds.

The formal solution of this model is very simple. Let f (θ) be the distri-
bution of thresholds for the agents. The total number of individuals joining 
the riot will be given by the smallest threshold θ' that verifies

( )∫
′

′=
θ

θϑϑ
0

,df  and ( )∫
′′

′′>
θ

θϑϑ
0

df   θθ ′<′′∀ .  (1)

The beauty of Granovetter’s insight comes from the recognition of the 
dramatic impact that intrinsic or acquired heterogeneity at individual level 
may have at the aggregated one. It also shows that out of social interaction, 
completely divergent macro-states can emerge.

FIGURE 2
Temporal evolution of two models exhibiting complex behaviour, normally used in the 
context of opinion formation

 

 
Obs.:  The two opinions are shown in blue and yellow, while the more time an agent has kept his opinion, the darker the square 

is. The upper row shows the time evolution of the Voter model when the network of interactions is a square lattice. It is 
apparent that the well-defined interface which signals the initial condition dissolves, giving rise to an interface between 
the two states which grows over time. The lower row, presents the results of the Ising model (whose interpretation is also 
discussed in the text) which exhibits a different phenomenology.
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3.2 Opinion formation models

In order to understand the intrinsic properties of systems comprised of many indi-
viduals, a number of models have been developed to describe opinion spreading in 
a social context. It is important to bear in mind that many of them where proposed 
ad hoc, without any sociological insight preceding them. This does not demerit, 
however, the insights that they provided in key mechanisms of opinion formation.

3.2.1 The voter model

Early approaches in the social sciences showed that the existence of positive social 
influence (i.e. imitation behaviour) tends to establish homogeneity (i.e. consensus) 
among individuals (Abelson, 1964; French, 1956). The “voter model” (Liggett, 
1995), also shows this behaviour. From a complex systems point of view, the voter 
model has been a paradigm for studying opinion dynamics (Holyst, Kacperski and 
Schweitzer, 2001), coarsening phenomena (Dornic et al., 2001), and spin-glasses 
(Fontes et al., 2001; Liggett, 1995).

The dynamics of the voter model can safely be regarded as the simplest 
implementation of an imitation process: Let us consider a system composed of N 
agents which can have one of two opinions si ∈ {−1, 1}. The agents are connected 
by a network of interactions N. At each time step, an agent is picked at random 
and imitates the opinion of one of his neighbours (also selected as random).

FIGURE 3
Results for the evolution of agent’s opinion for the Bounded Confidence Hegselmann-
Krause model 
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Source: Hegselmann and Krause (2002).
Obs.:  The three panels present the evolution for different values of the threshold E above which no exchange in agent’s opinion 

take place. Respectively the values are E = 0.05 (left panel), 0.18 (centre) and 0.25 (right). The number of agents in the 
system is N = 128.

Its simplicity allows for many analytical calculations (Liggett, 1995; Redner, 
2001). For example, for regular networks (i.e. those where all the agents have the 
same number of connections to others) this model has the property of magne-
tisation conservation (Castellano, Vilone and Vespignani, 2003; Frachebourg,  
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Krapivsky and Ben-Naim, 1996), which means that – when averaging over  
multiple realisations of the evolution – the relative proportion of individuals hold-
ing each opinion does not change with time. A corollary of this property is that 
a system with a density N1/N of agents having opinion 1 will reach consensus at 
such opinion with a probability N1/N . When run on a finite system, this reaches 
consensus in a finite time. How does the consensus time depend on the underly-
ing network (Castellano, Vilone and Vespignani, 2003; Suchecki, Eguíluz and 
San Miguel, 2005; Wu, Huberman and Adamic, 2004). was extensively studied. 
For heterogeneous networks (Suchecki, Eguíluz and San Miguel, 2005), the exact 
dynamic rule fundamentally alters its behaviour, and the network topology can 
slow-down the ordering dynamics and may even lead to a disordered system where 
no consensus is reached (Sood and Redner, 2005).

3.2.2 Ising model and opinion formation

The voter model corresponds to a variety of models where the individuals are faced 
with a dichotomy. This scenario is the simplest decision making set-up, and it also 
provides a plethora of phenomena arising from it. In Physics, in a different context, 
the celebrated Ising model (Brush, 1967) was studied for decades as a source of 
emergent behaviour, in particular for the existence of a transition from disordered 
(so-called paramagnetic) to ordered (ferromagnetic) macroscopic states depending 
on the level of randomness in the system (which acts as a control parameter). This 
model resorts on the representation of the constituents as two states and these 
elements are connected through a network defining the interactions. Depending 
on the randomness, connected nodes are more likely to end up in a configuration 
where they have the same state. To which extent does this coherent state extend 
within the system, ultimately determines the degree of global order. When the 
decision is not between two choices, but among several, the setting is known as 
the Potts model (Wu, 1982).

The knowledge on this model allowed for complementary approaches to 
the dynamics of opinion formation, in the form of the Weidlich model (Weidlich, 
1991). In this set-up, the description is not based on the single-element state, but 
on the densities of constituents in each one. It is therefore equivalent to Master 
equation approaches,3 and population level dynamics.

Even if reviled as a typical physicist’s approach to social systems, the Ising model 
(and its applications to social systems) showcases a problem faced often: different 

3. A master equation (Gardiner, 1983) is a mathematical description very common in the physics literature where 
the dynamics of a system composed by many elements is written in terms of the proportion of elements that are in a 
given state. A simple example would be, in a discrete opinion formation model, a formulation in terms of the ratio of 
individuals who hold each opinion. At this macroscopic level, the dynamics can be written as a function of the transition 
probabilities from one state to the others.
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terminology used to describe the same systems in different disciplines. Consider 
a coordination game played by bounded rational agents where the probability of 
selecting one of the two (indistinguishable) strategies is chosen with a probability 
following Logit dynamics on the expected pay-off. Formally, this model is exactly 
the same as the Ising.

3.2.3 Minority opinion spreading

The model introduced by Galam (2002; 2008) to describe the spreading of a 
minority opinion, incorporates basic mechanisms of social inertia, resulting in 
democratic rejection of social reforms initially favoured by a majority.4 In this 
model, individuals gather during their social life in meeting cells of different sizes 
where they discuss about a topic until a final decision, in favour or against, is taken 
by the entire group. The decision is based on the majority rule such that everybody 
in the meeting cell adopts the opinion of the majority. Galam introduced the idea 
of “social inertia” in the form of a bias corresponding to a resistance to reforms 
(Galam, 2004a) or favouring prejudices (Galam, 2003). Therefore: in case of tie 
within a group, one of the decisions is systematically adopted.

The dynamics of the model is as follows: There is a population of N indi-
viduals who randomly gather in “meeting cells”, simply defined by the number of 
individuals that can meet there; ak is then the probability that a particular person 
is found in a cell of size k. The persons have a binary opinion – (+) or (−) – about 
a certain topic. At time t = 0, one sets N+(0)/N to an arbitrary value. The agents 
are then distributed randomly among the different cells. The basic premise of the 
model is that all the people within a cell adopt the opinion of the majority of  
the cell.  Furthermore, in the case of a tie (which can only occur if the cell size k is 
an even number), one of the opinions is systematically adopted. Once an opinion 
within the different cells has been taken, time increases and the individuals rear-
range by distributing themselves again randomly among the different cells. For a 
wide range of distributions {ak}, this model has three fixed points: two stable ones 
at N+ = N and N+ = 0 and an unstable one, the faith point, at N+/N = pc < 1/2. 
Hence, the dynamics is such that 

    (2)

Therefore, the main finding of this model is that an initially minority opinion, 
corresponding to N+(0)/N < 1/2 can win in the long term.

4. For reviews around this family of models, the interested reader can refer to Galam (2004b; 2008; 2012).
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3.2.4 The response to common signals

Regarding the effect of signals (that may represent advertisement or changes in 
policy) in social systems, it is important to recall that they are heterogeneous.  
In a general setting, it was shown that heterogeneous systems exhibit a maximum 
response to an external common signal, as a function of the degree of diversity of 
the constituents (Tessone et al., 2006). This phenomenon was shown to occur in 
different models of opinion formation (Galam, 1997; Tessone and Toral, 2009; 
Vaz Martins, Pineda and Toral, 2010). The same phenomenon occurs if, instead 
of idiosyncratic heterogeneity, the source of disorder is a different one, like the 
existence of repulsive interactions within the system. In a social context, these 
repulsive interactions would represent contrarians, i.e. individuals that oppose any 
type of consensus (Galam, 2004a; Stauffer and Sá Martins, 2004) or that intend 
to destabilise the system itself, such as the Joker-like players studied in the context 
of social dilemmas (Arenas et al., 2011).

3.2.5 Continuous opinion models

In some cases, the individual opinion must be modelled not as a discrete choice but 
in terms of a continuous variable. This is the case, for example, when individuals 
must answer quantitative questions they do not know the answer of and can only 
formulate an educated guess. When exposed to the opinion of others, on average, 
the change in opinion of an individual is proportional to the distance to the aver-
age opinion of others (Mavrodiev, Tessone and Schweitzer, 2012).

Long before these empirical studies, different models were proposed to study 
this scenario. One archetypical example is the Hegselmann-Krause bounded 
confidence model (Hegselmann and Krause, 2002). It runs as follows: There are 
N agents with an opinion oi ∈ [0, 1]. At each time, an agent is picked at random 
and updates his opinion according to the rule

,     ( 3 )

where Θ is the Heaviside step function. Simply stated, agents will move towards 
the average opinion of all the other agents whose opinion is not farther than  
from theirs.  represents what the authors named confidence level of the agents.  The  
rationale  behind  the  model  is  that  individuals  do not take into consideration 
the opinions of others who are far  enough  from theirs.

Some intuition of the phenomenology of this model can be obtained by 
observing figure 3. If the confidence level is small (left panel) individuals rarely 
change their opinion and interact with the few who have a close enough opinion; 
in this case, multiple opinions survive, in a regime akin to plurality. For increas-
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ing values of  the number of clusters reduce, traversing a regime where only two 
irreconcilable opinions, with similar support survive. For even larger values of 
confidence level, agents are influenced by a larger set of agents, with more diverse 
opinion, and then consensus is reached (right panel). Close to the transition to-
wards consensus, an interesting phenomenon is observed (middle panel): Agents 
first create two main clusters, and individuals with an opinion close to 1/2 even 
break away, depending on which side of the separatrix they are. Then, after the 
two clusters are formed, they converge again towards a final state of full consensus.

Another celebrated model in this line is that of Deffuant et al. (2000) and 
Weisbuch et al. (2002) which exhibits a similar behaviour.5 

3.2.6 Cultural traits and language dynamics

Robert Axelrod (1984; 1997) introduced a model for the generation and diver-
sification of different cultures. It was born out of the observation that differences 
between cultures do not disappear at all despite the fact that people tend to become 
more alike in their beliefs, attitudes and behaviour when they interact.

Specifically, in Axelrod’s model each agent is characterised by a set of F 
cultural features, each one of them can adopt any of q different traits. The state 
of agent i defined by the F variables (σi,1, . . . , σi,F ). Agents interact by means 
of a network of interaction. Then, the dynamics is as follows, two neighbouring 
agents i and j are selected at random. Their overlap lij is the number of common 
features, . With a probability lij/F, the value of one of the not 
yet common features is transferred from one agent to the other, so increasing the 
overlap by one. This process is then repeated. Eventually, a frozen state is reached 
in which no possible evolution is possible. In such a frozen state, neighbouring sites 
have either an overlap equal to 0 or to F . The relative size of the largest cluster of 
agents sharing all cultural features, Smax/N is a measure of the cultural diversity. 
Smax = N identifies a monocultural or globalised state. On the other hand, if  
Smax = O(1), the state that can be qualified of culturally diverse or polarised.

This model was widely studied, showing the existence of a transition between 
the two cultural states (Castellano, Marsili and Vespignani, 2000; Vilone, Vespig-
nani and Castellano, 2002), where in presence of cultural drift – fluctuations in 
the cultural traits – the multicultural state disappears for sufficiently large systems 
(Klemm et al., 2003; 2005) and also in presence of mass media (González-Avella 
et al., 2007).

5. For a complete survey of models of continuous opinion dynamics, the interested reader may refer to Lorenz (2007).
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3.3 Strategic behaviour

Cooperation is an abundant phenomenon in social systems, but in most game-
theoretical approaches defection should be the rational strategy to choose (Axelrod, 
1984; 1997; Axelrod and Dion, 1988; Huberman and Glance, 1993; May, 1987).  
In order to solve this paradox, a vast literature has proposed modifications to the 
classical approach. The normal set-up to study this phenomenon is the analysis of 
games where agents have to choose a strategy; depending on the choices of others 
they get a given pay-off or reward. A wealth of studies involve 2 × 2 games, i.e. 
two agents play a game while having to decide between two choices (Camerer, 
2003; Gintis, 2009; Myerson, 1991), in some contexts interpreted as cooperation 
or defection. Based on the strategies, the pay-off structure ultimately determines 
the kind of game under consideration (Stark, 2010). The most studied model is 
the so-called “prisoner’s dilemma” where the Nash equilibrium is pure defection.

Another interesting example is that of public goods games (Kagel and Roth, 
1995), where a population of N agents have to take one of two possible actions σi 

∈ {0, 1} (cooperation and defection, respectively). The utility function for agent 
i is defined by

,     ( 4 )

where c is the contribution to the public good, r > 1 is a gain factor by the public 
good.  It is easy to see that the optional strategy is free riding if c > r/N , because 
the costs are more than the eventual gains. How to trigger cooperation in such a 
situation has been a withstanding question in this area of research.

In general the emergence of cooperation can be the result of: Changes of 
the pay-off structure, repeated interactions, spatial distribution of agents, agent 
migration etc. (Hauert and Szabó, 2005; Nowak, 2006; Szabó and Fath, 2007). 
Also, it was found that people often condition their behaviour on the cooperative-
ness of others or on their beliefs about others’ actions, in a phenomenon termed 
conditional cooperation (Fischbacher, Gachter and Fehr, 2001; Keser, 2002).

4 NETWORK OF INTERACTIONS

Some properties have been found to be widespread in social and economic in-
teractions (Boccaletti et al., 2006). Take for example the degree, the number of 
connections each node has as defined by the network, i.e. the size of the neigh-
bourhood of said node. One of the typical properties of the networks analysed is 
that the degree usually has not a typical magnitude, but it is very diverse, span-
ning even several orders of magnitude. This usually translates in very broad degree 
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distributions in real-world networks. Another property that is pervasive is that, 
within the network, any pair of agents are separated by a distance that is very small 
compared with the network size, and regardless of how much the network grows, 
these distances barely change. Interestingly, and with the advent of the pervasive 
use of on-line social networks, people has become aware (at least from an intuitive 
point of view) with these concepts: Nowadays, the fact that some individuals have 
very few social contacts, while others have thousands is of no surprise; something 
similar happens with the six degrees of separation, originated in the foundational 
works by Milgram (1967; Watts and Storgatz, 1998).

These properties and others related to the network structures have been 
shown to completely alter the global properties of the systems under consideration 
(Dorogovtsev, Goltsev and Mendes, 2001). In general, social sciences have restricted 
their analyses to describe properties of real-world networks, while developing a 
large body of knowledge on the topological traits that allow to describe and quan-
tify these and other properties existent in real-world networks (Bollobás, 2001;  
Wasserman and Faust, 1994). On the other hand, the literature on complex 
networks has focused on understanding the properties of highly stylised models. 
However, in general, only plausibility arguments have been used and over-used to 
justify them (without micro-foundation or link to real-world data).

4.1 Small-world effect

The small-world effect is the property of the networks of social interactions 
(among others) by which their diameter (i.e. the maximum distance between any 
two nodes) is very small, when compared to the number of nodes in the network.  
The basic idea comes from the original empirical study by Stanley Milgram (1967). 
He distributed letters in central states of the United States with instructions that 
they should reach a given person in Boston (north-east). In principle, the individu-
als with the letters did not know the final recipients, but they were instructed to 
forward the letter to some acquaintance they thought may know how to deliver 
it. Two important things occurred: First, around a fifth of all the letters arrived; 
those which arrived passed (on average) through around six intermediate indi-
viduals. Second, in several cases the second last recipient (before arrival) was the 
same person (i.e. there are very well-connected individuals in the social network).

In a very simple mathematical construct, Watts and Storgatz (1998) demon-
strated how the small-world property can emerge. I.e. starting from an arbitrary 
topology, the introduction of few random links connecting distant nodes is enough 
to dramatically decrease the average distance in a network.
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4.2 Scale-free degree distributions

In the context of biological evolution, a ground-breaking work by G. Udny Yule 
(1925) showed that a heterogeneous, heavy-tailed distribution can emerge out a 
simple stochastic process. It is a kind of urn model,6 related to the Pólya process7 
and can be simplified into the following: First of all, species are grouped in gen-
era. Over time, by mutation of one of the existing species, new ones appear. At 
a constant rate λY, this speciation process generates a new species belonging to 
the same genus as the parent species. Otherwise, at a rate µY, the speciation event 
generates a new species that belongs to a new genus.

The Yule model is multiplicative, in the sense that the probability that a new 
species belongs to a given genus is proportional to the number of species the genus 
already contains. In other words and context, this model epitomises the concept 
of the rich gets richer effect. Let ki be the number of species belonging to genus i, 
and let p(k) be the probability that a genus has size k. Yule showed (Aldous, 2001; 
Yule, 1925) that, for very long times, the distribution is given by

 , (5)

where ρY = λY /µY . This solution means that for large values of k, asymp-totically, 
the distribution follows a scale-free distribution (Caldarelli, 2007; Sornette, 2006), 
p(k) ∝ k−(1+1/ρY ). This distribution is scale-free in the sense that by rescaling the 
variable k by a factor λ > 1, it results in 

p(λk) ∝ (λk)−(1+1/ρY ) ∝ k −(1+1/ρY ) ∝ p(k). (6) 

This property is also usually referred to as scale invariance. The intrinsic 
mechanism of the Yule model was rediscovered in the context of what nowadays 
would be called scientometrics, and termed the Matthew effect (Merton, 1968). 
In this work, Robert  Merton  writes “The  Matthew effect consists in the accru-
ing of greater increments of recognition for particular scientific contributions to 
scientists of considerable repute and the withholding of such recognition from 
scientists who have not yet made their mark”. 

6. In general an urn model (Johnson and Kotz, 1977) refers to a mathematical construct that can be abstracted into 
scenario where marbles are extracted sequentially from an urn. The rules that define the mechanism by which new 
marbles are added to the urn between successive extractions, ultimately determine the statistical properties of the 
sequence of marbles obtained.
7. The Pólya process (Sprott, 1978) is a simple urn model defined as follows:  an urn contains marbles with two dif-
ferent colours. At each step, a marble is removed and a new marble with same colour as the removed one is added to 
the urn. This produces a process by which the more marbles were removed of a given colour, the more likely it is that 
successive marbles will be of the same colour.
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FIGURE 4
Typical scale-free network 

Obs.:  Typical scale-free network, where hubs – nodes which are heavily connected to the rest – can be seen in lighter colour. 
(right) Cumulative degree distribution of the network of social contacts in the Czech dating platform “L´ıb´ım se ti”  
(Kunegis, Groner and Gottron, 2012) as of 2011. The network consists of 220 970 users (nodes) and 17 359 346 con-
nections (edges).  The dashed line represents a power-law fit equivalent to p(k) ∝ k-α, following Newman (2005), it is 
found α = 2.57 and kmin = 93.

Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 
the original files provided by the authors for publication.

The preferential attachment (Barabási and Albert, 1999) follows a related 
idea. Let us consider a network that grows in a discrete time-scale. Initially, the 
network has m0 nodes with an arbitrary topology. At every time step, a new node 
is added to the network and generates m links to existing nodes; the probability 
p(i ←→ j) that the new node i connects to another one j is given by

. (7)

The parameter a reflects the initial attractiveness of nodes, even if not con-
nected to any other. Like in the Yule model, the more links (what previously was 
a species) a node (genus) has, the more likely it will recruit new links (species).  
In this setting, the degree distribution obeys

( )kp α ( )
( )akma

ak
+++Γ

+Γ
3 . (8)

The case studied in the original paper by Barabási and Albert has a = 0, 
which means that the degree distribution for large degrees simplifies to p(k) ∝ k−3.  
The networks produced by the latter model have a low clustering, and have an 
average path length  that grows with the network size N as Barrat, Barthélémy 
and Vespignani (2008),  = ln(N )/ln(ln(N )).
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It is important to stress that the preferential attachment model is not a real-
istic model of network growth. Arguing that individuals enter, for the sake of an 
example, on an on-line social network one at a time and create links to existing 
users and with no further link dynamics from their side is not an accurate descrip-
tion of reality. But acknowledging that, allows us to recognise something crucial 
of complex systems modelling. Preferential attachment captures a mechanism: 
Users are more likely to be known (or be “attractive” to others) the more acquain-
tances they already have. This can be due either to: i) new users are more likely to 
know someone who has several acquaintances; and ii) an extroverted person will 
be signalled by a large social neighbourhood and will be more likely to increase 
it even further. Then, the emergent property of this model (the scale-free degree 
distribution) is a characteristic likely to be found in any network where a property 
like preferential attachement is at play.

The model of preferential attachment was extended to encompass different 
and more realistic scenarios (Allard and Marceau, 2011; Dorogovtsev and Mendes, 
2001; 2002; Dorogovtsev, Mendes and Samukhin, 2000; Tessone, Geipel and 
Schweitzer, 2011). It was also analysed and validated in contexts like collabora-
tions (Barzel and Barabási, 2013; Capocci et al., 2006; Vespignani, 2011), sexual 
contact network (Jones and Handcock, 2003; Liljeros et al., 2001), etc.

From a procedural point of view, it is important to stress that empirical vali-
dation of scale-free distributions is a line of research in itself. Originally, inherited 
from the physics literature, simple regressions were performed, and accepted as 
standard. It is unfortunately not unheard of papers where the claimed scale-free 
behaviour extend indeed very few data points. The reader will recognise that doing 
so is in blatant contradiction with equation 6. Nowadays, it is widely accepted 
that this approach can lead to wrong conclusions (Newman, 2010), and therefore 
more sophisticated tools have been developed (Newman, 2005).

4.3 Temporal  networks

In many cases of interest, the network of interactions is not static, but it changes 
over time. A very simple example is found in the network of social interactions:  
A person, regardless of the amount of social acquaintances he has, does not maintain 
a continuous interaction with all of them. Instead, at any point in time he may be 
either isolated, or interacting with a limited subset of his social neighbourhood.  
If he is speaking to a friend, he has a single active contact. Another example is that 
of scientific collaborations: Even very prolific scientists can only maintain a rather 
limited set of concurrent research projects with others. In these cases, the agents 
have a constrained amount of resources they can allocate to links, either because 
of limited capacity or limited cognitive abilities.



The Complex Nature of Social Systems  | 159

In spite of this fact, most modelling approaches either consider that the un-
derlying network of interactions does not evolve, or that its  evolution occurs at a 
time-scale which is much slower than that of the dynamical process taking place on 
the studied network. In the latter cases, the network exhibits a slow evolution that 
can be considered a simple perturbation when related to the complete structure.  
This also applies to a strand of research that has focused on network co-evolution 
where the states of its constituents determine the changes in topology, until a kind 
of stationary topology (and concomitant macroscopic state) is reached.

When the network evolution is observed, many systems exhibit patterns of 
interaction that are largely sparse and volatile. Sparsity is a common trait in the 
instantaneous realisation of the network if links are costly, or when the nodes have 
some kind of capacity constraints. Volatility refers to the fact that in real-world 
temporal networks, edges tend to have low persistence when compared to the 
observation period of the network evolution. This means that a network is volatile 
if it is possible to define a decay time after which the observed network topology 
largely differs from the previously observed one.

The realisation that the network is not a static construct but evolving has 
profound implications on the properties of the system under study (Holme and 
Saramaki, 2012). A simple example suffices to give an intuition of the effects 
that can be found in this scenario: The process of disease propagation where the 
vector of transmission is physical contact between an infected individual and a 
healthy one.  Given that infection can only take place over active contacts, if the 
typical cycle of infection-recovery were much faster than the network dynamics, 
any infection would not propagate throughout the population and die after some 
time, propagating only over this tenuous, effectively static network (Tessone and 
Zanette, 2012; Zanette and Risau-Gusmán, 2008).

4.4 Multiplex and interconnected networks

In the descriptions so far, it is important to note that the nodes represent a unique 
type of component and a single type of connection exists between them, conforming 
the edges. Mainly during the last lustrum, the study of the so-called multi-layer 
networks (Kivela et al., 2014) has gained massive momentum. Take as a simple 
example a social network; acquaintances in this setting can be originated by 
different communication channels, not exclusive but at the same time not akin: 
e-mail, on-line social network contacts, phone calls, and face-to-face contacts are 
all different aspects of communication. These facets may not be taken as equivalent, 
depending on the problem studied on said multi-faceted social network. For 
example, information flow in such a network may require a proper modelling where 
the different channels of communication have their own intrinsic characteristics.
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Another example of a system that can be represented as a multi-layer network 
is that of human mobility by public transport in large cities, where nodes represent 
public transport stops. There, it is possible to travel between nodes by different 
means of transportation: Underground, train or bus. All these are intrinsically 
different edges and a proper study mandates to take this point in consideration. 
In both previous examples, the networks under consideration have an additional 
property: Nodes in all layers are the same; in this case the system is called a mul-
tiplex network (Boccaletti et al., 2014).

In other situations, the networks in the different layers are composed of 
nodes of different nature. Take for example economic transactions (which may 
be taken as edges) and individuals (as one type of nodes) and their working places 
(as another). Edges will exist between different individuals, individuals and their 
working place, and between the nodes representing firms and the public sector. 
This is a simple example of an interconnected network.

The phenomenology of all these family of systems is very rich: When do 
interconnected networks behave as a single one, or independently (Radicchi and 
Arenas, 2013)? How do opinion dynamic models behave in these networks? How 
robust or fragile are such systems to the removal of nodes? All these questions 
have been targeted in the Literature and constitute important milestones in the 
understanding of the phenomenology of interconnected networks.

5 OUTLOOK

Many social systems are intrinsically complex. At the same time, they have a 
multitude of details that render their complete description an unattainable task. 
The works summarised in this chapter highlight the fact that stylised models can 
capture mechanisms behind some of their observed properties. Importantly, when 
these mechanisms are at work, the microscopic details become unimportant to 
have a qualitative understanding of the subject under consideration. These insights 
are crucial to realise that a parsimonious approach is of great value for this kind of 
systems. Practitioners and policy makers must bear in mind always the essential 
complex nature of the systems they are faced with. Understanding these phenom-
ena is of crucial importance, but this does not mean resorting solely in simple 
models as a complete description of reality. This is not, as explained throughout 
this chapter, the intention of the complex systems approach.

As of this writing, there is an almost complete transition towards digital stor-
age of information and, at the same time, more facets of human activity take place 
on-line. This fact spawns challenges from the most disparate points of view (social, 
economic, legal), but constitutes a huge possibility to gain more insight on the 
mechanisms underlying socio-economic processes. With continuous access to data, 
this can be done at two levels: First, from a qualitative point of view, the different 
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mechanisms can be first individualised and formalised. Second, after this knowledge 
is consolidated, a more quantitative approach (with the additional advantage that 
it is now grounded in theory) can take place with huge implications for different 
actors of our society, ranging form policy making by governments to development 
opportunities for business (like in partnerships and marketing campaigns).

The research in this realm is largely interdisciplinary. However, crucial effort 
has to be taken by the research community and practitioners not to overlook the 
knowledge from the different fields. This requires an additional attention, but it 
is an efficient way to facilitate cross-pollination of the ideas between the involved 
disciplines. Part of the problem lies on the different terminology used in the dif-
ferent areas, with disparate constructs to elicit similar concepts. Also, it is needed 
that a larger extent of the research in this area is the outcome of interdisciplin-
ary collaborations. In this way, different disciplines would enrich complex social 
systems research with diverse, yet complementary approaches. Different threats 
exist: On the one hand, the danger of research that only aims towards one of the 
disciplines involved, becoming effectively compartimentised. This limits greatly 
the reach in other communities, and also by construction is of limited interest 
only for the own discipline.

For a quantitative understanding of the phenomena observed in social systems, 
complementary tools – beyond the minimalistic complex systems approach – are 
needed. Even in this set-up, it is of primary importance not to populate the models 
with unnecessary details that convey no information nor predictive power to them.
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CHAPTER 8

THE ECONOMY AS A COMPLEX OBJECT 
Orlando Gomes1

1 INTRODUCTION

Every day, millions of firms and millions of households around the world select, 
among many available options, which actions to undertake in order to fulfill 
their own economic goals. Any attempt to understand and explain such a wide 
and heavily interconnected system of human relations is a challenging task that 
the science of economics is pursuing since its inception in the eighteenth century.

Perfect rationality is the central assumption in economics; it is, in fact, 
the element that allows to distinguish this scientific field from any other deal-
ing with the behavior of human beings or other living organisms. Economic 
agents are rational in their decisions and also in the way they perceive the 
future. The Homo-Economicus formulates rational expectations, in the sense that 
this entity is capable of using efficiently all the available information in order 
to avoid incurring in systematic mistakes, when predicting the future. Taking, 
as the main premise of economic analysis, the agents’ unlimited capacity to 
apprehend the reality may be somehow interpreted as simplistic. However, it 
is precisely such premise that has driven the economic science in the last few 
decades, allowing it to approach many puzzling and important issues arising 
from empirical observation.

There is an immediate corollary of the rationality assumption: agents pursuing 
identical goals will act exactly in the same way and, therefore, the aggregate economy 
might be understood through the examination of the behavior of a representative 
agent. The representative firm will maximize profits given expected revenues and 
its cost structure; the representative household will formulate a consumption plan 
in order to maximize intertemporal utility; the representative government agency 
will establish policy goals and it will use the available resources to attain them. 
The representative agent paradigm has served as the benchmark for a whole generation 
of brilliant economists to launch the ideas that constitute today the foundations 
of economic analysis. In this group of scientists one can include such important 
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names as the ones of Paul Samuelson, John Hicks, Kenneth Arrow, Gerard Debreu, 
Franco Modigliani, Robert Solow, Milton Friedman and Robert Lucas. 

Economics has progressed a lot: real life intricate mechanisms have been 
reduced to simple mathematical models that, in turn, became powerful tools to 
address many relevant economic issues. The main achievement of modern economics 
was, then, its ability to explain how a typical agent, endowed with material 
resources and human skills, is capable of evaluating the costs and benefits of any 
decision and to choose the option involving a lower opportunity cost; knowing 
how such agent effectively acts, one might extrapolate the behavior of the global 
economy. Therefore, by taking fully rational economic agents with identical features, 
the science of economics has apparently discovered a formula that is suitable to 
understand many meaningful real-world events.

Despite the relevant progresses made by the economic science in the past, 
it is by now relatively consensual that it is necessary to start to look beyond the 
fully rational representative agent structure of analysis. Some authors, as Colander 
et al. (2004), Delli Gatti et al. (2010), Holt et al. (2011), and Kirman (2012) 
believe that a new era of economic thought is emerging; an era where conventional 
neoclassical economics is giving place to an interpretation of the human behavior 
in which one finds room for diversity, heterogeneity, adaptability and complexity. 
The economy should be interpreted as a complex system, a system where agents 
with different capabilities, different endowments and different preferences interact 
to generate a result that is not known a priori and that is the direct outcome of 
how the interaction process unfolds.

In this chapter, the reasons why one should interpret the economy as a complex 
object are dissected. It is shown that the economic science is making a gradual 
transition to a science of complexity, that macro events are necessarily the outcome 
of how micro units interact at a local level, and that a complexity approach is 
flexible enough to explain many relevant aggregate events as long periods of 
departure of key macro variables relatively to their equilibrium values. The remainder 
of the chapter is organized as follows. Section 2 reviews the contemporaneous 
literature on complexity economics. Section 3 explains why one should interpret 
the macro economy as a complex system. In section 4, a powerful tool that allows 
to address the economy as a complex object is approached, namely complex 
networks, which might be addressed in the context of agent-based models. Section 
5 illustrates how a relatively simple model involving local interactions between 
heterogeneous agents might lead to a long-term result that can be classified as a 
complex outcome. Section 6 concludes.
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2 COMPLEXITY IN ECONOMICS: THE EMERGENCE OF A NEW PARADIGM

According to Tesfatsion (2006), the economy can be qualified as a complex system 
for two complementary reasons: first, because a large number of individual units 
engage in systematic relations at a micro level; second, because local interactions 
generate global regularities that involve emergent properties, i.e., properties that 
are unique to the established pattern of interaction and that, consequently, do not 
depend solely on the intrinsic features of the involved individual units. 

The concept of complexity involves many dimensions and it needs to be 
carefully dissected. In what concerns economics, and in order to rigorously define 
the economy as a complex system, the following properties emerge as relevant (see 
Arthur et al., 1997; Martin and Sunley, 2007; Fontana, 2008).

2.1 Heterogeneity 

Heterogeneity is the main driver of economic relations; these relations, e.g. trade 
realtions, simply would not exist if all individuals shared the same preferences, 
endowments and skills. The economy is a system constituted by a large number 
of components, with each component possessing its own features. 

The attempt of the economic theory in building its reasoning in turn of the 
explanation of the behavior of a rational representative agent, as argued in the 
introduction, thus neglecting all possible sources of heterogeneity, might be interpreted 
as a relevant fragility. As Bouchaud (2009) remarks, there is an impossibility in this 
reductionist approach: the behavior of the crowd is, in its essence, different from 
the behavior of the individual; collective action has a logic of its own, a logic that 
can only be understood by allowing for agent heterogeneity.

2.2 Decentralization

The economy is a self-organized decentralized system. The aggregate outcome is the 
result of the free initiative of each individual agent who acts with the purpose of 
serving her own individual goals, and this occurs without the need for intervention 
of any outside entity or central planner. The idea of decentralized equilibrium is 
an ancient concept in economics that many of its most prominent scientists have 
recurrently recovered. For instance, Friedrich von Hayek (1967) talked about 
the existence of a spontaneous order, according to which the observed laws of 
motion are the outcome of the interaction established among self-interested agents. 
In Hayek’s view, the economy is understood as a complex web of relations and 
transactions in an environment that is similar to what we can define as a complex 
network or complex object. 

Contemporary approaches to complexity continue to highlight the nature of 
the economy as a decentralized network. It is the case of Ashraf et al. (2012), who 
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interpret market relations as the outcome of the behavior of profit-seeking business 
firms. Each individual firm will act with the purpose of serving its own objectives; 
however, by doing so a coherent macro pattern of transactions will emerge. Global 
regularities are not the result of central coordination; on the contrary, no one will 
evidence the ability to gather the immense knowledge and power that are required 
to control market relations and, hence, the aggregate patterns that possibly emerge 
are often beyond the comprehension of each individual agent.

2.3 Evolution 

The economy is a dynamic system within which individuals adapt and learn. 
The interaction process shapes the way agents act, because they evolve as the relations 
between them unfold. A complex system is necessarily formed through evolution. 
Simple organisms give place to more sophisticated entities as they adapt in the 
context of a constantly changing environment. A Darwinian process of survival 
of the fittest takes place in the economy in the same way it occurs in many other 
contexts. The evolutionary process is a lengthy process that adds successive layers 
of complexity to the pre-existent web of interactions. 

The sophisticated market institutions, financial institutions or regulatory entities 
we have in today’s economy are the result of a gradual and incremental evolution. 
Hodgson and Knudsen (2010) designate the process of system evolution leading 
to the sophistication of complex networks as generative replication. The term 
replication relates to the idea that from one stage to the next some information is 
passed on, i.e., a new system has always some features of the previous systems that 
originate it. Nevertheless, a new system rarely just replicates the precedent one; it 
typically adds something new. A generative process is a process that builds on past 
generations to present a new improved version of the reality; it is a process that is 
able to introduce innovation, it is a process of creative destruction. Under the discussed 
perspective, one might claim that the economy is an increasingly complex system 
that has arrived to the current state of complexity after millions of years of evolution.

2.4 Path-dependence and non-equilibrium dynamics 

As implicitly mentioned in the previous point, the economic system is historically 
determined. The current state of a system has singular features that are determined 
by the particular events that have promoted it. History will not necessarily repeat 
itself and therefore there are no reasons to believe that a given economic scenario 
observed in the past will occur in the future with the exact same features. It is the 
set of specific conditions attached to the character of the agents, to the institutional 
context, to the dynamics of interaction and to the environment in which interaction 
takes place that will determine economic outcomes and it is in fact implausible 
that such huge amount of requisites might appear in a recurrent form. 
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Because of the previously stated and because agents adapt, learn and evolve, 
the economic system does not have the tendency to remain in an equilibrium position 
or rest in a stationary state. Interaction in complex environments will seldom 
produce a steady-state outcome. Even apparently simple models built on the 
notion of local interaction among heterogeneous agents might generate, according 
to Brunn (2002), a complex and irregular dynamic behavior, where the values of 
the underlying variables fluctuate forever without ever converging to a stationary 
state. Furthermore, in complex environments new patterns of interaction might 
emerge after thousands of periods of starting running a simulation, even when no 
external event disturbs the system. 

Note that the above observations go against the most basic foundations of the 
neoclassical economics of the representative agent, which believes that equilibria 
are inherent to economic relations and that the trajectories of variables are solely 
determined by the initial conditions and by simple rules of motion, which allow, 
from the start, to predict with accuracy how those trajectories will evolve and where 
the system will rest in the so called long-term steady-state.

The mentioned features, namely the four properties that were characterized 
above, clearly qualify the economy as a complex object. Based on these features, 
many authors, e.g., Markose (2005), McCauley (2005), Velupillai (2005) or 
Rosser (2010), have attempted to conceive a notion of complexity able to reveal 
itself appropriate to address economic events. Such notion involves considering 
three different categories: connective complexity, dynamic complexity and 
computational complexity. 

The first concept, connective complexity, highlights that what truly shapes the 
behavior of the elements of a system are the relations that are established among 
them and that the evolution of the system is the direct outcome of the links that 
emerge and vanish, within a given network, at each time period. More than the 
individual features of each single element, it is the logic of interaction that matters. 
This interpretation of a complex system is the one pioneered by Simon (1962), who 
also reflected on the limits of rational thinking; the notion of bounded rationality 
opens the door for agent heterogeneity and, consequently, attributes meaning to 
the distinct forms of contact across different agents. 

Dynamic complexity is related to the properties of the dynamic equations 
one takes to describe the evolution of the economic system. Economics is a science 
that heavily resorts to dynamic systems to interpret the reality. These systems are 
typically simple, involve linear relations and imply convergence towards a fixed-point 
steady-state. However, when escaping the straightjacket of homogeneous behavior 
and full rationality, one encounters intricate nonlinear dynamic relations across 
economic variables, which lead to systems with non conventional long-term 
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outcomes, particularly a-periodic cycles and chaotic motion. As Day (1994) 
highlights, a dynamic system can be interpreted as complex when it generates, 
for its endogenous variables, a motion pattern that is not regular, i.e., that is not 
a fixed-point or a periodic cycle. Chaos is associated with complexity because it 
reflects a long-term result of irregular bounded instability that is determined by 
the initial conditions of the system. Chaotic systems are characterized by sensitive 
dependence on initial conditions, meaning that two different initial states, 
no matter how close to each other, will generate completely different long-term 
irregular fluctuations.

A third notion relates to computational complexity. Work in this area goes 
back to the influential contribution of Shannon and Weaver (1949) concerning 
the theory of information. In this context, complexity is attached to the con-
cept of entropy. Entropy, in turn, is associated with how hard it is to process 
information. The higher the level of entropy, the more complex the respective 
system will be. Since it deals with the capacity to treat information, compu-
tational complexity raises a pertinent question concerning the way in which 
conventional economic theory addresses its challenges: if agents are rational and 
optimize their behavior, they will employ all their effort and resources in search-
ing for the optimal solution. Within a complex system involving entropy, the 
computational effort required to attain the optimal solution may be so high that 
it becomes unreasonable, from a cost-benefit point of view, to search for such 
outcome. Then, in the context of a complex environment, the decision-maker 
faces a trade-off between finding the best solution and the employment of the 
resources required to attain it.

The above arguments point to the unequivocal idea that the economy should 
be approached under a complexity perspective. However, as pointed out before, 
conventional economic thought has avoided this approach. One of the reasons 
for mainstream economics to be detached from a complexity perspective relates 
to the conservative attitude of the economists and their difficulty in accepting the 
techniques and tools that other sciences have developed and have to offer. Economics 
is today the science of logical and coherent models, models that are rigorous 
from a conceptual point of view and where the notions of rationality, equilibrium, 
optimization and efficiency dominate. To go beyond this paradigm, the obsessive 
search for the optimal behavior must be discarded in favor of a multidisciplinary 
approach that gives relevance to experimentation and to the careful analysis of 
institutional factors. 

One of the scientific fields that can best assist economics in the quest for a 
complexity paradigm is physics, where long ago the mechanical view of the world 
that economics continues to adopt has been replaced by an agent-based interpretation. 



The Economy as a Complex Object  | 175

A new field of knowledge, dubbed econophysics, has emerged with the intention 
of offering new insights on how economic issues can be approached. An inductive 
reasoning is adopted, strongly based on the observation and measurement of 
collective behavior. The science of econophysics was born and developed with the 
contributions of Mantegna and Stanley (2000), Gallegatti et al. (2006), Rosser 
(2008) and Yakovenko (2009), among others. The introduction of physics in 
economics is useful for a better understanding of how spontaneous orders emerge 
in the markets; physics has a long tradition in examining self-organized, adaptive 
and evolutionary systems and its tools can be easily adapted to understand and 
interpret the human behavior under a setting of interaction.

Triggering a change of paradigm in a scientific field is, certainly, a huge and 
hard task. Economists are locked in their own methodology and techniques and 
will probably offer some resistance to the adoption of new approaches. Fortunately, 
the perception of the world as a complex entity is something that many other 
fields of knowledge (not only physics but also, e.g., biology or psychology) have 
already accepted, having developed a significant set of tools that are now available 
for economics to address and explore their own issues in the scenario in which 
they truly arise, namely a complex scenario composed by multiple heterogeneous 
and interacting parts.

Furthermore, there is a methodological issue with conventional economics 
that has prevented it to progress to a science of complexity. Economics is typically 
approached as a deductive science, i.e., a science that begins by establishing 
hypotheses, over which a model is constructed and where, at the end, the model 
is confronted with the reality. Empirical concerns only arise at the last step of the 
process to confirm the assumptions that one has established in the beginning. 
Under such a process, the reality is forced into the model and economics becomes 
the science that explains what one wants to observe from the start, in alternative 
to the science that begins by observing facts and that constructs models to explain 
such facts. 

An inversion of paradigm is necessary, i.e., economics needs to adopt an 
inductive methodology, starting from observing and exploring real facts and then 
proceeding to their explanation. Interpreting the economy as a complex object 
requires this methodological change.

3 THE COMPLEX MACRO SYSTEM

Since its early days, economic thought has always been concerned with the evident 
complexity of market structures and market relationships (see Colander, 2008, for 
a detailed study on how economic scientists have approached, in many occasions, 
complexity issues). In fact, some of the most prominent classical economists, e.g., 
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Adam Smith, David Ricardo or Alfred Marshall, saw the economy as an entity 
governed by interaction, evolution, learning, adaptation and path dependence. 
But they also argued in favor of establishing some simplifying assumptions with 
the goal of discerning order where only an uncoordinated multitude of relations 
was apparent. 

One should not forget, though, as emphasized by Colander and Rothschild 
(2010), that the major contributors for the economic theory, including those that 
published their work across the twentieth century, namely John Maynard Keynes 
or Milton Friedman, never hid behind simple mechanical models to disguise the 
complexity of the economy. The contributions of those authors are in depth critical 
evaluations about the functioning of the economic system, which were, on posterior 
dates, transformed by their successors into basic and stylized models of analysis 
that could be brought into the classroom and used for policy implementation. 
The Keynesian IS-LM model is a good example of how a detailed inspection 
about the functioning of the macro economy was reduced to a couple of simple 
relations that are useful for an aggregate analysis, but where many questions about 
the behavior of the agents that generated them are forgotten.

Macroeconomics became strongly attached to the traditional concept of general 
equilibrium models in which agent heterogeneity and adaptability are absent. 
Nevertheless, this is the field in which a complexity approach is most urgent. 
The macro economy is the result of multiple interactions that are aggregated in 
order to explain the behavior of the economy as a sole entity. A rigorous aggregation 
exercise requires understanding with detail what the term microeconomic foundations 
truly means. In a complexity perspective such foundations relate to the identification 
of different groups that behave distinctively and of the interactions that are 
established within each group and across groups. 

Macroeconomics must be an applied science for which the observation of 
the structure of economic relations and of patterns of interaction should precede the 
construction of an empirically based model, that can be used for policy evaluation 
and policy implementation. Above all, one must avoid incurring in a fallacy of 
composition: in the macro economy, the whole is far from being the sum of the 
parts; when agents establish economic relations they are creating a unique reality 
that goes beyond the characteristics of each individual entity. 

Progressively, agent-based numerical simulations and simple and stylized 
models from physics are replacing, as analytical tools, traditional macroeconomic 
models in which agents are endowed with unlimited computing abilities and where 
aggregation is a naïve process of augmenting the scale of the analysis. Those tools 
are well suited to deal with heterogeneity and interaction, allowing to highlight 
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the fundamental fact: the behavior of the whole economic system is not inferable 
from the behavior of a single agent. Wagner (2012) sees the relationship between 
micro and macro phenomena as non-scalable, i.e., macro events cannot be 
inferred from the behavior of the micro units, because they are of a higher order 
of complexity. This author considers that the macro economy is a complex ecology 
of plans where micro units can generate different macro patterns in response to 
different interaction processes. 

In Lengnick (2013), an agent-based macroeconomic model is built with 
the objective of comparing aggregate consequences of local interaction with the 
results of a conventional dynamic stochastic general equilibrium framework. 
Running the model, the author finds that coordination failures may deviate the 
economy from an equilibrium position, although a spontaneous order generating 
such equilibrium result is also feasible. Either way, the important idea is that the 
macro level equilibrium is not imposed on the economic structure; if it arises, it 
is the natural outcome of a series of interaction processes. 

Other attempts of addressing the macro economy as a complex system have 
focused particular attention on financial and credit markets. The flexibility of 
agent-based macro models in introducing complicated and unexpected out-of-
equilibrium dynamics over simple theoretical structures have made them the ideal 
setting to address and study extreme financial circumstances, as market crashes, 
bubbles or bank runs. Thus, it is no surprise that various authors have attempted 
to carefully dissect the anatomy of credit and financial networks with multiple 
interacting units. It is the case of Gallegatti et al. (2003), Iyetomi et al. (2009), 
Bargigli and Gallegatti (2011) and Grilli et al. (2014), who have searched for the 
sources of instability in financial and credit markets and for the channels that link 
the credit system to the macro economy, in order to explain observed fluctuations, 
both in periods of economic normality and also, with special emphasis, in phases 
of deep recession.

Most of the effort in theoretic macroeconomics across the last few decades 
has been related with the quest for the true micro foundations of macro behavior. 
Models that integrate complexity features apparently provide a relevant starting 
point for such endeavor. Complex systems are intrinsically models that are built 
upon the observation of the patterns of interaction among individual agents. 
They are also models equipped with the ability to generate an integrated view of 
the system and to search for collective patterns. It is in this way that the macro 
economy emerges and evolves. It is not forced from the outside; it is generated as 
individual relations turn into collective patterns of interaction within the erected 
framework of analysis.
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4 AGENT-BASED MODELS AND COMPLEX NETWORKS

The analysis of the economy as an evolving complex entity requires the use of specific 
techniques that go beyond the conventional tools to which this science typically 
resorts. Many authors, e.g. Tesfatsion (2003), Gaffeo et al. (2008), Farmer and 
Foley (2009) and Fagiolo and Roventini (2012), stress that agent-based models are 
the ideal setting to put into perspective complex economic relations. Agent-based 
models are collections of algorithms or procedures that provide flexible structures 
to explore how local interactions originate a two-way feedback between the 
microstructure and the regularities that emerge at a macro level. 

Such models are implemented as computational experiments that create flexible 
virtual worlds that, once generated, evolve over time with complete autonomy, 
i.e., their dynamics are solely driven by the interaction of the system’s inhabitants 
with no need for external or central coordination. The modeler is just called for 
setting the initial conditions, and no posterior intervention of her part is required. 
When setting the initial state, agents are endowed with a set of characteristics 
that allow to classify them as economic agents: they will be guided by their own 
interests, they will choose rationally, they will be able to communicate with those 
who surround them, and they will be able to adapt to their environment and to 
act strategically. In these models, agents are not optimizers, they are constrained 
by local information sets and they select the best possible option from a few lines 
of action they can follow. 

In agent-based models, even extremely simple frameworks might lead to 
complex dynamics. Interaction creates a unique and unrepeatable history and 
models might run forever without ever reaching a steady-state (out-of-equilibrium 
dynamics persist); it is often possible to find relatively long periods with large 
deviations relatively to a benchmark fixed-point equilibrium (what is useful, e.g., 
to explain the occurrence of recessions in the aggregate economy). Nevertheless, 
regular large-scale patterns might also emerge in this kind of models, i.e., one might 
discern the existence of a given degree of coordination arising from a complex 
interaction market structure.

In Helbing and Balietti (2012), it is emphasized that one of the most salient 
features of agent-based modeling is its versatility. This approach may be applied to 
a wide variety of economic and social issues where complexity is necessarily present 
(e.g., financial markets, social conflict, managerial decisions, urban development, 
or globalization) and it can also use different modeling strategies; for instance, 
automated systems might be created from a set of logical rules regardless from 
any underlying structure or, alternatively, the agent-based environment might be 
supported on a network of relations. Therefore, a significant part of agent-based 
modeling, in the context of complexity analysis, relates to the formation and 



The Economy as a Complex Object  | 179

evolution of networks. Economic networks are particularly relevant, because truly 
understanding economic relations demands a capacity to put into perspective how 
each and every agent is connected and what drives the formation and the dissolution 
of links among interacting agents.

In what follows, complex networks are addressed, under the perspective that 
they constitute a relevant tool for complexity analysis. They are well equipped to 
deal with local interactions among heterogeneous agents and, therefore, to 
approach the economic system as a complex object. Basically, complex networks 
are a large collection of nodes, representing the relevant entities or agents, that are 
connected by links that translate the nature of the relations between the nodes. 
Bargigli and Tedeschi (2014) highlight the relevance of building networks to explain 
the interconnections in the economy. The most meaningful idea that one must 
take into account when modeling the economy as a complex network is that the 
topological structure of such network is systematically changing as the links that 
associate agents with each other are constantly forming and breaking. 

What distinguishes economic networks from networks in other areas of 
knowledge is that links exist or not as a consequence of a cost-benefit analysis that 
self-interested agents undertake given their own expectations about future events. 
Networks evolve endogenously as local interaction among rational, though not 
hyper-rational, agents unfold. The central question in economic networks is what 
forces underlie the establishment of links between any two individuals? 
What affinities can we encounter among those who choose to be in contact or 
are put together by chance? 

Technically, a complex network corresponds to a graph G=(N,L) where N 
and L are two sets. Set N contains the nodes, vertices or points of the network and 
L corresponds to the links or edges that connect the nodes. Thus, the elements 
of L will correspond to pairs of elements of N. The first set contains N 
elements: N≡{n1,n2,…,nN} and the second set is of order L, i.e., contains L elements: 
L≡{l1,l2,…,lL}. According to Bocalletti et al. (2006), what distinguishes a complex 
network from a simple graph is the specific set of features of its topological structure. 
A complex network is composed by thousands or millions of nodes and links 
and it has an irregular and constantly evolving structure. Approaching such type 
of network is a complicated task, but it is precisely the challenge that is worth 
facing, because those are precisely the characteristics that define the economy 
as a complex object.

In economic networks, nodes represent households, firms, financial institutions 
and government agencies and departments; the links are the real and monetary 
flows that connect the agents. This description appears to be close to the one of 
the well known circular-flow diagram through which economic principles are 
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introduced to students. In fact, an economic network is a circular-flow diagram, 
but an extremely detailed one, where in principle a high degree of heterogeneity 
across each class of agents is allowed for. This lack of homogeneity is not restricted 
to the nature of the nodes, it has to do also with the specific features of the links. 
An economic network is an inhomogeneous web of relations, in the sense that 
the degree of a node, i.e., the number of direct connections with other vertices, 
varies across nodes. 

Economic networks share most of the properties of other real-world networks 
that connect human beings and the institutional arrangements created by them. 
One of these properties is that the degree distribution, i.e., the fraction of nodes 
sharing a same degree, is power-law shaped. This signifies that in actual networks 
one rarely encounters a random and relatively homogeneous distribution of links; 
there will be some nodes that will dominate, concentrating a large number of 
edges to other points in the network, while the large majority of the nodes have 
associated only a few links. A network involving a power-law degree distribution is 
designated as a scale-free network; economic networks are, undoubtedly, scale-free 
networks. Another important feature of economic networks, common to other 
interaction structures in society, is that, no matter how large the network is, one 
often finds relatively short paths between any pair of nodes; this is known as the 
small-world property. Economic networks are, effectively, small-world networks. 

The structure of the economy should be interpreted also as a weighted network. 
This means that links across nodes vary in their intensity and relevance. There are 
strong and weak links across agents and the analysis of the network should be able 
to cope with this diversity. Furthermore, in economic networks there is a tendency 
for the formation of communities, clusters or cohesive subgroups, i.e., relatively 
small groups that share strong ties across their members. A group of tightly 
connected nodes is likely to create some specific features as fads or new habits, 
which can on a second stage spread to the rest of the network. The strength of the 
links and its degree distribution are not static features of the economic network; 
the intensity of connections may be reinforced or fade away with the passage of 
time, existing connections may disappear completely and new ones are likely to be 
formed. Therefore, the economy is not only a complex network; it is a systematically 
evolving organism that can decisively change shape in a few time periods.

Analyzing a network with the features one has enumerated in the previous 
paragraphs appears to be an extremely demanding task. A compromise between 
comprehensiveness and tractability is required to reduce the diversity of node 
characteristics and link properties to an intelligible small set of regularities. 
In the next section, a complex network scenario is taken to illustrate the behavior 
of economic agents. Agents will be classified in terms of their confidence or sentiment 
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towards the future performance of the economy and their sentiments may change 
as a result of local interactions. Although this corresponds to a minimal structure 
of analysis, it is sufficiently comprehensive to cover most of the complexity features 
one has previously mentioned, namely agent heterogeneity, local interaction and 
decentralized decisions, adaptability and evolution, and out-of–equilibrium dynamics.

5 AN ILLUSTRATION: COMPLEX DYNAMICS IN A SIMPLE SENTIMENT MODEL

Economic complexity may be addressed by constructing large-scale networks 
that contemplate a large portion of the most meaningful observable interaction 
processes. Typically, these network relations can be subject to analysis only resorting 
to computer simulations, through which the model is run in order to identify 
significant regularities. Nevertheless, complex is not a synonymous of complicated; 
one does not need to have an immensely large set of relations to approach economic 
phenomena as complex phenomena. 

This section proposes a simple model aimed at addressing sentiment switching 
under a complexity perspective. Economic agents change their perspective 
about future economic events as a result of local interactions, although, in some 
circumstances, the global result might feedback into agents’ decisions. Although 
very simple and stylized, we will argue that the model contains the assumptions 
and leads to the results that correspond to the features of complex systems we have 
characterized so far. This model is inspired on the literature about rumor spreading 
on complex networks, a literature that was pioneered by Daley and Kendall (1965) 
and Maki and Thompson (1973), and that has counted with many important 
contributions in recent years, e.g., Zanette (2002), Nekovee et al. (2007), Huo et al. 
(2012) or Wang et al. (2013).

Consider a network with an undefined but large number of nodes. Each node 
will contain an agent. Agents will be heterogeneous in the sense that they will 
possess different sentiments about the future state of the economy (e.g., about future 
output growth or future inflation). Agents are split into five categories: neutral, 
weakly optimistic, strongly optimistic, weakly pessimistic and strongly pessimistic. 
At each date t, each agent will assume one of the characterized positions and the 
following shares will correspond to the percentage of individuals in each of them: 
xt (neutral), zt

ω (weakly optimistic), yt
ω (strongly optimistic), zt

ζ (weakly pessimistic), 
yt
ζ (strongly pessimistic). Naturally, xt + zt

ω + yt
ω + zt

ζ + yt
ζ = 1. We also define the 

share of optimists as ωt ≡ zt
ω + yt

ω and the share of pessimists as ζt ≡ zt
ζ + yt

ζ. 

This is a cellular automata network, where each node is in one of the five 
possible states at date t but where the contact among agents in different nodes 
might induce a change of category or state for the next period. In what follows, 
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a series of rules for sentiment switching through local interaction will be applied. 
These are necessarily stylized rules that serve the illustrative purpose of our exercise, 
but that could be made more realistic, for instance, by proceeding with a rigorous 
empirical inquiry of how sentiments change when two individuals with different 
sentiments meet. The rules that will be adopted are the following:

1) When two neighbors, i and j, are in the same state and meet, they will 
remain in that specific category with a one hundred percent probability:

2) When one of two neighbors, i and j, is strongly optimistic or strongly 
pessimistic, and meets an individual with the opposite sentiment, 
they remain in their original sentiment classes, with probability 1:

3) When two neighbors, i and j, meet, one of them with a neutral 
sentiment and the other with a weak sentiment towards pessimism 
or optimism, the neutral sentiment becomes pervasive, with 
probability θ∈(0,1):

4) When two neighbors, i and j, in the same sentiment category, meet and 
one of them has a strong sentiment and the other a weak sentiment, 
the sentiment of the first will weaken, with a probability σ∈(0,1):
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5) When one of two neighbors, i and j, is strongly optimistic or strongly 
pessimistic, and meets an individual that has a neutral sentiment, the 
first is potentially capable of converting the second into that sentiment 
category, i.e., the second agent becomes also a strong believer of the 
respective sentiment; this occurs with a probability λ∈(0,1):

6) The most sophisticated rule we adopt respects to the meeting between 
agents i and j, when they are in opposite sides of the sentiment barricade 
and they are both weak believers. In this case, they can be converted to 
the neighbor’s sentiment category, with a probability ρ∈(0,1), if a specific 
set of conditions are met. In particular, in this case we take a feedback 
process from the macro to the micro level that translates in the following 
conditions: if, simultaneously, the global share of optimists is increas-
ing and the global share of pessimists is decreasing, the optimist agent 
will be able to transform the pessimist into an optimist; the opposite 
occurs when the global share of optimists is decreasing and the global 
share of pessimists is increasing. Individuals will remain in the original 
positions if none of the two stated conditions is satisfied. Symbolically:

Taking the hypothesis of homogeneous mixing, i.e., that meetings occur 
randomly across the population, and normalizing the number of contacts per unit 
of time to 1, the above information can be transformed into a relatively simple 
system of difference equations that respect to the evolution of densities of agents in 
the various categories. In the current case, the system under evaluation will be,
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In this set of equations, the plus/minus signs in the third and fifth equations 
obey to the conditions previously imposed to the interaction between 
agents with opposite weak sentiments. To approach the model’s dynamics, 
one could proceed with a typical analytical study of existence and stability of 
the respective long-term equilibrium. However, given the peculiarities of the 
specified interaction process, such equilibrium will be irrelevant, because 
the system will not remain on it. Out-of-equilibrium dynamics will dominate, 
as a few numerical examples allow to illustrate.

To visualize the dynamics of the proposed interaction network model, 
one needs to specify parameter values and initial values for the endogenous 
variables of the system. Consider the following array of parameters, 

. For this, as for a large majority of combi-
nations of admissible parameter values, one finds that in the long-run, after 
the transient phase is complete, the system will remain in a non equilibrium 
position, with irregular cycles persisting over time. Waves of optimism and 
pessimism emerge, in this way, as the result of the mere interaction among 
neighbors combined with a localized feedback effect from the global economy 
over micro decisions. Figures 1 to 4 present the outcome of the model for 
1,000 observations obtained after excluding the initial transient phase. Each 
graphic is obtained from a different set of initial conditions. They are all such that 

 and , with  = 0.25,  = 0.5, 
 = 0.75,  = 0.9, for each case.

FIGURE 1
Percentage of agents in each sentiment category (x0 = 0.25)
(In %)

100%

75%

50%

25%

0%

0 100 200 300 400 500 600 700 800 900

x y omega z omega y zeta z zeta

Elaborated by the author.
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FIGURE 2
Percentage of agents in each sentiment category (x0 = 0.5)
(In %)
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Elaborated by the author.

FIGURE 3
Percentage of agents in each sentiment category (x0 = 0.75)
(In %)
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FIGURE 4
Percentage of agents in each sentiment category (x0 = 0.9)
(In %)
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This illustrative example of how a complex system might work has achieved 
the intended goals. Starting from a minimal complex structure with agent heterogeneity 
and local interaction, an evolutionary network emerged. In this network agents 
learn, adapt and evolve as they establish relations with each other, and there is no 
tendency for the system to remain in an equilibrium position, since agents can 
always go back to a prior sentiment position depending with who they interact 
next. This out-of-equilibrium result evidences how complexity might emerge 
from a small set of interaction rules. 

The implications of a model as the characterized one are huge. By focusing 
on changing sentiments, it says that periods of optimism and pessimism are not 
just the result of observable economic conditions and of the probabilities regarding 
how they will evolve in the future. It is the structure of the contacts among agents 
that will determine their confidence levels. Waves of optimism and pessimism 
are pervasive because agents are permanently in contact and can be influenced by 
others. Animal spirits are, thus, present in the economy and may help explaining 
short-run macro performance.

6 CONCLUSION

This chapter put into perspective the reasons why one should interpret the economy 
as a complex object and discussed how the science of economics might gain 
the status of a science of complexity. In Arthur (2013), the complexity status of 
economics is synthesized on the idea that the economy is permanently in motion 
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and perpetually under construction and renewal. Economic relations do not have 
to do with determinacy, equilibrium, order or static outcomes, as the traditional 
approach to economics suggest; the economy is organic, contingent on past events, 
evolutionary and open to innovation. In a word, the economy is complex.

The complexity approach is progressively gaining a rightful place on 
economic thought. This is due to its realism, i.e., to the ability of explaining how 
global regularities are generated by local strategic actions and how such regularities 
feedback into the behavior of individual agents, creating a competing and 
evolutionary environment where non-equilibria are the norm; new structures are 
persistently being formed and emergent phenomena arise in a recurrent basis. 
The correct keywords to describe what an economy truly is are change, creation and 
evolution. These are all concepts that only a complex perspective might encompass. 

The mentioned realism comes necessarily with a cost. Bringing complexity 
to economics implies looking at the regularities of typically large-dimensional 
structures of interaction, that in many occasions cannot be addressed resorting to 
analytical models; computer simulation is the only viable form of approaching the 
specified complex networks. This is not necessarily a problem; fortunately, today 
computers exist and they constitute a powerful additional tool that scientists have 
at their disposal not only to process data but also to explore new ideas and generate 
and test new theories. This is occurring in many scientific fields and economics 
does not have to be an exception. Nevertheless, the sophistication of the assumed 
structures of analysis does not exclude the possibility of addressing the strong ideas 
of complexity (heterogeneity, decentralization, evolution and path-dependence) 
under a relatively simple framework; this has been done in section 5 of the chapter, 
where the mentioned ideas were exemplified taking into consideration a simple 
sentiment-switching model built upon a small set of difference equations.
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CHAPTER 9

MODELING THE ECONOMY AS A COMPLEX SYSTEM1 
Herbert Dawid2

1 INTRODUCTION

Most of the economic systems of interest, like firms, markets, and even more so 
whole economies, are characterized by the interaction of a large number of hetero-
geneous individuals who take a plethora of decisions of different kinds to produce 
and exchange a large variety of goods as well as information. These transactions 
are governed by institutional rules which might vary significantly between differ-
ent regions, industries, time periods and other contexts. Based on this economic 
systems must certainly be seen as very complex systems, which makes it extremely 
challenging to derive any insights of general validity about the (future) dynamics 
of key economic variables or the effect of certain economic policy measures. Such 
insights are however of crucial importance for providing the public with reliable 
predictions, at least of a qualitative nature, about the set of future economic 
developments that seem possible and, maybe even more importantly, for providing 
policy makers with reasonable predictions about the expected impact of different 
policy measures at their disposal. Generally speaking such insights can be obtained 
in an inductive way by generalizing results obtained from (past) empirical evidence 
or by building models that try to capture the crucial features of the system under 
investigation. In this chapter the focus is entirely on the second of these options, 
namely the model-based analysis of economic dynamics. 

Any economic model is built on assumptions about a number of key issues. 
It has to be clarified what type of agents are included in the model (firms, house-
holds, banks, etc.), which properties characterize the different types of agents (and 
the differences between individual agents of the same type), what kind of goods 
(including labor, information, etc.) are exchanged between individuals, what kind 
of rules govern these exchanges and, finally, how individual agents determine their 
actions. Although economic models vary a lot with respect to the first of these issues 
(depending on the area of application), most standard models in the economic 

1. I am grateful to Simon Gemkow, Philipp Harting, Michael Neugart and Sander van der Hoog for many fruitful 
discussions and their cooperation in developing the Eurace@Unibi model discussed in parts of this paper.
2. Department of Business Administration and Economics and Center for Mathematical Economics (IMW), Bielefeld 
University, P.O. Box 100131, 33501 Bielefed. Email: <hdawid@wiwi.uni-bielefeld.de>.
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literature rely on rather similar assumptions with respect to the other issues. In a 
large part of the literature it is assumed that agents of the same type are identical 
(the so-called “representative agent”) or vary only with respect to a single param-
eter (e.g. initial endowment, productivity, risk attitude), they exchange goods on 
frictionless spot markets that always clear and, most importantly, their behavior 
is determined according to some equilibrium concept. Equilibrium behavior re-
quires that every agent maximizes some (inter-temporal) objective function given 
her rational expectations, which means that each agent is able to correctly predict 
the strategies of all other individuals in the economy.3 These assumptions allow to 
build models that address involved economic issues that can be analyzed by solving 
a relatively small set of (inter-temporal) first order conditions, budget constraints 
and market clearing conditions. Given the vast complexity of economic systems 
such a parsimonious approach is very tempting since it allows to clearly identify in 
a transparent way key mechanisms responsible for certain economic phenomena. 
The focus of analysis is typically on long-run steady states or balanced growth paths 
and in many cases, the long run behavior can be characterized by analytical means 
or by efficient numerical methods. Also, relying on a small common core of key 
assumptions allows for relatively easy comparability across models and lowers the 
entry barriers of working with different models once the basic logic of the equi-
librium concepts and the dynamic optimization methods have been understood. 

A prime example in this respect is the use of dynamic stochastic general 
equilibrium models as workhorse models for economic analysis in general and 
policy analysis in particular for a wide variety of economic issues. For this class 
of models not only a common core model structure has been adopted, but there 
also exist standard calibrations of the model based on the objective to match cer-
tain (macroeconomic) empirical regularities, which can be used as the basis for 
extensions and variations of the model. However, as has been argued repeatedly 
(Kirman, 1992; Colander et al., 2009; Fagiolo and Roventini, 2012) the core of 
standard assumptions is strong and in many cases seems to be at odds with empirical 
observations on the micro level. This applies in particular to the assumption that 
individual behavior is determined by (infinite horizon) dynamic optimization under 
perfect information about the structure of the surrounding economic system and 
perfect foresight about the strategies of all other agents in the economy determin-
ing their current and future behavior. Also in many domains the core models had 
to be adjusted by extensions, like price stickiness (Calvo pricing) or very myopic 
rule-of-thumb consumers, for the models to generate dynamics which are quali-
tatively consistent with empirical evidence on the macro level. These extensions 

3. Clearly, there are important and large streams of literature where several of the assumptions listed here are relaxed, 
like the search and matching literature (relaxing the assumption of frictionless spot markets) which by now is the standard 
approach for the theoretical analysis of labor markets.
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however seem to be rather ad hoc, with no empirical foundations on the micro 
level, and also seem to be inconsistent with the frictionless equilibrium paradigm 
that otherwise underlies these models. Finally, the fact that oscillations, booms and 
busts, in these models typically can be produced only through the introduction 
of a persistent stream of exogenous shocks has been criticized, since in this way 
this class of models can contribute little to the understanding of the mechanisms 
that generate economic fluctuations. Gaining a better understanding of these 
mechanisms would however be important in order to be able to evaluate potential 
implications of policy measures or institutional adjustments for the stability of 
the economy. In particular in the aftermath of the financial and economic crisis 
that started in 2008 a number of policy makers have expressed concern about the 
ability of standard models available to support them in dealing with the crisis and 
in putting policies in place which should prevent future crises.4 

In recent years a growing community of economists has developed modeling ap-
proaches which take the complexity of economic systems more explicitly into account 
and try to derive insights about emerging economic dynamics on the market-industry 
and macroeconomic-level by explicit aggregation of dynamically changing behavior 
of populations of (heterogeneous) agents of different types. Pioneering work with 
such an agenda are the evolutionary industry models of Nelson and Winter (Nelson 
and Winter, 1982) or the early work in and around the Santa Fe Institute (Arrow  
et al., 1988; Arthur et al., 1997; Fontana, 2010). Following such an approach allows 
to capture explicitly the channels and institutional rules through which individual 
agents interact and gives the modeler a large freedom with respect to modeling 
individual behavior. This freedom is not necessarily a blessing since it raises the issue 
of wilderness or even arbitrariness of model assumptions. It will be discussed in the 
next section how the literature is dealing with this serious issue. The focus in this 
class of models is not restricted to long run steady state considerations, but typically 
an explicit account of the emerging economic dynamics, including transient phases 
is given. An analytical treatment of such complex dynamical systems is in general 
very challenging, which implies that computer simulations and numerical analysis 
play an important role in the examination of such models. From the perspective of 
the evaluation and design of economic policy measures the properties of the com-
plex systems approach sketched above are for several reasons particularly attractive.  

4. The most prominent statement in this respect is from the former ECB president Jean-Claude Trichet, who (when still in 
office) stated at an ECB Central Banking Conference in November 2010: “When the crisis came, the serious limitations of 
existing economic and financial models immediately became apparent. (…) Macro models failed to predict the crisis and 
seemed incapable of explaining what was happening to the economy in a convincing manner. As a policy-maker during the 
crisis, I found the available models of limited help. In fact, I would go further: in the face of the crisis, we felt abandoned 
by conventional tools. (…) We need to deal better with heterogeneity across agents and the interaction among those 
heterogeneous agents. We need to entertain alternative motivations for economic choices. (…) Agent-based modelling 
dispenses with the optimisation assumption and allows for more complex interactions between agents. Such approaches 
are worthy of our attention.” Available at: <http://www.ecb.europa.eu/press/key/date/2010/html/sp101118.en.html>.
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• In many instances short and medium run effects of policies are as rel-
evant as the long run, which makes it important to be able to evaluate 
policy effects with different time horizons. Also policy effects are often 
most relevant in situations far off the long run equilibrium, e.g. in crises.

• Understanding the effects of policies on individual behavior might 
be a bad predictor for policy implications on the aggregate level. It is 
important to capture the heterogeneities between individuals as well as 
feedbacks between micro behavior and macro outcomes and networks 
between economic agents.

• Long run properties of emergent economic dynamics can be crucially af-
fected by temporary imbalances, potential lock-ins and path-dependencies 
(hysteresis). Hence, transient dynamics have to be explicitly considered 
for a thorough policy analysis. 

• Policy effects often crucially depend on characteristics of the institutional 
setup they are applied in. Therefore, an explicit representation of insti-
tutional setup (market rules etc.) is required.

• If economic decision makers react in a bounded rational way to their 
economic environment and to economic policy measures (e.g. us-
ing behavioral rules), then policy models which are normative from 
a policy perspective should capture such reactions (rather than the 
reaction “in equilibrium”).

This brief discussion highlights the potential of a modeling approach which 
treats the economy as a complex system. In the next section I will discuss in more 
detail several important issues associated with the use of models of this kind.  
The focus here will be on computational models, which represent a vast majority 
of the literature in this area. Due to reasons of tractability analytical approaches  
could so far only be applied to rather simple versions of heterogeneous agents 
models. Theses analyses employ Markov theory (Dawid, 1999), methods developed 
in statistical physics which allow to derive the dynamics of certain moments of 
the distributions of key variables (Alfarano et al., 2008; Delli Gatti et al., 2012) 
or methods developed for a particular type of approach like network models  
(Newman, 2010; Jackson, 2010). 

2  COMPUTATIONAL METHODS FOR MODELING COMPLEX ECONOMIC 
INTERACTIONS

The majority of models describing the economy as a complex system with emerg-
ing dynamics relies on computational agent-based models. I abstain here from 
an extensive general discussion of the different interpretations of the defining 
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properties of agent-based models in the literature, but rather provide a simple list 
of key characteristics of agent-based models as they are understood in this chapter:

• Each relevant economic actor is represented by an agent, which means 
that in general there are many agents of each type in the model. Agents 
are potentially heterogeneous with respect to initial endowments, 
characteristics and decision rules.

• Decision making by agents is determined by behavioral rules, which 
might be adjusted over time due to learning.

• Agents interact through explicitly given interaction protocols (market 
rules, information flow channels, etc.) 

• Dynamics on the meso-(market/industry) and on the macro-level is gen-
erated by aggregating over the actions/stocks of all agents in the model. 

Generally speaking agent-based computational models are set up by determin-
ing the characteristics and decision rules of agents and the interaction protocols. 
In order to run the models a parameter constellation has to be chosen as well as 
the initial values of all the endogenous variables in the model. Given this initial 
condition the model is then simulated and the time series of the relevant variables 
are stored, where this might be done for the whole set of individual agents or in 
some reduced form by storing only the dynamics of the distribution of the vari-
able across agents or only certain moments of this distribution.5 As discussed for 
example in LeBaron and Tesfatsion (2008) or in Farmer and Foley (2009) agent-
based models indeed have the potential to address many of the problematic issues 
about economic modeling discussed in the previous section. However, as for any 
modeling approach, the design and analysis of such models requires a high degree 
of scrutiny and care in order to be able to generate reliable results and insights of 
general interest. In what follows I highlight a few key aspects of building agent-
based models and give some pointers to approaches developed in the literature. 

2.1 Markets and economic transactions

A first key issue in designing an agent-based model is the question how interac-
tions of agents in markets and similar environments should be captured. A pure 
micro-founded bottom-up approach would require that the modeler has to define 
the explicit protocols according to which potential buyers and sellers meet and the  
terms of the interactions (e.g. prices, quantities) are determined. If such a 
bottom-up approach is followed then the requirement of empirical grounding of 
the analysis (which will be further elaborated on below) requires that the model 
captures the main institutional features of the market under consideration.  

5. See Tesfatsion (2006) for an extensive introduction and discussion of agent-based modeling in Economics. 
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Clearly such features vary substantially between different types of markets and 
indeed agent based modelers have developed quite variable approaches to capture 
typical features of financial markets (LeBaron, 2006), labor markets (Neugart 
and Richiardi, 2014), electricity markets (Li et al., 2011) or markets for standard 
(storable) consumption and investment goods (Dawid et al., 2014a). These models 
among other approaches incorporate auctions of different types, order books or 
search models with limited information and bargaining as well as outlets with 
posted prices repeatedly called on by consumers. 

Incorporating such detailed representations of the interaction structure on 
the market into an agent-based model typically introduces frictions and potential 
rationing on both sides of the market into the model. Hence, such an approach 
typically requires that agents hold stocks of the goods traded (which evolve over 
time) and that it is clearly spelled out how agents react to rationing. The last part 
is particularly relevant for firms if rationing appears on factor markets, thereby 
forcing them to adjust their production processes. Furthermore, the amount 
of frictions arising in the market might depend quite strongly on details of the 
interaction protocol. For example, the frictions arising in a labor market model 
where searching unemployed apply to posted vacancies of multiple firms depend 
on the number of simultaneous applications workers send, the heterogeneity of 
information about vacancies across workers, the heterogeneity of firms with respect 
to their ranking of applicants and other aspects for which it is quite challenging 
to obtain empirical evidence. 

Although the requirement to match empirical stylized facts (like the average 
overall frictions on a market) provides some guidance how these aspects of the model 
should be chosen, the pure bottom-up approach clearly induces a considerable 
degree of complexity in modeling market interactions. Whether the introduction 
of such complexity is adequate and necessary depends on the context and aim of 
the analysis. Indeed there are numerous examples of agent-based papers in which 
reduced form representations, like standard market clearing conditions, rather than 
explicit market models are used to determine market outcomes, because the focus 
of the studies is such that a detailed description of the market interactions does 
not seem to add relevant insights (Nelson and Winter, 1982; Arthur et al., 1997; 
Dawid and Reimann, 2011). Clearly, the appropriate modeling choice depends 
crucially on the research questions to be addressed by the model. 

2.2 Individual agent behavior and learning

As discussed in the previous section, a key aspect of any economic model is the 
way individual decision making is captured. In dynamic equilibrium models it is 
assumed that the behavior of all actors is determined by maximization of the own 
(intertemporal) objective function using correct expectations about the behavior of 
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the other actors. It is quite debatable in how far such dynamic equilibrium analysis 
provides a descriptive theory of individual behavior. First, dynamic equilibrium 
requires that all agents have sufficient information about the entire economic system 
to be able to fully understand not only the own dynamic decision problem but 
also that of all other agents in the economy. Arguably, in most relevant economic 
settings such information is not available to individual decision makers. Second, 
there is empirical evidence suggesting that individuals do not rely on long-term 
dynamic optimization (Noussair and Matheny, 2010) and do not hold rational 
expectations (Hommes et al., 2005). Because it is part of the agenda of the agent-
based approach to use models which aim to be descriptive also on the micro level, 
these observations suggest to look for alternatives. Furthermore, in a setting where 
agents differ in several dimensions and interact in complex environments the cal-
culation of dynamic equilibrium behavior is often infeasible, even if up-to-date 
numerical methods are employed.6 

In the agent-based literature, individual behavior is determined by behavioral 
rules, where this term should be interpreted in a rather broad sense. In particular, 
the term behavioral rule does not rule out optimization of the decision maker. 
Actually, there are numerous examples of heuristics used as behavioral rules, which 
rely on optimization of some objective function within a simplified “internal 
model” of the economic environment constructed by the decision maker using 
available data. Determining a suitable approach for designing the behavioral rules 
is a major modeling issue and the “Wilderness of bounded rationality” (Sims, 
1980) is a serious concern. Different approaches to model boundedly rational 
behavior and its adaptation have been put forward in the agent-based literature. 
Most of these approaches are based on the conviction that the behavioral rules 
used in agent-based models should have some kind of empirical foundation in a 
sense that they try to capture key aspects of the behavior of corresponding agents 
in the real world. Several of the approaches developed in the literature, although 
not all of them, also take into account that rules might be adapted over time and 
provide models of how agents adjust their decision rules. 

The most suitable approach for providing empirical or theoretical foundations 
for certain types of rules depends strongly on the type of agent that is to be mod-
eled. Describing the decision rule of an individual choosing a consumption good 
is very different from capturing the rule determining the interest rate decisions 
of a central bank. In fact, the interest rate decision of a central bank is one of the 
few types of decisions where there are publicly documented decision rules (like the 
Taylor rule), which have been employed at least to some extent by actual decision 

6. This observation can be nicely illustrated by considering the Eurace@Unibi model discussed in section 3.2, 
see footnote 14. 
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makers (central banks) and have been introduced in a wide range of Economic 
models.7 Such rules can be easily implemented in an agent-based model. If we 
consider decisions taken by individuals rather than an institution, like a central 
bank, such documentation of the rules or processes leading to a decision is missing. 

An obvious candidate to obtain empirically grounded insights into the decision 
processes of individuals in different economic frameworks is the consideration of 
experimental evidence. Early work in this domain is surveyed in Duffy (2006) and 
recently efforts have been intensified to systematically use experiments in order to 
obtain insights about the rules according to which individuals make decisions and 
build expectations. For example Arifovic and Ledyard (2010, 2012) put forward 
Individual Evolutionary Learning as a computational model of adaptive learning 
which, under proper calibration, fits well the experimental data about behavior in 
different mechanism design contexts. Empirically oriented examination of individual 
decision heuristics has also been an active field of research in psychology for many 
years (Gigerenzer and Gaissmaier, 2011), but so far the insights obtained there 
have been hardly incorporated in agent-based models in Economics. Concerning 
expectation formation extensive experimental work has been carried out to identify 
a set of expectation formation rules employed by individuals in different contexts 
(Hommes, 2011) and these insights have been used in the design of agent-based 
models with a focus on expectation dynamics. 

An alternative approach for providing empirical grounding for individual 
decision rules incorporated in agent-based models is the repeated interaction 
between the modeler and real world stakeholders during the model design process.  
As pointed out for example in Janssen and Ostrom (2006) such an approach is 
primarily suitable if the model is developed in a very specific context with a relatively 
small number of relevant stakeholders which can be consulted. Examples of agent-
based models that have been developed with such a close engagement of stakeholders 
can be found in D’Agostini et al. (2003) or Gaillard et al. (2014). 

Also the description of firm behavior in agent-based models typically relies on 
a rule-based approach. In this sense the literature follows arguments put forward 
e.g. in Nelson and Winter (1982) that in many institutions, including firms, over 
time decision rules8 evolve, which have turned out to be successful in the past and 
therefore are employed, and maybe adjusted over time, to determine the firms 
actions in a complex and dynamic environment. There is substantial variance in 
the way this general idea has been implemented in concrete models. A number 
of models use fixed behavioral rules, which are based on anecdotal evidence and 

7. The extent to which the Taylor rule has been used or is currently used by central banks is however a matter of debate 
(see Taylor, 2014).
8. Nelson and Winter (1982) strictly speaking describe the evolution of “routines”.
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plausibility considerations (Delli Gatti et al., 2008; Ashraf et al., 2011), whereas 
in other contributions only the basic structure of the behavioral rules are given 
and some learning algorithm is used to adjust these rules over time.9 For example 
Dosi et al. (1999) or Midgley et al. (1997) demonstrate that such an approach 
can give rise to firm behavior which seems to match well observable behavior 
of firms in markets. A slightly different approach for modeling firm behavior in 
agent-based models is put forward in Dawid and Reimann (2004; 2007) and 
elaborated in Dawid and Harting (2012). This approach termed the “Manage-
ment Science Approach” incorporates relatively simple decision rules matching 
standard procedures of real-world firms in the agent-based model. There is a rich 
literature on (heuristic) managerial decision rules in many areas of management 
science including pricing, production planning or market selection and the idea 
is to use these heuristics in the model of the firms. A concrete example of a be-
havioral rule determined according to the Management Science Approach will be 
discussed in section 3.2 in the framework of the description of the Eurace@Unibi 
model. Although it certainly cannot be assumed that all firms in the economy 
rely on such standard managerial heuristics, capturing the main features of such 
heuristics when modeling the firm adds a strong empirical micro-foundation to 
the agent-based modeling approach. As has been shown in Dawid et al. (2014a) 
in the context of the Eurace@Unibi model (discussed in more detail below) the 
empirical micro-foundation of the approach is complemented by a good match 
of a number of empirical stylized facts about industry and firm dynamics as well 
as distributional properties. 

2.3 Parametrization, calibration and fit to empirical data

Agent-based models are usually characterized by a relatively large set of model 
parameters and often exhibit nonlinear complex dynamics. Both of these features 
make it notoriously difficult to pin down the set of parameter values which pro-
vide a close match between the behavior of the model and the real-world system 
that is modeled. In order to reduce the number of “free parameters” usually a 
certain subset of parameters for which direct empirical measurements are available  
(e.g. depreciation rates, tax rates, etc.), are directly estimated using empirical data. 
Concerning the determination of the remaining model parameters a number of 
issues arise. First, a clear definition has to be provided what is meant by a “good 
match” between model output and empirical time series. Different approaches 
have been developed in this respect – see Windrum et al. (2007) for a more 
extensive discussion. In a series of papers presenting “history-friendly-models” a 
particular context, like the evolution of the biotech industry or the PC industry, 

9. The set of algortihms that have been used to describe the updating of rules includes genetic algorithms (Dawid, 
1999); classifier systems (Arthur et al., 1997) and genetic programming (Chen and Yeh, 2002). 
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is considered and the goal is to develop a model which reproduces the qualitative 
patterns of industry evolution observed in this particular context (Malerba et al., 
2001; Malerba and Orsenigo, 2002). Typically it is however not exactly quantified 
what defines a “good reproduction”. 

For agent-based models with a more general scope, like macroeconomics 
or financial markets, the most common approach to pin down the parameters is  
“indirect calibration” (Windrum et al., 2007). A set of empirical stylized facts  
is chosen, which the model is supposed to reproduce, and then ranges for the 
parameters are identified where the model output meets this goal.10 Problematic 
about this approach is that at this point no clear consensus concerning the set of 
stylized facts to be considered in the different areas of applications has emerged.  
A few stylized facts, have become standard requirements in some areas  
(e.g. business cycle properties, firm size distributions, volatility clustering in fi-
nancial markets), but there is a considerable freedom of choice for the individual 
modeler who might be tempted to put the main focus on stylized facts the own 
model is particularly good at reproducing. On the other hand, the fact that some 
of the developed agent-based models are able to reproduce a broad set of empirical 
stylized facts at different levels of aggregation (see Dosi et al., 2010; Dawid et al., 
2014a) is certainly one of the factors contributing strongly to the credibility not 
only of the particular parameter set chosen but also of the model design and the 
modeling approach as such. 

However, it has to be acknowledged that also in the indirect calibration ap-
proach common quantifiable criteria under which circumstances a given stylized 
fact is considered to be reproduced by a model are largely missing. Apart from  
the challenge to quantify similarity between simulated time series and empirical 
data (see Marks, 2013), there are issues of comparability of time units in the simu-
lations with the real world and of the selection of the simulation time window to 
be used for comparison with the data (transient dynamics vs. (ergodic?) long run 
properties). Furthermore, often the requirement of reproducing stylized facts still 
allows for a large set of potential parameter settings. Ideally, qualitative statements 
derived using the model, for example about the effects of certain policies, should be 
tested for robustness across this set of potential parameter settings, however such 
extensive robustness checks are often infeasible. Alternatively, estimation methods 
could be used to determine the parameter setting that fits the data “best” thereby 
providing a unique default parameter setting. Due to the particular properties of 
agent-based models (many parameters, complex maybe non-ergodic dynamics, 
lack of analytical representations of the dynamics) this is however a very challeng-
ing and computationally intensive endeavor. A first step towards the development 

10. A particular careful exercise of this kind has for example been carried out in Ashraf et al. (2011) using United States Data.
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of estimation methods for agent-based models has been made in Grazzini and 
Richiardi (2014), however it is not clear in how far these methods can be applied 
to larger agent-based models. 

Overall, the attention paid to linking agent-based models to data has 
strongly increased in recent years, and although systematic estimations of the 
models put forward in the literature are at this point largely missing, the research 
field seems to be moving towards establishing a strong empirical foundation for 
the employed models. 

2.4 Policy analysis and market design using ACE models

Many of the agent-based models in the literature have been developed with the aim 
to explore effects of certain policy measures or changes in the design and regulatory 
framework of certain markets. Establishing sound and transparent results about 
the effects of such measures in an often complex stochastic model is not a trivial 
issue. The two main challenges are to establish in a statistically rigorous way the 
effect of the considered measures on the key variables of interest and to provide a 
clear understanding of the economic mechanisms responsible for the policy effects, 
such that the results do not seem to emerge from a “black box” which does not 
allow for an intuitive understanding of what is driving the results. 

Given that agent-based models in general describe stochastic dynamic pro-
cesses, where a change in policy is often captured by some parameter variation, 
measuring policy effects comes down to showing that the considered parameter 
changes have statistically significant effects on certain relevant indicators. In the 
literature often some aggregate indicators are considered, like average growth rate 
or average values of a variable during a small time window at the end of the run. 
Such approaches condense information about a single run to a one-dimensional 
variable. Batch runs with and without policy are carried out and standard (non-
parametric) tests can then be used to test whether the considered indicator is 
influenced by the considered policy in a statistically significant way. Whereas this 
procedure is rather straight forward, a more controversial question, related to the 
calibration issues discussed above, is whether it is sufficient to provide such tests 
for a given parameter setting or whether the batch of runs with and without policy 
should rather be based on different parameter settings sampled from the space of 
“plausible” parameter constellations. 

An alternative way to measuring policy effects, which has been chosen in 
many papers, is to graphically present average trajectories of key variables of inter-
est together with confidence bands for batch runs with and without the policy, 
thereby indicating for which policies the dynamics of the model changes in a sig-
nificant way. In Dawid et al. (2013; 2014b) a dynamic statistical model based on 
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penalized splines is introduced as a tool to capture in a rigorous statistical way the  
dynamic effects of policies. Under this approach spline functions, capturing the 
(size of the) dynamic effects of each considered policy measure, are estimated 
based on a set of simulation runs carried out under different policy scenarios. 
Confidence intervals for each spline function can be provided and this allows to 
obtain insights about the size and the statistical significance of the different policy 
effects at each given point in time.

The second challenge for an agent-based policy analysis is the determination 
of the main economic mechanisms responsible for the established aggregate policy 
effects. Typically this challenge is tackled by establishing chains of effects triggered 
by the policy on a set of micro and meso level variables. Such chains of effects are 
constructed by considering statistical tests and measures, such as (lagged) cross-
correlation functions, or graphical presentations of time series. Systemic and general 
approaches for establishing such causal chains in the framework of agent-based 
models are however largely missing.11

3 EXAMPLES OF AGENT-BASED ANALYSES

3.1  Effects of specific policies and regulatory measures in particular 
markets and industries

As discussed above, agent-based models, by their very nature, are well suited to 
capture specific structures and institutional features of particular markets. Hence, 
this modeling approach has been used to study market design and policy issues in a 
variety of specific markets and industries. In this section I briefly review two recent 
examples of such analyses. The first example (Geankoplos et al., 2012) examines 
factors that could have avoided the bubble and crash in the housing market and 
the second example provides a detailed description of a particular energy market as 
a testbed for potential regulatory reform measures. Additional examples of detailed 
market studies not reviewed here include different aspects of financial markets 
(see LeBaron, 2006), special segments of the labor market (Haruvy et al., 2006), 
the Computer-Industry (Malerba et al., 1999; 2001) and the Biotech-Industry 
(Malerba and Orsenigo, 2002) or lottery markets (Chen and Chie, 2008). 

Geanakoplos et al. (2012) present a relatively simple agent-based model of 
the Washington D.C. area housing market which is able to reproduce a substantial 
set of stylized facts on this market including the boom and bust between 2000-
2010. The authors motivate the use of an agent-based approach for modeling the 
housing market by the observation that for many years agent-based models have 

11. There are a few attempts in the literature, like the regression tree approach (Vallee and Yildizoglu, 2006), but no 
widely accepted method has emerged so far.
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outperformed alternative approaches in the prediction of mortgage prepayment 
rates. The housing market model focuses on home buying and selling of households, 
where demand and supply is determined by the formation of new households and 
the moving of existing households, respectively, as well as rent/own decisions.  
The rules determining bids and asks on the market have very simple structure and 
are strongly based on empirical micro-level data on income, wealth and behavior 
in the Washington D.C. area. Also the financing of the homes is modeled in a 
simple empirically grounded way, where also potential rationing of households is 
captured. It is reported that the model is not only able to endogenously reproduce 
the boom and bust dynamics between 2000-2010 but also additional empirical 
observations like units sold, time on the market or the ratio between the sold price 
to original list price. Using this model the authors argue that the degree of lever-
age rather than the dynamics of interest rates was the driving factor underlying 
the housing bubble. 

Leigh Tesfatsion with several co-authors has developed AMES (Agent-Based 
Modeling of Electricity Systems), an agent-based model of a wholesale power mar-
ket which captures many key features of the electricity markets in several United 
States regions.12 In particular, the recommendations for wholesale power market 
design by the United States Federal Energy Regulatory Commission (FERC) are 
taken into account as well as the fact that there are limited supply capacities at a 
given location (called grid bus) and limited capacities in the grid linking the buses, 
which might lead to congestion. The agents in the model are the Independent 
System Operator, whose goal it is to maximize total net surplus in the market, 
as well as a number of energy generators, with heterogeneous cost and capacity 
structure, who put supply offers in the day-ahead market. Finally, there are traders, 
who put demand bids on the day-ahead market and sell to consumers. In addi-
tion there is an exogenous time varying demand at the different locations (which 
might or might not be price sensitive). Following the FERC recommendation 
the day ahead market is operated using local marginal prices, which means that 
the price at a given location and point in time is the lowest cost of providing an 
incremental unit of power at this location and time. Generators learn and adjust 
their behavior (offer price and quantity) according to an algorithm similar to 
Simulated Annealing, where the impact of the current fitness (called propensity 
score) of an action on the probability to be chosen increases over time. The very 
specific application domain of the model allows the authors to calibrate the model 
to empirically relevant parameter settings.

Li et al. (2011) show that strategic capacity withholding of generators arises 
in this setting and also establish that there is positive correlation of prices with 

12. See Li and Tesfatsion (2011); Li et al. (2011). 
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marginal costs across locations. This implies in particular that strategic capacity 
withholding has spillover effects on prices in other locations. The authors argue 
that such spillovers have important implications for the design of policies mitigat-
ing market power. The AMES model has also been used in a number of additional 
papers as a testbed for studying various concrete market design issues for wholesale 
power markets.13 

3.2  Effects of (combinations of) policies in the framework of closed 
(macro) models 

The majority of recent agent-based work addressing economic policy issues has been 
carried out in a macroeconomic context. Both the issues addressed in this work 
and the complexity of the underlying models varies quite substantially between 
the different contributions. 

In a contribution which relies on a relatively minimalistic macroeconomic 
model Arifovic et al. (2013) analyze the effect of social learning for monetary policy. 
They consider a standard New Keynesian model including a Taylor rule with the 
extension that household-firms are heterogeneous with respect to their forecasts 
about the perceived law of motion of the economy. They update the forecasts 
based on a social evolutionary learning algorithm. The paper shows under which 
circumstances in such a setting with social learning rational expectations equilibria 
and sunspot equilibria can be learned. Similar in spirit is Arifovic et al. (2010) 
where the issue of credibility of policy announcements is studied in an extension 
of the simple Kydland-Prescott style framework. Individual households/workers 
have heterogeneous attitudes towards the policy announcements (some believe 
them, some do not) and adjust these attitudes based on the imitation of relatively 
more successful agents in their population. It is shown that in such a setting, a 
boundedly rational policy maker, which has to rely on imperfect information about 
the evolution of the credibility of her announcements, is able to induce outcomes 
that Pareto dominate the unique Nash equilibrium outcome of the static version 
of the model. In somehow related approaches Anufriev et al. (2013) or DeGrauwe 
(2012) introduce heterogeneous expectation dynamics into otherwise standard 
dynamic equilibrium models to study the implications of such expectations on 
economic dynamics and stability. 

Whereas in these contributions heterogeneity and agent-based modeling 
has been embedded in an otherwise rather simple and reduced form model of  
the macroeconomy, a number of recent papers have carried out policy analyses 
in the framework of macroeconomic models where all sectors of the considered 

13. Extensive material about the AMES model and its applications are available at: <http://www2.econ.iastate.edu/
tesfatsi/AMESMarketHome.htm>.



Modeling the Economy as a Complex System  | 205

economy are modeled in a bottom-up agent-based manner. Dosi et al. (2010; 
2013; 2014).carry out analyses of fiscal and monetary policy measures in a fam-
ily of closed agent-based models labeled as “Schumpeter meeting Keynes” (K+S) 
models. The basic structure of the considered economy is that capital-good 
firms performing R&D offer a heterogeneous range of machine tools to con-
sumption good firms, which use capital and labor input produce a homogenous  
consumption good. Firms finance their production and investment choices employ-
ing internal funds as well as credit provided by the banking sector. Government 
expenditures (unemployment benefits, bank bailouts, interest on public debt) is 
financed by taxes collected from households, firms and banks. In each of the papers 
mentioned above the authors demonstrate that the model can replicate a large set 
of empirical stylized facts on different levels of aggregation, such as typical growth 
paths, business cycle properties, macroeconomic correlates, and cross-sectional 
distributions. In Dosi et al. (2010) a strong complementarity between demand ori-
ented fiscal policies and the effectiveness of Schumpeterian policies facilitating the 
adoption of new technologies is established. A main insight in Dosi et al. (2013) is 
that fiscal policies dampen business cycles and reduce unemployment as well as the 
likelihood of experiencing a huge crisis. It is also shown that long-term growth can 
be positively affected by fiscal policy, where this effect is particularly strong if the 
income distribution is skewed toward profits. Dosi et al. (2014) extend this analysis 
by exploring the effects of combinations of monetary and fiscal policy. They find 
that policy mixes associating unconstrained, counter-cyclical fiscal policy and dual 
mandate monetary policy are particularly suitable for stabilizing the economy.

Delli Gatti et al. (2008) in a book as well as in a set of related papers (Riccetti 
et al., 2013; Delli Gatti et al., 2010), use agent-based models featuring a credit mar-
ket and a goods market to address issues related to the interplay between financial 
and real market instabilities. In Riccetti et al. (2013) the real side of the model is 
kept very simple relying on the key assumption that the scale of activity of a firm, 
in particular the level of production, is an increasing function of its “net worth”.  
Firms have leverage targets based on which they determine their investments. 
They take loans from banks to finance (parts of ) these investments, where the 
structure of the bank-firm network evolves endogenously over time. The market 
environment is assumed to be risky (stochastic prices) and therefore firms are re-
peatedly hit by (good and bad) shocks. Interest rates charged by banks depend on 
the financial situation of the bank and the firm asking for credit. The model gives 
rise to a financial accelerator and potential bankruptcy chains. Riccetti et al. (2013) 
study among other issues the impact of pro-cyclical compared to fixed leverage 
targets and analyze the effects of monetary policy. One important implication of 
their analysis is that the central bank should also consider the effect on the lever-
age of firms when deciding monetary policy changes. In Mandel et al. (2014) the 
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financial architecture of Delli Gatti et al. (2010) is integrated in a standard real 
business cycle model. They characterize scenarios where convergence to equilib-
rium prices is observed in their agent-based setting and show that when financial 
constraints become binding a positive feedback loop between disequilibrium and 
financial fragility emerges, in line with Minsky’s Financial Instability Hypothesis. 
Small price variations can trigger financial imbalances that get amplified by a finan-
cial accelerator. Furthermore, they demonstrate that the structure of the financial 
network affects aggregate volatility because it impacts the speed of convergence to 
and the stability of equilibrium.

Ashraf et al. (2011) use a carefully calibrated agent-based macroeconomic 
model to explore the implications of different banking regulation schemes. They 
highlight the important role of banks for the economy’s performance and show 
that banking regulation in normal times hardly affects macroeconomic stabil-
ity while in bad times more stringent regulation has a detrimental effect on the 
economy as it suppresses lending to firms in need. Related issues have also been 
analyzed in an agent-based framework by Teglio et al. (2012) who mainly focus on 
the macroeconomic effects of financial regulations. Klimek et al. (2014) propose 
a simple agent-based model, which incorporates households, a single production 
sector and banks. Using this model they analyze the effects of three different crisis 
resolution mechanisms on economic and financial dynamics. In their setting a 
bankrupt bank can either be shut down via a purchase and assumption transac-
tion, it can be bailed-out using taxpayer money, or it may be bailed-in in a debt-
to-equity conversion. Their analysis implies that, whereas in strong economies 
(high productivity, low unemployment) bankrupt banks should be closed, in the 
face of weaker economic outlooks the bail-in mechanism seems most attractive. 
Tax-payer financed bail-outs should according to their analysis never be applied. 

An agent-based macroeconomic model developed with the goal of explor-
ing environmental policy issues is the Lagom model (Wolf et al., 2012). In the 
Lagom model, technology choice, household consumption, firms’ mark-ups, and 
wages are determined using genetic algorithms. The different sectors of the model 
are linked by input-output tables, which are initialized based on real world data. 
The inclusion of a representation of local emissions induced by economic activity 
opens up the possibility to consider different types of economic policy measures 
also from an environmental perspective. 

3.2.1 An illustrative example of an agent-based policy model: Eurace@Unibi

The Eurace@Unibi model (Dawid et al., 2012; 2014a) also falls in the category of 
agent-based macroeconomic models and has been developed with the particular 
aim to provide a unified framework, which allows for the analysis of a wide range 
of policy issues including fiscal policies, innovation policies, labor market policies 
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or cohesion policies. Furthermore, financial-market and credit-market regulations 
can be studied in this framework. The focus lies on the interplay of labor markets, 
industry dynamics, technological change and growth. The model describes an 
economy containing labor, consumption goods, capital goods, financial and credit 
markets in a regional context. The economy is inhabited by numerous instances of 
different types of agents: firms (consumption goods producers and capital goods 
producers), households and banks. Each of these agents is located in one of the 
regions. Additionally, there is a single central bank and a government that col-
lects taxes and finances social benefits as well as potentially some economic policy 
measures, where policies might differ between regions. Finally, there is a statistical 
office (Eurostat) that collects data from all individual agents in the economy and 
generates aggregate indicators according to standard procedures. These indicators 
are distributed to the agents in the economy (who might use them e.g. as input 
for their decision rules) and also stored in order to facilitate the analysis of the 
simulation results. 

Firms in the consumption goods sector use capital goods combined with 
labor input to produce consumption goods. Capital goods are offered in different 
qualities (vintages) by capital goods producers, where the technological fron-
tier (i.e. the highest available vintage) moves stochastically upwards over time.  
The labor market is populated with workers that have a finite number of general 
skill levels and acquire specific skills on-the-job, which they need to fully exploit 
the technological advantages of the capital employed in the production process. 
Every time when a consumption goods producer invests in new capital goods it 
decides which quality of capital goods to select, thereby determining the speed by 
which new technologies spread in the economy. In this way the model captures 
in a simple way the linkages between skill dynamics, labor market dynamics and 
technological diffusion in an economy. 

Consumption goods are sold at local market platforms (called malls), where 
firms store and offer their products at posted prices and consumers come to buy 
goods. Labor market interaction is described by a simple multi-round search-and-
matching procedure. Wages of workers are determined, on the one hand, by the 
expectation the employer has at the time of hiring about the level of specific skills 
of the worker, and, on the other hand, by a base wage variable, which is influ-
enced by the (past) tightness of the labor market and determines the overall level 
of wages paid by a particular employer. Banks collect deposits from households 
and firms and provide loans to firms. There is a financial market where shares of a 
single asset are traded, namely an index bond containing all firms in the economy.  
The dividend paid by each share at a certain point in time is determined by the sum 
of the dividends currently paid by all firms. This simple representation of a financial 
market is not suitable to describe speculative bubbles in the financial market, but 
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captures important feedbacks between firm profits and households income, in a 
sense that fluctuations of dividends affect only the income of a particular subgroup 
of households, namely the owners of shares of the index bonds. The central bank 
provides standing facilities for the banks at a given base rate, pays interest on banks’ 
overnight deposits and might provide fiat money to the government.

The spatial extensions of the markets differ. The capital goods market is global 
meaning that firms in all regions buy from the same global capital goods producer 
and therefore have access to the same technologies. On the consumption goods 
market demand is determined locally in the sense that all consumers buy at the local 
mall located in their region, but supply is global because every firm might sell its 
products in all regional markets of the economy. Labor markets are characterized 
by spatial frictions determined by commuting costs that arise if workers accept 
jobs outside their own region. It is assumed that firms have access to all banks in 
the economy and, therefore, credit markets operate globally. 

Following the Management Science Approach presented in section 2 the 
decision rules of firms and households in the Eurace@Unibi model are based on 
empirically founded heuristics described in the relevant literature.14 This includes 
in particular price and quantity determination and market selection of firms or 
consumption and savings decisions of households. To illustrate the Management 
Science Approach I briefly sketch the behavioral rule determining firms’ pricing 
decision. In the model consumption goods firms adjust their prices once a year, 
which is in accordance with empirical data. In order to determine the new price 
they follow a heuristic described in the managerial literature on strategic pricing, 
for example in Nagle et al. (2011, chapter 6). Each firm carries out “simulated 
purchase surveys” among a random sample of households, to obtain an estimation 
of how the demand for its product would react to price changes. It combines this 
estimation with a prediction of changes in total costs associated with different 
adjustments in output in order to calculate expected profits over a fixed plan-
ning horizon for a set of potential price changes. The price is chosen such, that it 
maximizes discounted profits over the planning horizon. 

The Eurace@Unibi model endogenously (without external aggregate shocks) 
generates economic fluctuations that match empirical stylized facts with respect 

14. Coming back to the discussion in section 2 of problems associated with the assumption of (dynamic) equilibrium 
behavior, it should be noted that in this model such an assumption would give rise to extremely complex and intractable 
dynamic optimization problems for the different types of agents. Considering, for example, firms’ choice of investment 
(size and vintage) at a given point in time, each firm would have to consider the future dynamics of the distribution 
of skills in the workforce as well as the distribution of future investment paths of all firms (which in general will differ 
across firms since they are heterogeneous with respect to current structure of capital stock and labor force) and also the 
corresponding developments of pricing decisions by competitors and the evolution of demand (which is endogenous). 
Even if a single firm would know the strategies of all the other agents (which clearly would be a rather unrealistic as-
sumption) the dimension of the state space and the complexity of the induced dynamics would prevent the determination 
of the intertemporally optimal strategy for this infinite horizon problem.
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to business cycle characteristics, as well as with respect to serial correlation and 
amplitude ratios between output and key variables, such as consumption and invest-
ment. The firm size distributions emerging from the model resemble those found 
in empirical studies and also firm level features, such as persistent price dispersion 
combined with counter-cyclical mark-ups and persistence of firm market shares, 
are found in simulation data generated with the Eurace@Unibi model in accor-
dance with the empirical literature. The same holds true for standard observations 
in labor markets, such as the Beveridge curve (Dawid et al., 2012; Dawid et al., 
2014a) for a discussion of these issues. Finally in Dawid et al. (2013) it is shown 
that a standard calibration of the model also produces patterns of income-inequality 
comparisons across economies that match those observed in different parts of the 
European Union. The fact that all these different kinds of stylized facts can be 
reproduced by the model strongly suggests that the approach to build an economic 
model with strong empirical micro foundations was successful in capturing key 
mechanisms that drive the dynamics of real world economies. 

A wide variety of policy issues related to labor market design, skill forma-
tion and income inequality has been studied using the Eurace@Unibi model.15 
To provide one example I briefly discuss the examination of the effectiveness of 
different types of cohesion policies with respect to convergence of regions in Dawid 
et al. (2014b). Motivated by the main instruments used by the European Union 
(European Fund for Regional Development, European Social Fund) the effects of 
two types of policies are compared: technology policy, providing subsidies to firms 
in an economically lagging region which invest in technologies at the technological 
frontier, and human capital policy, inducing an improvement of the distribution 
of general skills in the workforce in the target region. Two different setups are 
considered, where in the first setup the labor markets are fully integrated, such 
that there are small frictions and all workers have almost unhindered access to 
both local labor markets. In the second setup the labor markets are completely 
separated and workers can only work in their home region. 

Employing the penalized spline approach, sketched in section 2, in the paper 
first the estimated dynamic effects of the policies on key variables, such as regional 
per-capita output, are presented. Based on this the mechanisms driving these results 
are carved out by studying the effects of the policies on a set of micro and meso 
level variables, such as technology choices, base wage offers and relative prices of 
different firms, as well as skill evolution, firm choice and consumption decision 
of consumers. The main results of the analysis are that the human capital policy 
is only effective, in terms of fostering cohesion, if labor markets are separated.  
If labor markets are integrated, output actually falls in the lagging region at which 

15. See Dawid et al. (2014a) for a survey.
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the policy is targeted. Technology policies speed up convergence for integrated and 
separated labor markets. The negative implications of the human capital policy 
under open labor markets arise even though the direct goal of improving the 
level of specific skills and of the vintage choice in the lagging region is reached.  
The negative effects of the policy for the target region are due to the induced 
changes in the labor market tightness in that region, which have implications for 
wage dynamics, (relative) goods prices, demand shifts and investments. 

This analysis is extended in Dawid et al. (2013), where the effectiveness 
of technology policies is studied in more detail. In particular, it is shown in this 
paper that the positive convergence effects of technology policy arise only if the 
technology choice of a large fraction of firms who receive investment subsidies 
can indeed be positively influenced. If a large fraction of firms receive subsidies 
although they do not invest at the frontier (i.e. choose the best available vintage), 
than the effectiveness of the policy found in Dawid et al. (2014b) disappears. 
Furthermore, in Dawid et al. (2013) the implications of the policy are not only 
studied with respect to average output per capita in a region but also with respect 
to income inequality in the regions. This highlights the potential of agent-based 
policy models to simultaneously consider different aspects of policy effects and in 
particular to examine distributional issues which cannot be studied in representa-
tive agent models. 

4 DISCUSSION AND CONCLUSIONS

The discussion in this chapter is based on the insight that the economy and its main 
components, such as markets and industries, are complex systems, and on the main 
question of how much of this complexity we should attempt to capture in models 
when examining economic issues. In particular, sections 2 and 3 have discussed an 
agent-based bottom-up modeling approach, where a lot of attention is paid to the 
behavior of individual economic actors and their interaction. Section 2 has made 
clear that a number of serious challenges have to be faced when developing models 
of this kind. This concerns the foundations for the representation of individual 
behavior as well as the empirical calibration and the systematic analysis of such 
models. The overview of existing agent-based analyses in economics in section 3 
has shown that, in spite of the fact that these models share the same modeling ap-
proach, the actual degree of complexity varies quite substantially among different 
agent-based models. Depending on whether the focus of analysis is on one particular 
economic phenomenon in a specific market or on a better understanding of the 
emerging feedbacks between the real and financial sectors models with different 
degrees of granularity seem appropriate. The discussion in section 3 highlights 
the usefulness of a computational agent-based approach in several domains of 
application. Arguably, much simpler mainstream models would have a hard time 
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addressing several of the issues dealt with in the examples presented. I would not 
necessarily conclude from this argument that the more complex computational 
models are in general more suitable than the main-stream models for economic 
policy analysis, but rather that there seem to be important economic issues where 
relevant new insights can be obtained using a modeling approach which treats the 
economy as a complex interactive system. 

The examples presented in section 3 provide some indication of the type of 
economic issues where the application of agent-based models seems particularly 
promising. First, the area of market design should be mentioned. The ability of 
agent-based models to capture in some detail the institutional details of particular 
markets and also to potentially involve stakeholders in the design of the behavioral 
models of market participants makes agent based models a particularly suitable tool 
to explore expected implications of changes in market design or regulatory rules 
and to communicate such expected implications to policy makers. In fact, agent-
based models have been applied with substantial success in this domain. Second, 
agent-based models, which explicitly represent the heterogeneity of agents with 
respect to different characteristics, are natural candidates to address distributional 
issues. Gaining a better understanding of the processes responsible for inequalities 
of different kinds within and across regions has been a main topic of economic 
research for years and it seems that the importance of this topic is still increasing. 
Agent-based models should be able to play an important role in this discourse. 
They allow to capture key mechanisms that are responsible for the emergence of 
differences between firms or households, as well as for the evolution of particular 
linkages and interaction patterns and for the occurrence of lock-ins and path 
dependencies. The papers briefly reviewed in section 3 give an indication of the 
potential of agent-based models in this respect, but it seems that this potential so 
far has not been fully explored.
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CHAPTER 10

CITIES AS COMPLEX SYSTEMS
Luís M. A. Bettencourt1

1 INTRODUCTION

Cities and urbanization pose some of the greatest and most important challenges to 
our understanding of human social systems and for effective policy (UN-Habitat, 
2009). The roots of these difficulties lie in the nature of cities as complex objects. 
These are systems of interacting people and social organizations in dense built 
spaces serviced by infrastructure and managed by social and political organizations 
(Bettencourt, 2013a). Attempts to better manage cities along only a few of these 
facets often fail. A more holistic understanding of cities, where all these aspects 
of urban life come together, is just now emerging. Its main findings and their 
implications for public policy are the focus of this paper. 

Most of urban planning history is concerned with identifying the fundamental 
nature of cities (Lynch, 1981; Mumford, 1961). On the one hand, cities – at least in 
their modern form – are handled in practice as vast land-use systems to be designed 
and managed according to best practices from engineering and applied economics. 
This means that urban planning and policy are primarily defined in terms of the al-
location of land, the design of transportation systems and the development of urban 
services according to the best technology available and under physical, political and 
budgetary constraints. As I discuss in this paper, many of these operational issues 
can often be defined conceptually as “simple” problems and be tackled using well-
known strategies from engineering, which are increasingly possible to implement in 
standard ways thanks to progress in informational and communication technologies. 

While this practically minded approach describes most of the short-term activities 
of city administrations, there is much more to cities than that. This becomes critical when 
we consider urban issues over long time horizons and in places where engineering practices 
fail (Bettencourt, 2014a). Then, the emphasis shifts to a different kind of problem that 
deals typically with human socioeconomic dynamics: for example, issues of urban poverty, 
(un)employment, crime and violence, economic growth and environmental sustain-
ability. Needless to say, these problems are “complex”: they require that we understand 
their history and context; we do not know how to solve them using standard recipes. 

1. Santa Fe Institute. 1399 Hyde Park Rd, Santa Fe NM, 87501, USA.
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Most cities – their civil societies, economic agents and political organizations – struggle 
with such complex problems. Failure to deal with these issues undermines the future 
development of any city as well as its day-to-day management. Tackling complex 
problems requires a different set of approaches, based in the appreciation for the mas-
sively interconnected character of urban social and infrastructural networks and their 
dynamics over time. Complex problems emphasize dynamics of social and economic 
self-organization, such as markets and civic life, not top-down design.

The perspective of cities as complex systems emphasizes the connections between 
these various components of the city to identify important new relations in urban 
organization and dynamics that can also enable more successful and sustainable 
solutions (Bettencourt, 2013b). The aims of approaching cities as complex systems 
are therefore more ambitious than most urban planning practice, as we would like 
to create a theory of the role of urban areas in human societies, emphasizing human 
agency and a person’ s ability to learn, be creative and take part in social organizations 
(Bettencourt, 2013a; 2013b). We would also like to understand better how urban 
physical space and service delivery influence and facilitate such social dynamics and, in 
turn, come to define their success metrics. Although the strategy of complex systems 
to create this holistic view of cities goes beyond other urban disciplines (sociology, 
economics, engineering, etc.) its objective is to create a simpler quantitative synthesis 
of the nature of cities, for example by leveraging physical and operational constraints 
on underspecified social and economic models and vice-versa. Considerable progress 
in understanding cities as complex systems – both empirically and theoretically – has 
been made over the last decade and will be briefly described below (Bettencourt, 2013a; 
2013b). These new insights allow us to discuss how to deal with complex problems 
in general, and the specific circumstances when such issues can become “simple”.

In practical terms, this paper analyzes the problem of conceptualizing and managing 
cities from the point of view of these two different perspectives: its simpler, shorter-term 
technical management and its longer-term complex challenges (Bettencourt, 2014a). 
I will articulate these views of the city starting with a brief historical overview of how cit-
ies have been perceived in urban planning and policy. I will then discuss in what precise 
sense cities are complex systems. This includes an emergent new empirical and theoreti-
cal understanding of the characteristics of cities and their consequences for how urban 
areas of different sizes pose different challenges to the planner. I will then return to the 
tension between engineering solutions and complex systems approaches to show when 
each is necessary and how complex systems may become simple problem and vice-versa. 

2 A BRIEF HISTORY OF CONCEPTS OF THE CITY

Cities are one of the most fundamental units of human societies. Historically, 
the city as a political unit existed well before nations. Early cities were important 
religious and defensive centers as well (Mumford, 1961). But it is the city as a 
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socioeconomic unit that is most important today.2 Cities concentrate and accelerate 
social and economic outputs of modern nations, including gross domestic product 
(GDP), to a much larger extent than they concentrate population (Bettencourt, 
2013a; Bettencourt et al., 2007; Bettencourt and West, 2010). They also create 
the conditions for more broadly based human development, as spatial proximity 
can facilitate modern service delivery and the mobilization and evolution of social 
and political organizations to solve difficult human problems (Holston, 2008). 

Despite their fundamental role in human history and in contemporary 
development, cities have defied integrated understanding, capable of identifying 
systematic solutions to problems of urban governance. For example we do not 
know in detail what is the infrastructure necessary for a well functioning city or 
how to compute the full inclusive costs and benefits of urban services. We also 
do not know how such services should change in detail in response to economic 
and population growth. Answers to these questions rely heavily on past practices, 
not so much on a deep understanding of the processes that take place in cities.

Historically, we have used various metaphors to try to understand the essen-
tial features of cities. So for example, as early as the 4th century BCE, Aristotle and 
Plato debated the properties of the political city in light of analogies to a family or 
an insect colony.3 Commonly, urban planners view cities as vast engineering prob-
lems and adopt, in their work, principles similar to those used to stabilize and run 
complicated machinery, such as airplanes or power stations (Lynch, 1981). This is 
what Kevin Lynch referred to the view of the city as a “machine” (Lynch, 1981). 
The machine metaphor for the city was central to modernist architecture and plan-
ning but, where implemented, has lead to dysfunctional social designs that also result 
in ineffective land uses and large transportation costs, pollution and congestion. 

Another tradition in architecture and planning emphasizes the organic char-
acter of cities in analogy to organisms or ecosystems (Lynch, 1981; Sitte, 1889; 
Geddes, 1915; Jacobs, 1970). Finally, in an age of pervasive telecommunications, 
we may think of cities as networks for information exchange, perhaps analogous 
to nervous systems (Castells, 1989). 

The city is all of these things, of course, but none of them in particular 
(Bettencourt, 2013a; Lynch, 1981): as a complex system it has its own organization 
and dynamics. It also has a function that sets it apart from other complex systems, 
as we shall discuss below. Misapplied simplistic metaphors have, in fact, led to 
many planning disasters, in terms of outcomes surely, but also to huge opportunity 

2. Cities, defined as functional urban areas (the implicit definition I will use here), are integrated socioeconomic units 
in terms of labor markets, meaning the spatial area and populations spanned by a set of frequent commuting flows. 
Examples are Metropolitan Areas in the USA.
3. Aristotle, Politics (Books 1, II).
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costs for developing better urban environments. The challenge for a modern sci-
ence of cities is to define urban issues in their own right and to seek integrated 
solutions that play to the natural dynamics of cites in terms of human development 
and economic growth, while avoiding negative unintended consequences, such as 
violence, exclusion or pollution (Bettencourt, 2013a).

The modern view of cities as complex systems started to emerge in the 1960s 
both in the United States and in developing countries, especially in Latin America. 
This was a time of great urban challenge worldwide. In the United States, cities underwent 
massive infrastructural interventions under the general epitome of “urban renewal”. In 
many other nations, particularly in Europe and Latin America, this was also a time of 
fast urban growth that, in many cases, lead to the informalization of urban labor and 
housing often in the form of vast slums (favelas in Brazil). Many of the major issues with 
cities today have their roots in the transformations that took place during this period 
and their legacy of social and economic disparities and segregation (Wilson, 1990). 

In the United States, the perspective of cities as complex systems arose partly as a 
reaction to the pure infrastructural solutions of the urban renewal movement. At this 
time, the concept of “organized complexity” was coined by Warren Weaver, in a now 
famous Rockefeller foundation report in 1958 (Weaver, 1958), and appropriated by 
Jane Jacobs in her landmark book The Death and Life of Great American Cities in 1961 
(Jacobs, 1961). For Jacobs, organized complexity was the keystone concept that allows 
us to make sense of the fine social and spatial fabric of large cities. The structure and 
dynamics of this fabric, she proposed, was the basis of urban economic and civic suc-
cesses. These ideas have now become the starting point for a new generation of urban-
ists and planners, and we have come to refer to cities as “complex adaptive systems”. 

In developing cities, concepts of complex systems stemmed from the consider-
ation of more practical issues, namely how to deal with the pervasive growth of slums 
in places such as Mexico City (Sudra, 1976) or Mumbai (SPARC, 1985). Following a 
few empirical early studies of neighborhoods, John F. C. Turner wrote several influential 
pieces about housing for the poor as a mechanism for human development and em-
phasized its connections with other aspects of daily life (Turner, 1977), coining in the 
process the idea of “housing as a verb”. In this way, the ideas that urban lives entangle 
all aspects of the city, from health and education to services and transportation, started 
to be taken seriously, at least in principle, in formulating urban policies.

As policy prescriptions, these new approaches were geared towards the urban 
evolution of (poor) neighborhoods, instead of previous practices such as forced 
evictions, which tended to make problems recur (Rogler, 1967). Several formal-
izations of these policies such as “sites and services” (Mayo and Gross, 1987) as 
well as better-designed public housing policies for “slum-upgrading” became the 
common practice and by and large are the norm today.
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However, observing over thirty years of mixed outcomes in terms formal policies 
for public housing and sites and services (Mayo and Gross, 1987), raises fundamental 
questions about their viability and financial sustainability. As middle income countries, 
such as Brazil or South Africa, embark in some of the largest projects in public hous-
ing in the world, such questions loom large: For example, why is public housing so 
difficult to “get right”? Why have so many projects, especially in the United States and 
Europe failed, while public housing is a resounding success in many nations in Asia? 

Answers to these question require that we understand better the nature of 
cities as complex systems and the many interdependences between the physical 
city, its infrastructure and services and the socioeconomic life of people in urban 
areas (Bettencourt, 2013a). It also requires that we can formalize ways to learn 
from urban interventions, a topic to which we will return later. 

3 WHY ARE CITIES COMPLEX SYSTEMS?

Complex adaptive systems, and cities in particular, have a number of properties that 
distinguish them from simpler physical systems and that make their management 
by conventional methods especially difficult. These properties can be summarized 
in terms of five general properties (Bettencourt, 2013a; 2013b; Jacobs, 1961): 
i) heterogeneity; ii) interconnectivity; iii) scale; iv) circular causality; v) development.

First, heterogeneity refers to the fact that large cities are very diverse. This has a 
positive and a negative side: heterogeneity may refer to economic capabilities, such as 
types of professions or businesses, but also to wealth disparities (inequality), to race and 
ethnicity, etc. For example, larger cities disproportionally attract foreign and distant 
migration and thus tend to have a more diverse cultural and ethnic composition. 
Cities are also spatially very different from place to place and from person to person. 
There are poor and rich neighborhoods, there are commercial and residential parts of 
the city. There are also public spaces that are used much more intensely than others 
(Whyte, 2001) and by different groups of people. This makes standardized approaches 
to planning and policy very problematic and potentially wasteful. They risk failing to 
generate appropriate solutions because they target an average situation that is rare and 
uncharacteristic of any specific place or social group. As we shall see, there is a major 
need for detailed information about the people and neighborhoods to be affected 
by urban interventions. Obtaining such information has been traditionally difficult 
and time-consuming and, perhaps for these reasons, has rarely been done. However, 
thanks to new information and communication technologies the situation is changing.

Second, everything in a city is subtly interconnected in networks: Issues of 
economic development or health are connected to physical places and to urban 
services, and these in turn to budgets at the individual and municipal levels. 
How may we disentangle some of these issues so that we can develop practical 
solutions that are not overwhelmingly complicated? 
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Third, the character of cities changes with their scale, usually measured 
by population size: Larger cities are on average spatially denser and make more 
intense use of their infrastructure (e.g., more cars per road surface), leading to a 
different structure of both benefits and costs. Larger cities are more productive 
economically but also more expensive in terms of cost of living. Thus, dealing with 
issues of cities is in general a scale dependent problem. Planning, in this light, 
must recognize how urban space and infrastructure are used, adapt to different 
intensities and management costs over the lifecycle of solutions, and be able to 
change as cities grow.

Fourth, virtually all issues of cities, like other complex systems, show cir-
cular causality: for example, is a city richer because it has better infrastructure? 
Or does it have better infrastructure because it is richer? Is a city more violent 
because it has higher inequality? Or is it the other way around? This poses 
an important challenge to designing policy interventions: it is hard to obtain 
results along a single dimension without generating unintended consequences 
in other aspects of urban life. This issue calls for urban planning that is atten-
tive, and explores, the creation of virtuous cycles of change. For example, as 
a society develops there is a general interplay between the quality and cost of 
urban services and the city’s socioeconomic development,4 where positive change 
in the physical and infrastructural aspects of the city are necessary to support 
its socioeconomic dynamics and vice-versa. Urban planning that captures and 
understands this type of circular causality is much more likely to be successful 
and financially sustainable.

Finally, people, businesses and the city itself develop over time, so that any 
policies today should promote a mixture of old and new uses and positive change 
well into the future. This is a challenge because we must envisage future land-uses, 
social organizations and technologies that we cannot yet conceive of in the present. 
This emphasizes the idea of a city as a process, rather than an object. For urban 
planning and policy embracing the idea of continuous and open-ended develop-
ment means that it should recognize the nature of individual and human change 
in the city and act to reinforce its positive aspects, while discouraging its negative 
consequences. This is quite different from creating a static design and requires 
instead that planners seek and can access information about the detailed lives of 
their citizens, neighborhoods and businesses.

4. Such virtuous cycles of development do, in some cases, also run in the opposite direction, leading to vicious cycles 
of blithe and decay. This sort of dynamics has been invoked to explain the crises of post-industrial cities such as Detroit 
(Wilson, 1990), where unrecovered costs for services have led to the degradation of their quality via cut-backs, includ-
ing, crucially, equitable justice and law enforcement, which has led to population and job loss, which in turn erodes 
the tax base for services, and so on.
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4 THE PROPERTIES OF CITIES AS COMPLEX SYSTEMS

Cities not only share all the properties described above with other complex systems, 
they express them in certain specific ways, to which I now turn.

Urban areas exist over a large range of populations, from small towns with 
a few tens of inhabitants to megacities with tens of millions. It has been know to 
geographers and regional economists for many decades now that cities of differ-
ent population sizes have different properties in terms of their relative political 
and economic roles. These ideas have been often described under the concept of 
urban hierarchy (Berry, 1967). Urban hierarchies capture the observation that 
larger cities in an urban system (nation) contain all the functions of smaller ones 
but not vice-versa. In other words, we may only find a specialized hospital, opera 
house, or a stock-exchange in a sufficiently large city, where we will also find a 
little bit of farming. Larger cities, in this way provide services for smaller towns in 
their territory, and exchange such services by those of sectors that while present 
are de-emphasized as they grow, such as food and energy production and some 
forms of manufacturing. 

In this way the issue of city scale and that of heterogeneity are intimately 
connected. This gradual differentiation of functions with population size calls for a 
systematic understanding of cities in terms of differences in their internal structure 
but also of what changes in their organization as their size varies. 

The study of how the properties and structure of cities change with their 
size is known as scaling. Scaling is one of the main analytical tools of complex 
systems as it can be applied to all kinds of different problems, provided there is 
sufficient data. For example, scaling analysis has often been applied to many-body 
problems in physics such as gases or liquids, or to more complicated systems such 
as stars, organisms, ecosystems or, indeed, cities. All these systems show scaling, 
meaning that empirical analyses show that their average properties are continu-
ous functions of system size. Simpler physical systems, such as an ideal gas, show 
extensive properties (energy, entropy) that are simply proportional to the size of the 
system (Bettencourt et al., 2014). But complex systems typically show different 
(non-extensive) behavior, where their properties vary non-linearly with size as they 
grow. This will be important for cities, as I show below, because it is the reason 
that makes smaller urban areas qualitatively different from larger ones and that 
requires a different approach to their problems.

When a system scales, it manifests consistent properties across the range of 
sizes it can take. This tells us two main things. The first is that all instances of a 
type of system express the same underlying local dynamics. So, scaling, such as 
it is shown in figure 1, tells us that we can approach the problem of what cities 
are by looking at settlements of all sizes and search for the same kind of processes 
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happening in all of them. This is important because smaller cities are often simpler 
to analyze. The same can be said for organisms, ecosystems, etc. What this says for 
cities is that their most basic units have similar behavior across all places, specifi-
cally that social life and physical places take essentially the same form in small 
towns and in large cities. The differences that do arise between larger metropolis 
and small towns are then the result of how these elementary dynamics elaborate 
and compose across scales. 

The second consequence of scaling tells us about this cumulation and captures 
the true collective nature of cities. Because different types of complex systems have 
different emergent collective properties, scaling also tells us what is different about 
them, even though they may all scale. For example, the different way in which 
cities or organisms use energy as their size changes tells us that they have different 
dynamics (Bettencourt, 2013a; Bettencourt et al., 2007). 

The main advantage of a scaling analysis of a system of cities is that it provides 
a very simple set of analytical tools that reveal many non-trivial aspects of urban 
areas that are general to all places. After identifying the properties common to all 
cities in the system, it also provides a procedure for singling out what is unique 
and special about each place (figure 1). 

FIGURE 1
Nonlinear scaling of infrastructural and economic properties of cities
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Let me start by describing some of the main empirical findings of scaling analysis 
applied to cities, and then proceed to explaining these properties in light of theory.

For example, analysis of socioeconomic outputs of cities as a function of their 
size shows that they increase per capita with city size, increasing by 10%-20% 
as the size of the city is doubled (Bettencourt, 2013a; Bettencourt et al., 2007). 
This includes quantities such as the size of the urban economy (GDP), its labor 
productivity (wages), its violent crime rates and measures of innovation, such as 
patents or employment in certain professions. 

On the other hand we also observe that the volume of built space and infra-
structure decreases per capita by a similar amount (Bettencourt, 2013a; Bettencourt 
et al., 2007). For example the area of roads per capita decreases by 10%-20% with 
each doubling of city size. The total area of roads and infrastructure is also con-
nected to built space (Bettencourt, 2013a; Angel et al., 2011), which varies with 
city size in a similar way, as measured by satellite imagery around the world. 
These characteristics appear to be general properties of cities that apply equally 
well to China and the United States or Brazil and Germany, though national levels 
of wealth and infrastructure (the intercepts in figure 1) vary and change over time 
(Bettencourt, 2013a; Bettencourt et al., 2014). These two parameters both go up 
with development, while crime and other negative consequences of large-scale 
socialization go down. 

This is why the main challenges of small cities are different from those of 
larger ones. Larger cities need to be able to control higher levels of crime per 
capita and to manage their infrastructure and services more intensely and often 
with new technologies to keep up with higher usage rates. Smaller cities, on the 
other hand, don’t have these problems to the same extent and instead struggle 
with issues of lack of high value-added socioeconomic activity and the results of 
low-density land uses.

The compound effect of higher average wealth per capita and smaller space 
is that land rents increase faster than incomes (Bettencourt, 2013a). This has a 
varied set of important consequences for urban planning and for the shape of the 
city in space more generally. The response to land rents that increase faster than 
incomes with city size is typically of two types: first people can live in less space, 
second more floor space can be added per unit of land by building multi-story 
units, provided construction costs are not too high. These are typical features 
of large cities, leading to a more intense use of space. The consequences for city 
administrations (and real estate entrepreneurs) are that the capitalization of land 
is an effective means for cost recovery. As land appreciates faster than incomes 
as cities grow, the revenues allow cities to sustain larger and more professional 
administrations and develop better services. 
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The deviations from scaling relations (residuals of a log-log linear fit, see figure 1) 
are also interesting as they express local effects characteristic of each city, away 
from the expectation from their population size. Such residuals are not random 
numbers, though they obey simple statistics well described in general by a Gaussian 
distribution5 (Gomez-Lievano, Youn and Bettencourt, 2012; Bettencourt et al., 
2010). Instead they provide a city-size independent of urban performance for 
each city relative to all others in the same urban system (Bettencourt et al., 2010). 
Moreover, such deviations change over time only very slowly, so that a city that 
is richer or poorer than the expectation for its size today is likely to continue to 
be so for perhaps a few decades (Bettencourt, 2013a; Bettencourt et al., 2010). 
This means that fundamental urban change is slow and happens on timescales of 
several electoral cycles – thus, the consistency of certain urban policies over the 
long term is an important ingredient for steering change in the right direction.

It is interesting to summarize these empirical results in light of new theory for 
the nature of cities as complex systems and the five properties of cities described 
in the previous section. Recently proposed theory (Bettencourt, 2013a) describes 
cities in terms of network models of socioeconomic interactions and infrastructure 
and gives predictions for the value of scaling exponents (elasticities).  

A detailed mathematical treatment of these ideas will not be developed here, 
and the interested reader is referred to the original sources (Bettencourt, 2013a). 
Basically the scaling properties of cities can be obtained through assuming four 
simple properties, common to all cities: i) that city populations are mixing, mean-
ing that one can in principle meet anyone else in the city; ii) that the built space in 
cities is set by decentralized infrastructure networks that grow with the city; iii) that 
human effort is conserved across city sizes; and iv) that the socioeconomic products 
of cities are proportional to the overall rate of social interactions in these spaces. 

These ideas can also be stated in a slightly different way: if humans benefit, 
on average, from interacting with others, then the problem to be solved is how 
to create a set of processes in space that makes such interactions possible at a cost 
that is commensurate with their benefits. This is the general problem that cities 
solve: they structure space and human spatial densities in such a manner that the 
costs of running the city (especially the transportation of people, goods, energy and 
information) scales in the same way as the rate of social interactions (Bettencourt, 
2013a), while preserving human effort. These ideas propose, in particular, that the 
scaling properties of cities are the result of increasing rates of social interaction per 
capita with the size of cities. We have directly tested this hypothesis using cell phone 
networks, where each person’s contacts can be measured directly; results are in good 
agreement with theory (Schläpfer et al., 2014; Andris and Bettencourt, 2014). 

5. This is a lognormal distribution in the original variables (Bettencourt et al., 2014; Gomez-Lievano, Youn and Bettencourt, 
2012; Bettencourt et al., 2010; Schläpfer et al., 2014).
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The final ingredient is what happens to human social networks as interac-
tion rates (network degree) increase. Here, we can naturally connect back to 
foundational ideas from economics and sociology, and specifically with concepts 
of the division of labor (Smith, 1776), which in modern terms we think of as a 
division of knowledge (Arrow, 1962). We observe, in agreement with the more 
qualitative ideas of urban hierarchy mentioned above, that in larger cities there 
is greater diversity of professions, business types, etc. (Bettencourt, Samaniego 
and Youn, 2014; Youn et al., 2014). The presence of larger human capital is of-
ten invoked by urban economists as the proximate reason why larger cities show 
greater labor productivity. But the idea then is that it is the possibility of social 
contact with more people that encourages each individual to specialize and learn 
and become more interdependent with others. In this process new knowledge 
is created that can lead to new economic growth (Bettencourt, Samaniego and 
Youn, 2014; Bettencourt, 2014b).

Thus, cities create the conditions for larger rates of socioeconomic interaction 
with others (larger markets, amount other things) and encourage the generation 
of new knowledge and its recombination, through specialization and interde-
pendence of both individuals and organizations (firms, non-profits, government 
agencies, etc.). 

We now see how the five properties of cities introduced above are interdepen-
dent: city size (scale) allows, in principle, for greater interconnectivity between people, 
along a larger number of dimensions made possible by learning and specialization 
(heterogeneity). The causality between these processes is circular as interdependence 
(social connectivity) is necessary to allow specialization and specialization leads to 
more advanced knowledge, with greater economic value that can sustain enabling 
social and physical infrastructure. As these processes iterate over time and deepen, 
more knowledge can be created and embodied in individuals and socioeconomic 
networks leading to economic growth and human development, not only at the level 
of single cities but of urban systems through the structure of urban hierarchies. 

These effects, on average, all follow from a scaling theory of cities (Bettencourt, 
Samaniego and Youn, 2014; Bettencourt, 2014b). However, the detailed 
stochastic processes by which individual lives are woven in cities and can lead to 
these aggregate results remains to be investigated in greater detail. In particular, it 
is important that we better understand why, despite the possibility of larger rates of 
interaction, many cities in developing nations remain poorer than their developed 
counterparts. This is thought to be in part the consequence of limitations to the 
processes described here. As a result, many individuals in developing cities find it 
difficult to shift their lives away from pure survival and onto more entrepreneurial 
and more creative activities that can cumulate knowledge and lead to systematic 
change in terms of human development and economic growth.
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In this way the interplay between infrastructure, urban services and human 
creativity and agency comes back into focus. In particular, the ability for cities to 
identify problems that they can solve by engineering solutions is essential in order 
to liberate the socioeconomic potential of their citizens. This then is the long-term 
strategic role of urban planning and policy to which we now return.

5 IMPLICATIONS FOR URBAN PLANNING AND POLICY

We now turn to the practical implications of cities as complex systems for planning 
and policy. Our considerations will be mostly strategic, as the design of each policy 
naturally requires tailoring interventions to local information, the consideration 
of budget constraints, political context, etc.6

Specifically, in this section I try to answer three questions that are at the root 
of the main difficulties of managing cities and promoting positive change: i) How 
to design approaches that take the dynamic interconnections and heterogeneity of 
cities into account? 2) When is it appropriate to use practices from engineering; 
and conventional policy to tackle urban problems? 3) How to deal with the 
more “complex problems” that characterize so much of the social and economic 
fabric of cities?

The second and third questions are easier to answer. I define i) “simple prob-
lems”: as those that can be tackled using methodologies from engineering and 
ii) “complex problems” as those require the full consideration of methods from 
complex systems. I will now describe what makes a problem fall in one class or 
the other and the strategy to solve each type. 

Simple problems are not necessarily easy to solve: They are “simple” because 
their structure is clear and amenable to solutions that fall within the logic of engi-
neering theory, which is familiar to policy makers and urban planners (Bettencourt, 
2014a). Such problems can be addressed in standard ways that are minimally 
culturally sensitive. Examples are how to run a bus system or waste collection. 

We can identify when a problem is simple through three necessary properties 
(Bettencourt, 2014a): i) the existence of well-defined, measurable performance 
metrics, against which the solution is to be assessed on a frequent basis; ii) the means 
to act on the system to move it towards fulfilling its performance metrics; iii) the 
ability to act fast enough, so that the solution remains simple. What I just described 
may be formalized in terms of a feedback-control loop (Åström and Murray, 2008), 
which can be implemented by an algorithm, a human or a dedicated organization. 

6. This is the sense in which scientific theory never fully determines engineering solutions or policies. However, scientific 
insights are essential to reduce the space of possible policy and engineering designs and, often, to the conception of 
entirely new technical solutions to problems that have been intractable in the past. Consider, for example, attempting 
to go to the Moon without knowledge of the laws of motion and gravity.
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For example, when running a bus system, we may consider the waiting 
time at a bus stop as a performance metric. Let’s say that we want the average 
waiting time to be 5 minutes or less. We can measure the average waiting time in 
BRT (Bus Rapid Transit) stations where people tap into bus platforms and then 
adjust the bus speeds and frequency (through communication and dispatching) 
on a continuous basis to fulfill these metrics. If waiting times become too long 
or irregular the dispatching and adjustment of speed becomes more difficult and 
riders will be less satisfied with the service because of longer waiting times, but 
also because of greater uncertainty and the system will be harder to manage and 
sustain financially. Thus, effective operation, leading to sustained and predictable 
quality of service, requires active system management on the time scale of minutes 
or faster. Otherwise the system falls apart and becomes unmanageable.

Another important but very different example of policy as a feedback-control 
loop is monetary policy, whereby central banks adjust interest rates to stave off inflation 
and stimulate economic growth. This is an example of a national (not urban) policy, 
whereby a once complex issue – controlling inflation – has been rendered simple. 

FIGURE 2
The structure of policy as a feedback control loop

disturbance

objective

system

control

correction measurement

Obs.:  Such solutions reflect engineering theory about how to operate complicated systems in simple ways. Crucially it requires 
a clear measurement of properties of the system and its comparison with a desirable objective, the capacity of acting on 
the system by a controller to correct its state toward the objective and the ability to act fast enough so that the response 
from the system remains simple. 

Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 
the original files provided by the authors for publication.

The critical aspect of these solutions, that is not explicit in figure 2, is the im-
portance of fast, timely response on the part of the planner. As I will discuss below, 
all “simple” systems are complex in the long-run and typically display instabilities 
even on relatively short timescales. The ability to act on the system before any such 
instabilities develop is critical. For example, a monetary policy that lets inflation rise 
too far may then overdo its correction measures, take the system under recession and 
eventually deflation, for which its means to act (loan rates) are ineffective. As a result, 
a good policy when applied fast enough becomes absolutely ineffective if applied on 
timescales where the system’s response is no longer controllable by simple means. 
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Where they work, engineering-type policies of this type allow for extremely 
effective problem-solving that liberate us from the most essential elements of 
survival such as transportation, water, electricity, waste removal, climate control, 
etc. This is essential to allow a society to dedicate its time to activities with greater 
socioeconomic value that are enablers of its own growth and development 
(Bettencourt, 2014b). 

All simple problems are complex to begin with and become complex again 
over the long-run. To explain what I mean, consider again the example of a bus 
system. The design of BRTs, made famous by Curitiba in Brazil and Bogotá in 
Colombia, is a good example. Before these novel systems were conceived a bus 
line consisted of a set of vehicles running on roads, stopping at bus stops along 
a route and attempting to stick to pre-defined schedules. But the deficiencies of 
such traditional systems in terms of high-costs and low-speed, especially in large 
congested cities, led to such innovative solutions as dedicated bus lanes and elevated 
platforms that function more like those of a subway system. At first, the problem of 
running a cheap and effective bus system in a congested city was complex because 
it depended on the behavior and cooperation of bus riders, car drivers, and many 
other factors. But through experimentation and invention, these problems were 
overcome. As a result, the problem of running a BRT becomes simple(r). Having 
such a system in place, we can now implement the process of dispatching buses 
or adjusting their speed to minimize waiting and travel time as described above. 
Because this system is now “simple” and, certainly less exposed to uncertainties of 
human behavior, computational techniques such as simulation and agent-based 
models also become useful in developing and testing methods of management. 
All this, put together, allows for a virtuous cycle of improvements and the explora-
tion of further efficiencies.

In the long-run, the problem of operating a transit system becomes complex 
again: It will be entangled with public expectations rising in tandem with economic 
growth and human development. This will require faster, more point-to-point, more 
comfortable solutions. At present this means that taxis, cars or even helicopters, 
become preferable for a richer and more time conscious population. How to 
develop a financially sustainable public transit system for a rich society, where 
time and comfort are paramount, remains an open problem and goes far beyond 
exploring greater efficiencies in BRT systems. Recent trends of rising car ownership 
in traditionally transit-oriented cities such as Singapore or Curitiba are evidence of 
this issue (Marques, 2010; Mahbubani, 2014) as are world record-breaking traffic 
jams in the large cities of middle-income countries, such as Beijing or São Paulo. 

If “complex” urban problems are inevitable – then how should we deal 
with them? 
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In explicit form this question goes back to the 1970s when the term “wicked 
problems” was coined to describe many of the difficult socioeconomic issues faced 
by cities (Rittel and Webber, 1973). Wicked problems, where originally defined, 
much as I did for complex systems, as problems with circular causality and very 
large (combinatorial) problem spaces. Thus, it may seem at first that such problems 
are just impossible to solve. What does the study of complex systems tell us about 
how they can be handled in practice?

The short answer is that such problems are to be solved through self-
organization (Bettencourt, 2014a). This is also the answer from economics, though 
in a more limited context (Hayek, 1945). The role of markets or, more generally, of 
networks of individuals and organizations who integrate and use information available 
to them, but not to anyone in its totality (such as the planner), is the way in which 
wicked problems are tackled in practice. This does not guarantee optimal solutions 
in general, but results instead in a distributed and robust way to handle problems.

Self-organization places the emphasis on human agency and creativity and 
on effective social organizations, capable of coordinating their knowledge and ac-
tion through signals, such as prices. As we should know from the idea of market 
failures in economics, this is not always possible and relies in particular on low 
transaction and coordination costs.7 

From this point of view, there are two main challenges to effective self-
organization: i) the problem of information, necessary to design and prioritize urban 
interventions; and ii) the problem of learning from policies as they are implemented.

Both these problems run much deeper than may appear from a practical 
point of view. Some thought about the difficulties involved transforms the practice 
of urban policy away from a static design problem towards one that is essentially 
to do with coordination of information and action across levels of organization: 
from the individual and neighborhood to the municipal governments, and beyond. 
This also means that local conditions (cultural, technological, budgetary) are very 
relevant at this stage of problem solving (Brenman and Sanchez, 2012). 

For example, at low development it is common that some scarce urban services 
are shared among a large number of households. Consider, for example, water points: 
How many should there be in a neighborhood? The answer from the point of view 
of the utility depends on the capital and maintenance cost of the service. But from 
the point of view of users, waiting time, distance and reliability (maintenance) are 
essential: it maybe that more water points developed at higher capital costs can pro-
vide a better service and be better maintained because they incur less use each and 

7. For several aspects of market failures, see <http://en.wikipedia.org/Niki/Market_failure>.
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because a smaller group of users may confer a sense of responsibility and ownership.8 
How is the planner to know that in advance? In practice, some of the information 
for the initial design is to be found in the community to be served, and then is to 
be learned through the assessment of the service along several dimensions over time. 
Because governments and planning authorities are often not well equipped to deal 
with these issues, the development of successful urban planning and policy is dif-
ficult and requires the acquisition of organizational and technological sophistication. 

Thus, the problem of information is simple enough to understand: how can 
a planner at the municipality know enough about the lives of people, say, in a 
particular neighborhood, in order to know how to design the best possible policy 
intervention in such a place? 

In general, this is actually very difficult – there is a world of difference be-
tween implementing a standard solution (say in terms of transportation, water, 
electricity) and devising a plan that is at once most helpful to the community it 
serves and realizable in term of affordability, cost recovery and maintenance. Such 
a problem is not necessarily made simpler by common practices of participatory 
planning, such as holding community meetings, unless these can be made to be 
an effective way to acquire the necessary information. 

From the point of view of populations a similar problem arises: How is a 
community, motivated to facilitate municipal work, to know how to collect its 
local information and communicate it in a way that can help planners? 

This issue is a formal problem of coordination and has been dealt with in 
complex systems: The problem boils down to developing the ability to solve local 
problems in a way that integrates bottom-up processes of knowledge and data col-
lection and top-down agency (Brenman and Sanchez, 2012). In other words, it is 
essential that communities to be served can contribute relevant information about 
their priorities in terms of service quality and quantity and financial capacity, and 
that such information is incorporated in the planning of a service by the municipality. 

This poses the challenge of how to share information among very different or-
ganizations. Several experiments, typically in poor slum neighborhoods, have pointed 
to some interesting solutions to this problem that play both to the self-interest of 
communities to be served and to the need of the city for adequate information. 
They have demonstrated that the best way to bridge these different levels organiza-
tion is through data, that often can be collected by communities, but that must be 
verifiable by third parties. This can transform a difficult political confrontation about 
general issues into a simpler negotiation around more objective facts and choices. 

8. A reasoning of this kind has lead to a massive program to replace public toilets by private ones in Pune, India, for 
example. See <shelter-associates.org>.
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New information and communication technologies can also play a role in re-
ducing the difficulties of carrying out these processes. It has now become possible to 
generate census-like surveys according to simple standardized procedures, using paper 
and pen methods or electronic devices, and to collect spatial geo-coded information 
in inexpensive and extremely accurate ways. Because these methods are easy to share 
through new online platforms9 they allow for much lower coordination costs than in 
the past, and the simple tracking of services both from the logistic and socioeconomic 
perspectives. Such methods are becoming more widespread, but are still relatively new. 
Middle-income countries, such as Brazil (Perlman, 2010), have a unique need and op-
portunity to use them to track their large investments in slum/neighborhood upgrades 
and public housing, as well as in more general service delivery contexts.

This brings us then to the issue of learning. Learning is essential because 
it provides the opportunity for planners, governments and researchers to solve 
problems effectively and improve their practices from experience as they go. 
This requires the formalization of interventions in cities in terms of clear, measur-
able outcomes and the ability to collect information along the way. This means 
that knowledge about the nature of urban development in many places can be 
compared and assessed and that the search for possible solutions everywhere can 
tap onto the wealth of knowledge generated in many other places. While learning 
is certainly happening already through myriads of interventions in many places, 
it is very hard to assess each of these policies objectively and for third parties, not 
directly involved in them, to learn from such experiences. Thus, one requires an 
integrated way to share procedures and assessments of urban policies such that the 
sum total of the resulting knowledge actually cumulates (Ostrom, 2009). 

The answer to the first question, at the beginning of this section, now comes 
in to focus. Self-organization mechanisms play out to existing knowledge and 
capacities and to their expansion and improvement. Effective policy that en-
courages self-organization must reinforce positive cycles of circular causality in 
heterogeneous environments, where some solutions to the targeted problems are 
likely to already exist locally somewhere in the city (Perlman, 2010). For example, 
even poor cities have more developed neighborhoods where standards of service 
provision are higher: the question of expanding services may then be primar-
ily about scaling and replicating such local operational capacity more widely.  
Thus, the answer is often to take advantage of socio-economic dynamics that are 
already present in some form in the system, while creating the conditions for such 
capacity to expand and improve, rather than try to develop new tabula rasa solu-
tions. One reason for this is that local solutions are much more likely to be well 
adapted to local contexts and needs than imported recipes. But the ultimate reason 

9. See our current work at: <http://www.santafe.edu/research/informal-settlements>.
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is that the acquisition of information and learning by diverse agents in the city 
is the basis for the fundamental solution of many different problems and should 
itself be the primary target of policy. 

In summary, the practical lessons from regarding cities as complex sys-
tems are that the capacity to both treat simple and complex problems in 
cities must coexist, and the planner must be able to shift between these two 
perspectives as she takes at once a practical approach to particular, clear and 
present problems or a longer, more strategic view towards the development of 
the city over decades.
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CHAPTER 11

COMPLEXITY THEORY IN APPLIED POLICY WORLDWIDE 
Yaneer Bar-Yam1 

1 INTRODUCTION 

Globalization, including transportation, communication, economic and social  
integration, imply that seemingly local policies can have far-reaching consequences. 
Under these conditions what appear to be autonomous decisions by national authori-
ties can have global impacts. How can we identify those impacts? Dependencies in 
networks and the patterns of behavior that are caused by them are the subject of com-
plex systems science (Bar-Yam, 1997; 2002). Complex systems are systems in which 
the collective behavior does not satisfy the central limit theorem, i.e. components 
are neither independent nor fully dependent. One of the central methodologies of 
complex systems science, multiscale analysis (Bar-Yam and Bialik, 2013; Bar-Yam, 
2004; 2002), can be used to identify the complex relationships between the behavior of 
parts and the whole. The overall complexity of a system, or the amount of information 
required to describe a system, can be analyzed as a function of scale. If the parts of a 
system are independent, then the whole system exhibits fine scale random behavior. 
If the parts are correlated, the system has large scale coherent behavior. If the parts are 
interdependent, the system can perform complex behaviors that can be characterized 
to identify key properties. 

Focusing on the largest scale behaviors in relation to finer scale component 
behaviors enables understanding how external forces and internal self-organization 
together comprise the behavior of the system. The impact of policy interventions, 
past and intended, can be characterized. Policies that change a particular behavior 
must have the necessary scale of intervention, while those that change complex 
behaviors must have the necessary ability to respond to different conditions – an 
effective intervention must be at least as complex as the target system. 

The literature on complex systems science has become large with both scien-
tific studies and applications to real world problems.2 The following sections will 
illustrate how complex systems science and multiscale analysis have been used by 
the New England Complex Systems Institute to develop important insights and 
inform policy making decisions in our complex interdependent world. In section 2,  

1. New England Complex Systems Institute 210 Broadway, Cambridge, MA 02139.
2. Complexity Digest. Available at: <http://comdig.unam.mx>.
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we describe the role of spiking food prices in political instability, including the Arab 
Spring. In section 3, we identify U.S. ethanol mandates and commodity market 
deregulation as the primary causes of the rising food prices that sparked unrest. In 
section 4, we outline how we can characterize panic in equity markets and its impact 
on market behavior. Section 5 describes the consequences of interdependence for 
systemic risk and the financial crisis. In section 6, we consider the role of ethnic 
geography on ethnic tension and violence, using peaceful Switzerland as a case 
study to show how peaceful coexistence can be achieved. Finally, in section 7, we 
show how increasing global transportation actually changes the types of diseases 
that are present, leading to vulnerability to extinction through outbreaks of highly 
lethal, rapidly spreading diseases. The Ebola epidemic of 2014 is an example of 
the risks that we are facing. Section 8 provides a brief summary. 

2  THE FOOD CRISES AND POLITICAL INSTABILITY IN NORTH AFRICA AND THE 
MIDDLE EAST 

FIGURE 1
Time dependence of FAO Food Price Index from January 2004 to May 2011

Source: Lagi, Bertrand and Bar-Yam (2011).
Obs.:  Red dashed vertical lines correspond to beginning dates of “food riots” and protests associated with the major recent 

unrest in North Africa and the Middle East. The overall death toll is reported in parentheses. Blue vertical line indicates 
the date, December 13, 2010, on which we submitted a report to the U.S. government, warning of the link between food 
prices, social unrest and political instability. Inset shows FAO Food Price Index from 1990 to 2011.

Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 
the original files provided by the authors for publication.

In 2011 protest movements became pervasive in countries of North Africa 
and the Middle East. These protests were associated with dictatorial regimes and 
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were often considered to be motivated by the failings of the political systems in the 
human rights arena. We demonstrated that food prices are the precipitating condi-
tion for social unrest and identified a specific global food price threshold for unrest. 
We projected that, even without sharp peaks in food prices, within just a few years 
the trend of prices would reach the threshold. This pointed to a danger of spread-
ing global social disruption. Our predictions have been realized (Merchant, 2014). 

Historically, there are ample examples of “food riots” with consequent challenges 
to authority and political change, notably in the food riots and social instability across 
Europe in 1848, which followed widespread droughts. While many other causes of 
social unrest have been identified, food scarcity or high prices often underlie riots, 
unrest and revolutions. Today, many poor countries rely on the global food supply 
system and are thus sensitive to global food prices. This condition is quite different 
from the historical prevalence of subsistence farming in undeveloped countries, 
or even a reliance on local food supplies that could provide a buffer against global 
food supply conditions. It is an example of the increasingly central role that global 
interdependence is playing in human survival and well-being. We can understand 
the appearance of social unrest in 2011 based upon a hypothesis that widespread 
unrest does not arise from long-standing political failings of the system, but rather 
from its sudden perceived failure to provide essential security to the population. In 
food importing countries with widespread poverty, political organizations may be 
perceived to have a critical role in food security. Failure to provide security undermines 
the political system’s very reason for existence. Once this occurs, the resulting protests 
can reflect the wide range of reasons for dissatisfaction, broadening the scope of the 
protest and masking the immediate trigger of the unrest. 

Human beings depend on political systems for collective decision making 
and action and their acquiescence to those systems, if not enthusiasm for them, 
is necessary for the existence of those political systems. The complexity of ad-
dressing security in all its components, from protection against external threats to 
the supply of food and water, is too high for individuals and families to address 
themselves in modern societies (Bar-Yam, 1997). Thus, individuals depend on a 
political system for adequate decision making to guarantee expected standards of 
survival. This is particularly true for marginal populations, i.e. the poor, whose 
alternatives are limited and who live near the boundaries of survival even in good 
times. The dependence of the population on political systems engenders its sup-
port of those systems, even when they are authoritarian or cruel, compromising 
the security of individuals while maintaining the security of the population. 
Indeed, a certain amount of authority is necessary as part of the maintenance of 
order against atypical individuals or groups who would disrupt it (Lagi, Bertrand 
and Bar-Yam, 2011a). When the ability of the political system to provide security 
for the population breaks down, popular support disappears. Conditions of wide-
spread threat to security are particularly present when food is inaccessible to the 
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population at large. In this case, the underlying reason for support of the system 
is eliminated, and at the same time there is “nothing to lose,” i.e. even the threat 
of death does not deter actions that are taken in opposition to the political order. 
Any incident then triggers death-defying protests and other actions that disrupt 
the existing order. Widespread and extreme actions that jeopardize the leadership 
of the political system, or the political system itself, take place. All support for the 
system and allowance for its failings are lost. The loss of support occurs even if 
the political system is not directly responsible for the food security failure, as is the 
case if the primary responsibility lies in the global food supply system. 

The role of global food prices in social unrest can be identified from news 
reports of food riots. Figure 1 shows a measure of global food prices, the UN Food 
and Agriculture Organization (FAO) Food Price Index and the timing of reported 
food riots in recent years. In 2008 more than 60 food riots occurred worldwide 
in 30 different countries, 10 of which resulted in multiple deaths, as shown in 
the figure. After an intermediate drop, even higher prices at the end of 2010 and 
the beginning of 2011 coincided with additional food riots (in Mauritania and 
Uganda), as well as the larger protests and government changes in North Africa 
and the Middle East known as the Arab Spring. There were comparatively fewer 
food riots when the global food prices were lower. Three of these, at the lowest 
global food prices, are associated with specific local factors affecting the availability 
of food: refugee conditions in Burundi in 2005, social and agricultural disruption 
in Somalia and supply disruptions due to floods in India. The latter two occurred 
in 2007 as global food prices began to increase but were not directly associated 
with the global food prices according to news reports. Two additional food riots 
in 2007 and 2010, in Mauritania and Mozambique, occurred when global food 
prices were high, but not at the level of most riots, and thus appear to be early 
events associated with increasing global food prices. 

These observations are consistent with a hypothesis that high global food 
prices are a precipitating condition for social unrest. More specifically, food riots 
occur above a threshold of the FAO price index of 210 (p<10-7, binomial test). 
The observations also suggest that the events in North Africa and the Middle East 
were triggered by food prices. Considering the period of time from January 1990 
to May 2011 (figure 1 inset), the probability that the unrest in North Africa and 
the Middle East occurred by chance at a period of high food prices is p<0.06 
(one sample binomial test). This conservative estimate considers unrest across 
all countries to be a single unique event over this period of just over twenty 
years. If individual country events are considered to be independent, because 
the precipitating conditions must be sufficient for mass violence in each, the 
probability of coincidence is much lower. 

A persistence of global food prices above this food price threshold should lead 
to persistent and increasing global unrest. Given the sharp peaks of food prices we 
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might expect the prices of food to decline shortly (Lagi, Bertrand and Bar-Yam, 
2011a). However, underlying the peaks in figure 1, we see a more gradual, but still 
rapid, increase in food prices during the period starting in 2004. It is reasonable to 
hypothesize that when this underlying trend exceeds the threshold, the security of 
vulnerable populations will be broadly and persistently compromised. Such a threat 
to security should be a key concern to policymakers worldwide. Social unrest and 
political instability of countries can be expected to spread as the impact of loss of 
security persists and becomes pervasive, even though the underlying causes are global 
food prices and are not necessarily due to specific governmental policies. While some 
variation in the form of unrest may occur due to local differences in government, 
desperate populations are likely to resort to violence even in democratic regimes. 
We successfully predicted a breakdown of social order as a result of loss of food 
security, based upon historical events and the expectation that global population 
increases and resource constraints will lead to catastrophe. 

3  THE FOOD CRISES: A QUANTITATIVE MODEL OF FOOD PRICES INCLUDING 
SPECULATORS AND ETHANOL CONVERSION3

In 2007 and early 2008 the prices of grain, including wheat, corn and rice, rose 
by over 100%, then fell back to prior levels by late 2008. A similar rapid increase 
occurred again in the fall of 2010. These dramatic price changes have resulted in 
severe impacts on vulnerable populations worldwide and prompted analyses of 
their causes. Among the causes discussed are: i) weather, particularly droughts in 
Australia; ii) increasing demand for meat in the developing world, especially in 
China and India; iii) biofuels, especially corn ethanol in the United States and 
biodiesel in Europe; iv) speculation by investors seeking financial gain on the 
commodities markets; v) currency exchange rates; and vi) linkage between oil 
and food prices. Many conceptual characterizations and qualitative discussions 
of the causes suggest that multiple factors are important. However, quantitative 
analysis is necessary to determine which factors are actually important and which 
are not. While various efforts have been made, no analysis thus far has provided a 
direct description of the price dynamics. We have produced a quantitative model 
of price dynamics demonstrating that only two factors are central: speculators and 
corn ethanol. We introduced and analyzed a model of financial speculator price 
dynamics describing speculative bubbles and crashes. We further showed that 
the increase in corn to ethanol conversion can account for the underlying price 
trends when we exclude speculative bubbles. A model combining both the shock 
due to increasing ethanol conversion and speculators quantitatively matches food 
price dynamics. Our results imply that changes in commodity market regulations 
that eliminated restrictions on investments and government support for ethanol 
production have played a direct role in global food price increases. 

3. Lagi, Bertrand and Bar-Yam (2011b).
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The analysis of food price changes immediately encounters one of the central 
controversies of economics: whether prices are controlled by actual supply and demand, 
or are affected by speculators who can cause “artificial” bubbles and panics. Commodity 
futures markets were developed to reduce uncertainty by enabling pre-buying or selling 
at known contract prices. In recent years “index funds” that enable investors (speculators) 
to place bets on the increase of commodity prices across a range of commodities were 
made possible by market deregulation. The question arises whether such investors, 
who do not receive delivery of the commodity, can affect market prices. One thread 
in the literature denies the possibility of speculator effects in commodities. Others 
affirm a role for speculators in prices, but there has been no quantitative description of 
their effect. The rapid drop in prices in 2008, consistent with bubble/crash dynamics, 
increased the conviction that speculation is playing an important role. Still, previous 
analyses have been limited by an inability to directly model the role of speculators. 
This limitation has also been present in historical studies of commodity prices. For 
example, analysis of sharp commodity price increases in the 1970s found that they 
could not be due to actual supply and demand. The discrepancy between actual 
prices and the expected price changes due to consumption and production was 
attributed to speculation, but no quantitative model was provided for its effects. 
More recently, statistical (Granger) causality tests were used to determine whether 
any part of the price increases in 2008 could be attributed to speculative activity. The 
results found statistical support for a causal effect, but the magnitude of the effect 
cannot be estimated using this technique. 

We developed a model relating speculation to prices and analyzed its price 
dynamics. The model describes trend-following behavior and can directly manifest 
bubble and crash dynamics. In our model, when prices increase, trend following 
leads speculators to buy, contributing to further price increases. If prices decrease, 
the speculators sell, contributing to further price declines. Speculator trading is 
added to a dynamic model of supply and demand equilibrium. If knowledgeable 
investors believe supply and demand do not match (as inferred from available 
information), there is a countering (Walrasian) force toward equilibrium prices. 
When prices are above equilibrium these investors sell, and when below these investors 
buy. The interplay of trend following and equilibrium restoring transactions leads 
to a variety of behaviors depending on their relative and absolute strengths. 
For a sufficiently large speculator volume, trend following causes prices to depart 
significantly from equilibrium. Even so, as prices further depart from equilibrium 
the supply and demand restoring forces strengthen and eventually reverse the trend, 
which is then accelerated by the trend following back toward and even beyond the 
equilibrium price. The resulting oscillatory behavior, consisting of departures from 
equilibrium values and their restoration, matches the phenomenon of bubble and 
crash dynamics. The model clarifies that there are regimes in which speculators have 
distinct effects on the market behavior, including both stabilizing and destabilizing 
the supply and demand equilibrium. 
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FIGURE 2
Food prices and model simulations (2004-2011)

Source: Lagi, Bertrand and Bar-Yam (2011).
Obs.:  The FAO Food Price Index (blue solid line), the ethanol supply and demand model (blue dashed line) – where dominant 

supply shocks are due to the conversion of corn to ethanol so that price changes are proportional to ethanol production – and 
the results of the speculator and ethanol model (red dotted line) – which adds speculator trend following and switching 
among investment markets, including commodities, equities and bonds.

Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 
the original files provided by the authors for publication.

Aside from the high price peaks, the underlying trends of increasing food 
prices match the increases in the rate of ethanol conversion. We constructed a 
dominant supply shock model of the impact of ethanol conversion on prices, 
accurately matching underlying price trends and demonstrating that the supply 
and demand equilibrium prices would be relatively constant without the increase 
in corn to ethanol conversion. We then combined the effects of speculators and 
corn to ethanol conversion into a single model with remarkably good quantitative 
agreement with the food price dynamics. The unified model also captures the way 
speculators shift between equities and commodities for maximum projected gains. 
Final results are shown in figure 2. 

4  PREDICTING ECONOMIC MARKET CRISES USING MEASURES OF 
COLLECTIVE PANIC4

In sociology (Wolfenstein, 1957; Smelser, 1963; Quarantelli, 2001; Mawson, 
2005), panic has been defined as a collective flight from a real or imagined threat. 
In economics, bank runs occur at least in part because of the risk to the individual 

4. Harmon et al. (2011).
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from the bank run itself – and may be triggered by predisposing conditions, external 
(perhaps catastrophic) events or even randomly. Although empirical studies of 
panic are difficult, efforts to distinguish endogenous (self-generated) and exogenous 
market panics from oscillations of market indices have met with some success, 
though the conclusions have been debated. Market behavior is often considered 
to reflect external economic news, though empirical evidence has been presented to 
challenge this connection. Efforts to characterize events range from the Hindenburg 
Omen to microdynamic models and to the demonstration that market behaviors 
are invariant across many scales. Panic can be considered a critical transition for 
which early warnings are being sought. The “collective flight” aspect of such a 
transition should be revealed in measures of mimicry that is considered central 
to panic. We used co-movement data to evaluate whether the recent market crisis 
and earlier one-day crashes are internally generated or externally triggered. Based 
upon a hypothesis about mimicry, we constructed a model that includes both 
mimicry and external factors and tested it empirically against the daily extent of 
co-movement. Our objective was to determine the relative importance of internal 
and external causes, and, where internal causes are important, to find a signature 
of self-induced panic which can be used to predict panic.

The literature generally uses volatility and the correlation between stock prices 
to characterize risk. These measures are sensitive to the magnitude of price move-
ment and therefore increase dramatically when there is a market crash. Studies 
find that, on average, volatility increases following price declines, but do not show 
higher volatility is followed by price declines. We are interested in the extent to 
which stocks move together. The extent of such co-movement may be large even 
when price movements are small. 

FIGURE 3 
The co-movement of stocks

Source: Harmon et al. (2011).
Obs.:  Plotted is the fraction of trading days during the year (f, vertical axis) in which a certain fraction of stocks (k/N, horizontal 

axis) moved up. Empirical data are shown (solid lines) along with one-parameter theoretical fits (dashed lines) for the 
years indicated. Three years are omitted that do not differ much from the year immediately preceding and following them. 
Right panel combines all of the years shown. Stocks included are from the Russell 3000 that trade on the NYSE or Nasdaq. 
Curves are kernel density estimates with Gaussian kernels. Fits pass the X 2 goodness-of-fit test (the deviation of the data 
from the theoretical distribution is not statistically significant at the 25% level).
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Indeed, even when price changes are small, we expect that co-movement 
itself is the collective behavior that is characteristic of panic or panicky behavior 
that precedes a panic. Thus, rather than measuring volatility or correlation, we 
measured the fraction of stocks that move in the same direction. We found that 
this increases well before the market crash, and there is significant advance warning 
to provide a clear indicator of an impending crash. The existence of the indicator 
shows that market crashes are preceded by nervousness that gives rise to following 
behavior – increased collective behavior prior to a panic. 

We consider the “co-movement” of stocks over time by plotting the number 
of days in a year that a particular fraction of the market moves up (the complement 
moving down). Intuitively, if substantially more or less than 50% of the market 
moves in the same direction, this represents co-movement. As shown in figure 3, 
the results indicate that in 2000, the curve is peaked near 1/2, so that approximately 
50% of stocks are moving up or down on any given day. Over the decade of the 
2000s, however, the curve became progressively flatter – in 2008 the likelihood 
of any fraction is almost the same for any value. The probability that a large 
fraction of the market moves in the same direction, either up or down, on any 
given day, increased dramatically. Such high levels of co-movement may manifest 
the collective behavior we are searching for. 

To quantitatively describe co-movement, we start from a behavioral economics 
model of a single stock that describes trend-following “bandwagons.” It has 
been shown that investors can benefit from trend-following. Moreover, there is no 
need for the change to be based upon fundamental value for it to provide benefit 
to the investors. When individuals observe that a stock increases (decreases) in 
value, and choose to buy (sell) in anticipation of future increases (decreases), this 
self-consistently generates the desired direction of change. Such a “bandwagon” 
effect can undermine the assumptions of market equilibrium. We hypothesized 
that this trend-following mimicry across multiple stocks can cause a marketwide 
panic, and we built a model to capture its signature. We assume that investors in 
a stock observe three things, the direction of their stock, external indicators of the 
economy and the direction of other stocks. The last of these is the potential origin 
of self-induced, market-wide panic. 

To model the co-movement fraction, we represent only whether a stock value 
rises or falls. This enables us to directly characterize the degree to which stocks 
move together and not how far they move at any particular time. Stocks are 
represented by nodes of a network and influences between stocks by links between 
nodes, an appropriate representation for market analysis. We consider both fully 
and partly connected networks. Every day, each of the N nodes is labeled by a sign 
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(+/–) indicating the daily return of the stock. Market dynamics are simulated by 
randomly selecting nodes which maintain their current sign or randomly copy 
the sign of one of their connected neighbors. To represent external influences, we 
add nodes that influence others, but are not themselves influenced, i.e. “fixed” 
nodes. The number of fixed nodes influencing in a positive direction is U and 
the number influencing in a negative direction is D. The effective strength of the 
positive and negative external influences is given by the number of these nodes. 
External influences of opposite types do not cancel; instead larger U and D reflect 
increasing probability that external influences determine the returns of a stock 
independent of the changes in other stocks. This is the conventional view that 
news is responsible for the market behavior. Good news would be represented by 
U greater than D, bad news by D greater than U. 

FIGURE 4
Model parameter – top panel (1986-2010)

Source: Harmon et al. (2011).
Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 

the original files provided by the authors for publication.
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We have previously proposed this model as a widely applicable theory of 
collective behavior of complex systems. Successful matching to data will be a 
confirmation of this theory. It has also been previously identified as a model 
of conformity and non-conformity in social systems, and it has been studied 
in application to evolutionary dynamics. If we consider a more complete 
model of influences, in which investors of one stock only consider specific 
other stocks as guides, we have a partly connected network. We have studied 
the dynamics of such networks analytically and through simulations, and the 
primary modification from fully-connected networks is to amplify the effect of 
the external influences. As the links within the network are fewer, the network 
can be approximated by a more weakly coupled, fully connected network, 
with a weakening factor given by the average number of links compared to the 
number of possible links. Similarly, if only a subset of the external influences 
are considered relevant for the return of a specific stock, the relative strength of 
the external influences can be replaced by weaker, uniform external influences. 
Otherwise, for many cases, the shape of the distribution is not significantly 
affected. The model thus measures the relative strengths of the internal and 
external influences rather than the absolute strength of either. The models 
robustness indicates a universality across a wide range of network topologies, 
suggesting applicability to real world systems. 

Compared with recent empirical market data in figure 3, the model fits 
remarkably well. A Gaussian model fits the early years, less well in the final years, 
and does not fit 2008. The good agreement of our model is obtained with 
equal up and down influences, U = D, which is the only adjustable parameter. 
When U =1, as was the case in 2008, a transition to crisis can be expected. 
Figure 4 shows the one-day crashes leading up to crisis. 

5 NETWORKS OF ECONOMIC MARKET INTERDEPENDENCE AND SYSTEMIC RISK5 

The global economy is a highly complex system whose dynamics reflect the 
connections among its multiple components, as found in other networked systems. 
A common property of complex systems is the risk of cascading failures, where a 
failure of one node causes similar failures in linked nodes that propagate throughout 
the system, creating large scale collective failures. Economic risks associated 
with cascading financial losses are manifest in the recent economic crisis and the 
earlier Asian economic crisis, but are not considered in conventional measures of 
investment risk. 

5. Harmon, Stacey and Bar-Yam, 2010.
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FIGURE 5
Network of correlations of market daily returns for years as indicated (2003-2008)

Source: Harmon et al. (2010).
Obs.:  Dots represent individual corporations colored according to economic sector: technology (blue), basic materials including 

oil companies (light grey) and others (dark grey), and finance including real-estate (dark green) and other (light green). 
Links shown are the highest 6.25% of Pearson correlations of log (p(t )/p(t – 1)) time series, where p(t ) are adjusted 
daily closing prices of firms, in each year. Larger dots are spot oil prices at Brent, UK and Cushing, OK (black) and the 
price of ten year treasury bonds (green).

Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 
the original files provided by the authors for publication.

A central question is the role that complex systems science can play in informing 
regulatory policy that preserves the ability of markets to promote economic growth 
through freedom of investment, while protecting the public interest by preventing 
financial meltdowns due to systemic risk. 

Characterizing the network of economic dependencies and its relationship 
to risk is key. The dependencies among organizations involve large numbers 
of factors, including competition for capital and labor, supply and demand 
relationships among organizations that deliver common end products or rely 
upon common inputs, natural disasters and climate conditions, acts of war and 
peace, changes of government or its policies including economic policy such 
as interest rates, and geographic association. Quantifying such dependencies, 
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e.g., through Leontief models, is difficult because many of the dependencies are 
non-linear and driven by socio-economic events not included in these models. 
Also, behavioral economics suggests that under some conditions collective 
investor behavior, e.g., from perceptions of value, may have significant effects. 
Reflecting both fundamental and behavioral interactions, correlations in market 
value of firms can serve as a measure of the perceived aggregate financial 
dependence and quantify “herding” behavior in collective fluctuations. Moreover, 
price correlations are directly relevant to measures of risk. 

We constructed a network of dependencies among 500 corporations having 
the largest stock trading volume, augmented with several economic indices 
(oil prices and bond prices reflecting interest rates). We formed a network where links 
are present for the highest correlations in daily returns in each year from 2003 to 
2008. In order to display the effect of changes over time, we constructed a single 
network over all years, with each corporation in a particular year represented 
by a node linked to itself in the previous and next year. Each year is separately 
shown in figure 5. We included only economic sectors that are significantly 
self-correlated, as the larger network constructed from the entire market obscures key 
insights. Previous correlational analyses have described how correlations may arise 
from external forces across the market – arbitrage pricing theory (Chamberlain 
and Rothschild, 1983; Ross, 1976) – or used correlations to characterize sectors 
and market crashes – econophysics (Mantegna and Stanley, 2000; Onnela et al., 
2003). This work lacks an understanding of the economic origins of changes in 
dependencies and their policy implications. We examine variations of within-and 
between-sector correlations, arising from non-linear effects, for information about 
changes in economic conditions prior to and during the economic crisis. 

The study of network community properties often requires careful analysis. 
In our case, the observations we describe are manifest visually and were also tested 
statistically. In particular, apparent trends were tested using the t-statistic of dif-
ferences in link densities within and between sectors (merging), or the minimum 
of this statistic between one sector and each of the others (self-clustering). Sectors 
are statistically linked (unlinked) to an index if the t -statistic comparing links to 
the index relative to the link density of the graph is above 4 (below 2). 

Limiting investments (i.e., limiting capital-to-asset ratios) in order to moderate risk 
directly influences opportunities for growth. However, our results also point to a dif-
ferent strategy, which recognizes that financial institutions cross-link otherwise weakly 
correlated economic sectors. The key is that economic couplings among companies 
propagate the effect of failures. If economic entity G fails in a financial obligation to 
entity H, the impact on H may affect other entities J and K, that are linked to H, even 
if their activity has nothing to do with G. Conversely, while a small capital-to-asset 
ratio may be risky for a particular institution, if the investments are within a particular 
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economic sector the failure of that institution is unlikely to cause economy-wide repercus-
sions. Thus, segregating financial relationships, particularly among activities that are 
not otherwise related, or are weakly related, reduces systemic risk. 

The idea that separations between components of the financial sector contrib-
ute to economic stability was a key aspect of legislation to stabilize the Ameri-
can banking system after the market crash of 1929. The Glass-Steagall Act of 
1933 separated investment banking from consumer (retail) banking to prevent 
the fluctuations from other parts of the economy affecting consumer banking. 
This Act was progressively eroded until its repeal in 1999. Other historical forms of 
separation imposed by law or by practice included the separation of savings and loan 
associations and insurance providers from commercial and investment banking, as 
well as geographic separation by state. While many effects contribute to correla-
tions in economic activity, nonlinearities associated with investment during market 
declines support the historical intuition that regulating these dependencies is more 
critical than regulating those arising from, e.g., supply chains. One of the arguments 
in favor of deregulation was that banks, by investing in diverse sectors, would have 
greater stability. Our analysis implies that the investment across economic sectors 
itself creates increased cross-linking of otherwise much more weakly coupled parts 
of the economy, causing dependencies that increase, rather than decrease, risk. Quite 
generally, separation prevents failure propagation and connections increase risks of 
global crises. Subdivision is a universal property of complex systems. An increase in 
separation of financial services is likely to entail costs, and the cost-benefit tradeoffs 
of imposing particular types of separation are yet to be determined. 

In summary, complex systems science focuses on the role of interdependence, 
a key aspect of the dynamical behavior of economic crises as well as the evaluation 
of risks in both “normal” and rare conditions. We have analyzed the dynamics of 
correlational dependencies in rising and falling markets. The impact on the economic 
system of repeals of Depression-era government policies is becoming increasingly 
manifest through scientific analysis of the current economic crisis. This study suggests 
that erosion of the Glass-Steagall Act, the consolidation of banking functions and 
cross sector investments eliminated “firewalls” that could have prevented the housing 
sector decline from triggering a wider financial and economic crisis. 

6  GOOD FENCES: THE IMPORTANCE OF SETTING BOUNDARIES FOR 
PEACEFUL COEXISTENCE6

Efforts to resolve conflicts and achieve sustained peace are guided by perspectives 
about how conflict and peace are based in interpersonal and intergroup relationships, 
as well as historical, social, economic and political contexts. We have introduced 

6. Rutherford et al., 2014.
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a complex systems theory of ethnic conflict that describes conflicts in areas of the 
former Yugoslavia and India with high accuracy. In this theory, details of history 
and social and economic conditions are not the primary determinants of peace or 
conflict. Instead, the geographic arrangement of populations is key. Significantly, 
our theory points to two distinct conditions that are conducive to peace – well 
mixed and well separated populations. The first corresponds to the most commonly 
striven for peaceful framework: a well integrated society. The second corresponds 
to spatial separation, partition and self determination – a historically used but 
often reviled approach. Here we consider a more subtle third approach, that of 
within-state boundaries in which intergroup cooperation and autonomy are both 
present. The success of this approach is of particular importance as the world 
becomes more connected through international cooperation. As illustrated by the 
European Union, the role of borders as boundaries is changing. 

FIGURE 6 
Maps of Switzerland showing the 2000 census proportion of linguistic groups and 
catholics and protestants

Source: Rutherford et al. (2014).
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In order to evaluate the role of within-state boundaries in peace, we considered 
the coexistence of groups in Switzerland. Switzerland is known as a country of 
great stability, without major internal conflict despite being home to multiple 
languages and religions. Switzerland is not a well-mixed society, it is heterogeneous 
geographically in both language and religion (figure 6). The alpine topography and 
the federal system of strong cantons have been noted as relevant to coexistence; 
their importance can be seen in Napoleons statement, after the failure of his cen-
tralized Helvetic Republic, that nature had made Switzerland a federation. 
But the existence of both alpine and non-alpine boundaries between groups and the 
presence of multiple languages and religions within individual cantons suggest 
partition is not essential for peaceful coexistence in Switzerland. In identifying 
the causes of peace, the literature has focused on socio-economic and political 
conditions. These include: a long tradition of mediation and accommodation; 
social cleavages that cross-cut the population rather than coincide with each other; 
unwritten and written rights of proportionality (fairness) and cultural protectionism; 
a federal system with strong sub-national units; a civil society that fosters unity; 
direct democracy through frequent referenda; small size; historical time difference 
between cleavages in language and religion; neutrality in international warfare; 
and economic prosperity (Lijphart, 1977; Schmid, 1981; Martin, 1931; Steiner, 
1974; Glass, 1977; Linder, 2010; Head, 2002; McRae, 1983). Geography plays an 
unclear, presumably supporting, role in these frameworks. The analysis of coexistence 
in Switzerland is also part of a broader debate about whether social and geographical 
aspects of federalism promote peace or conflict (Christin and Hug, 2006). 

We analyzed the geographical distribution of groups in Switzerland based solely 
upon the hypothesis that spatial patterns formed by ethnic groups are predictive of 
unrest and violence among the groups. The model also allows that topographic or 
political boundaries may serve as separations to promote peace. We test the ability 
of the theory to predict peaceful coexistence in the context of internal country 
boundaries in Switzerland. Where explicit boundaries do not exist, such as in 
mixed cantons where alpine boundaries are absent, violence might be expected, 
and the results of the model in these areas serve as a particularly stringent test of 
the theory. In most such cases, violence is not predicted, consistent with what is 
found. In one area, a significant level of violence is predicted, and in fact violence 
is actually observed. The analysis sheds light on the example of Switzerland as a 
model for peaceful coexistence. The precision of the results provides some assurance 
of the usefulness of the theory in planning interventions that might promote peace 
in many areas of the world. 

We briefly summarize five categories of distinct successful comparisons 
between model predictions and the observed data that are contained in the results. 
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Our examination of linguistic and religious groups in Switzerland included 
cases where violence is predicted without the presence of boundaries, but is mitigated 
by the consideration of topographical and political boundaries appropriate to 
linguistic and religious groups, respectively.

1) Topographical boundaries reduced violence between linguistic groups. 
This occurred along: i) Alpine boundaries of the Swiss Alps between 
German-speaking and Italian-speaking populations; ii) Alpine boundaries 
between German-speaking and French-speaking populations; and 
iii) Jura range boundaries between German-speaking and French-
speaking populations.

2) Political boundaries reduced violence between religious groups. This 
is the case both for i) canton boundaries and for ii) circle boundaries 
in the canton of Graubunden. Our analysis also identified locations in 
which our model does not predict violence despite linguistic or religious 
heterogeneity and no explicit boundaries.

3) The straightness of the boundary prevents violence between linguistic 
groups in Fribourg/Freiburg.

4) Isolation of a Protestant population on an appendage from the Catholic 
majority prevents violence in Fribourg/Freiburg. We also identified one 
area at the highest level of calculated residual propensity to violence and 
it corresponds to an area of unresolved historical conflict.

5) The northeastern part of the canton of Bern is the location of both the 
highest prediction of propensity to violence, and a real-world history 
of intergroup tension. The unique condition of the conflict in this part 
of Switzerland and its correspondence to the prediction by the model 
provides additional confirmation of the model.

Our research has consistently identified improperly aligned boundaries as a 
key underlying cause of localized ethnic violence. Using policy to establish clear 
borders and regional autonomy offers an avenue to ending sectarian conflict. 

7  LONG-RANGE INTERACTION AND EVOLUTIONARY STABILITY IN A 
PREDATOR-PREY SYSTEM7

We have modeled the behavior of predators and pathogens in spatially extended 
evolutionary models. Our results suggest that such models are relevant to studies 
of systems with long-range interactions. There is a transition that occurs from 
coexistence to global extinction. This transition can be sudden and can occur 

7. Rauch and Bar-Yam, 2006.
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even in systems that already have a significant density of long-range interactions. 
Thus, one should not conclude that a system that already has long-range mixing 
will be stable to additional mixing. 

FIGURE 7
Evolutionary stability on a two-dimensional Small-World network

Source: Rauch e Bar-Yam (2006).
Obs.:  The probability pe that predator and prey coexist for 100,000 generations, as a function of p, averaged over 11 runs, for 

g = 0.05 (circles) and g = 0.2 (squares) (depletion rate v = 0.2, lattice size L = 250). Note the logarithmic scale of p. 
We identify the point of transition to instability pc as the density such that for all p>pc, pe<1 / 2. For comparison, the average 
path length l (p) between nodes is plotted as a fraction of l (0) (dashed line, same scale). For comparison, the dotted 
line shows l (1) / l (0), that is, the value for a random network.

Publisher’s note:  image whose layout and texts could not be formatted and proofread due to the technical characteristics of 
the original files provided by the authors for publication.

According to our simulations, when global mixing increases beyond the critical 
density, overexploiting predator or pathogen strains escape local extinction and 
replace sustainable strains globally, leading to their own extinction and decimation 
of the prey population. Our results apply directly to simple evolutionary models, 
but similar considerations apply to the phenomena of emergent diseases (such as 
Ebola, SARS and Avian Flu), most of which evolve on short time scales, and may 
also apply to invasive species, which have been of widespread ecological concern. 
While the demonstration that some long-range connections do not always 
destabilize evolving systems provides some reassurance, the danger from additional 
connections suggests that a system may cross the transition and become unstable 
with little warning as global mixing increases in frequency (see figure 7). 
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Our results predicted the outbreak of Ebola in West Africa and suggest the 
need for concerted response, including medical developments and, perhaps, societal 
changes. Due to increasing global transportation, human beings appear to have 
crossed the transition to large pandemics. Preventive actions should be taken that 
either limit global transportation or its impact. 

8 CONCLUSION 

We have demonstrated that policy decisions made by governments and regulatory 
bodies can have far-reaching consequences in the modern world. An understanding 
of complex systems methods and concepts, especially multiscale analysis, network 
structures and nonlinear dynamics, enables analysis that can inform effective real 
world decision making. One nation’s energy subsidies can cause global food prices 
to spike, setting off political unrest halfway around the world. Financial markets 
that become too interdependent have a high risk of cascades, and collective panics 
cause global crises. Ethnic violence can be largely predicted from ethnic spatial 
geography and alleviated by policies that allow for local autonomy. Global 
connectedness promotes the existence of virulent diseases that can cause devastating 
global pandemics. Complex systems science has a proven record of predicting and 
explaining the causes of global phenomena. Policy makers and regulators who seek 
to achieve specific objectives or to more generally improve economic and social 
systems can benefit from the insights of targeted studies. 
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CHAPTER 12

COMPLEX SYSTEMS MODELLING IN BRAZILIAN PUBLIC POLICIES
Bernardo Mueller1

1 INTRODUCTION

The purpose of this chapter is to assess the use of complex systems modelling 
and techniques in public policies in Brazil. Although the interest in complex 
systems has grown tremendously in the past two decades, the actual application 
of this approach by governments in public policies is still relatively rare. Brazil 
is no exception: I have not found any example of an explicit use of complex 
system thinking in any public policy in this country. This absence is likely due 
to the relatively early stage of the diffusion of these ideas, as complexity is still a 
young science which has only recently started to gain more widespread exposure. 
In order to assess the potential for using complex systems modelling in public 
policy in Brazil this paper investigates where research is being done on these 
topics in Brazilian universities and research institutes. It is probable that many 
of these endeavors will be the seeds that may eventually lead to pioneering 
applications in specific areas of public policy. This research has incentives to 
search for those areas where the need for innovative ideas is more salient and 
where complex systems approaches have the greatest potential.2 In addition, the 
paper considers which areas of public policies in Brazil could, given their nature 
and characteristics, most benefit from complex systems modelling. Together, this 
mapping of the early research and of the potential policy areas should indicate 
where we should expect practical uses of complex systems approaches to eventually 
emerge in Brazil.

In order to do this section 2 first describes the model of public policies 
that currently dominates in Brazil. If complex systems are to be introduced 
in the policy realm this is the dominant scenario this approach will be faced 
with. Section 3 then briefly discusses why this dominant style of policy-
making often fails in situations that have characteristics of complex systems. 
Section 4 illustrates the kind of problems that tend to arise when policy areas 

1. Dept. of Economics, University of Brasilia.
2. The choice of research area is also determined by what is available in the literature worldwide, so that some research 
in Brazil may simply be following what is being done elsewhere rather than trying to address the most pressing problems 
in the country.
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with complex characteristics are treated with traditional policy instruments 
that presuppose perfect control and management. This is done by giving the 
example of one concrete policy that has failed and another that has succeeded 
in Brazil, respectively, land reform and conditional cash transfers. Section 5 
then presents the list of areas where research is currently being done on the 
practical application of complex systems to public policy in Brazil. The policy 
areas that have not been the focus of any complex system research but where 
this approach offers some promise are discussed in section 6. Finally, section 
7 considers the prospects for the future.

2 THE NATURE OF PUBLIC POLICIES IN BRAZIL

In order to understand the potential of complex systems modelling for 
public policies in Brazil, it is necessary to first consider the nature of the 
policymaking process that is dominant in the country today. Every country 
has a policymaking process that is shaped by political institutions that 
influence who are the relevant actors, what are their powers, what are their 
preferences and how they interact. In this section I start by briefly describing 
the main political institutions that shape the policymaking process in Brazil. 
I then describe the pervading public policy model that determines 
how public policies are created, implemented and evaluated. It will be seen 
that this model is quite antithetical to the notion of complex systems and 
how much they can be controlled, which suggests that the introduction of 
complex systems thinking will necessarily be a strong departure from the 
current practice.

The key political institution that determines the nature of policymaking 
in Brazil is the high level of presidential power. The Executive has a series 
of proactive and reactive powers, as well as a series of political instruments 
and resources to acquire support in Congress and other arenas. This allows it 
to set the political agenda and in normal circumstances approve most of its 
proposals (Alston et al. 2008). Although electoral rules lead to a party system 
composed of multiple parties, the Executive is generally able to put together 
a majority coalition that grants it high levels of governability. While this 
implies that the Executive has preponderant influence over public policy, a 
series of checks and balances seeks to assure that this power is not abused. 
These checks and balances come in the form of, among others, an independent 
judiciary, a free and combative press, independent public prosecutors, a 
professionalized bureaucracy (for Latin American standards), a diverse and 
vibrant civil society and a highly hardwired budget that predetermines over 
90% of expenditures. The upshot of strong presidential powers together with 
strong checks and balances has been high levels of governability with ever 
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strengthening governance and rule of law. This has led to unprecedented 
reductions of inequality and poverty and reasonably disciplined fiscal and 
monetary policy that have kept inflation under control since 1995. This state 
of affairs, however, has not yet translated into exceptional levels of economic 
growth – Brazil´s performance has been mediocre compared to most other 
Latin American countries.

Alston et al. (2014) interpret the overarching beliefs that pervade Brazilian 
society since 1995 as a belief in fiscally sound social inclusion. This belief emerged 
as a reaction to the perverse experiences with authoritarianism (1964-1985) and 
hyperinflation (1985-1994). Since 1995 this belief has been constraining and 
shaping what can be done in the policy realm independent of which party is in 
power. This means that public policy focuses on inclusion, equality and participation, 
but always subject to a hard budget constraint. Social groups are given varied 
institutionalized points of entry to participate in the process of policymaking and 
implementation, such as through councils, partnerships and other participatory 
institutions (Pires, 2011). States and municipalities play important roles in some 
policy areas, such as education and health, but under the shadow of the Executive 
that centralizes much of the decision making and constrains these subnational units 
through laws, such as the Fiscal Responsibility Law, and several forms of auditing 
and regulation. Both the content and form of policy in Brazil must be compatible 
with the belief in sustainable social inclusion and the institutions to which it has 
given rise. Any prospect for the use of complex systems approach will have to be 
compatible with these beliefs and institutions.

Taking the beliefs and institutions as given, what is the specific model of 
public policies that is dominant in Brazil today? Like much of the world Brazil 
was highly influenced by the rise of New Public Management in the early 1990s. 
A large reform in 1995 sought to modernize the public administration system and 
make it more efficient, flexible and streamlined, reducing the role of the state in 
implementing policy (Abrúcio, 2007). This new approach to public policy sought 
to break away from the centralized, hierarchical, rigid and non-responsive style 
that pervaded most public bureaucracies by incorporating many characteristics of 
private firms, such as competition, incentives, decentralization, and focus on the 
clients and its core competencies. In particular, this type of public management puts 
great emphasis on setting targets, planning, regulating (as opposed to command-
and-control), collecting data and being evidence-based, result driven and focused 
on efficiency. Whereas these means can often be valuable and effective, the way 
in which they have been conceived and interpreted often presuppose unrealistic 
capacity to obtain and process information and are overly optimistic regarding 
the ability to control, intervene and fine-tune the policy and its consequences. 
When the policy area has the nature and characteristics of a complex system, 
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this level of apprehension and control are often unlikely given the uncertainty 
and limited information inherent in the process. The next section discusses this 
fundamental incompatibility between this style of public policy management in 
domains that have complex characteristics. The subsequent section then gives 
some concrete examples.

3 PUBLIC POLICIES IN COMPLEX SCENARIOS

Because complex systems are composed of large numbers of heterogeneous agents 
acting locally by following simple rules under limited rationality, without central 
control and in constant adaptation and learning there is a basic contradiction 
with the standard notion of policy that presumes that optimal planning decisions 
can be made by considering all options ex-ante, weighing costs and benefits, and 
factoring in uncertainty by assigning probabilities to every possible contingency. 
Further, the traditional approach to policymaking requires setting specific and 
quantifiable targets and objectives, presupposing a very tight level of control at 
each stage of formulation and implementation, with constant feedback allowing 
for fine-tuning to correct any deviation from the predetermined path. Although 
some policy domains have characteristics that are amiable to such an approach, 
the same is not valid for domains that have the characteristics of complex systems. 
Even these complex policy areas can often follow dynamics with stable equilibria 
and predictable behavior, but they are subject to phase transitions where they 
acquire periodic, complex or chaotic behavior, where there is no telling what the 
system will do, except by letting it run. That is, the results of public policies are 
often emergent phenomena that are surprising and unexpected, and cannot be 
anticipated or prescribed. Much of the failure of public policies, both in Brazil 
and elsewhere, is due to the reductionist attempt to deal with complex phenomena 
using assumptions and instruments that are only appropriate for non-complex, 
albeit complicated, problems. 

The existence of this fundamental contradiction does not imply that the 
policymaker is impotent to seek objectives and try to influence the system. Although 
it might not be possible to assure specific targets, predetermining exactly how they 
will be reached, complex systems can be influenced to lead to results that have the 
properties that the policymaker may prefer. According to Page (2013),3 “an actor 
in a complex system controls almost nothing, but influences almost everything.” 
By affecting the properties of the system, such as interdependence, diversity, 
connectedness and adaptability, the system can be made to have the desired properties. 
Interventions can thus be achieved even though specific results may not.

3. Scott Page. 2013. Understanding Complexity. The Great Courses, lecture 12. Available at: <http://www.thegreatcourses.
com/tgc/courses/course_detail.aspx?cid=5181>. 
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What is needed, therefore, to deal with complex systems is a revision of 
the assumptions and expectations of what it means to do public policies in such 
circumstances. This involves a new understanding of what is possible and of how 
results can be judged. Because complex systems follow an evolutionary logic, they 
naturally involve much error, failure, waste and redundancies, and rarely reach 
globally optimal solutions. These characteristics do not fit with the traditional 
notion of public policies, where there is an expectation of absolute control and 
efficiency. In dealing with complex systems it is not possible to simply ignore these 
characteristics and try to suppress them. Instead it is necessary to recognize them 
and take them into account when creating the policies. Perhaps one of the main 
impediments to the adoption of complex systems modelling in the public policies of 
countries like Brazil will be the need for the culture change in the understanding 
of the nature of what can and cannot be done in public policies in complex domains.

4 THE DIFFICULTY OF TRADITIONAL PUBLIC POLICY IN A COMPLEX DOMAIN 

In order to illustrate how an approach to public policy that relies on control, 
prediction and high levels of information can be prone to failure when that policy 
has the characteristics of a complex system this section briefly describes the 
attempts at land reform in Brazil. Subsequently, a comparison will be made with 
a distinctively more successful policy area: conditional cash transfers.

Brazil has historically been one of the countries with the highest level of land 
ownership concentration in the world. The perverse social and economic conse-
quences of this state of affairs have been recognized as early as the 19th century and 
land reform objectives were already enshrined in the 1946 constitution. Because land 
reform naturally entails redistribution it is a controversial and ideologically charged 
issue that has always featured prominently in Brazilian political debate. The military 
coup of 1964 was partly prompted by rural conflict and land reform was the flagship 
policy of the new democratic regime that took its place in 1985. Whereas the military 
sought to implement a land reform in order to achieve greater productive efficiency, 
the new democratic republic sought to promote social justice by transferring land to 
the masses of landless peasants. Neither regime, however, nor any government that 
has come to power since, has succeeded in implementing a successful land reform, 
despite the fact that all have tried and invested vast resources in doing so. Since the 
early 1990s organized groups of landless peasants (in particular the MST – Landless 
Peasant Movement) have devised means of pressuring the government to expedite 
the process of reform by invading unproductive land and occupying it until the 
government effects the expropriation and transfer. This strategy works not by force, 
but rather because the electorate approves of land reform and the commotion created 
by the invasions, which often involve conflict and violence, are broadcast nationwide by 
the press and embarrass the federal government which is rightly seen as not fulfilling its 
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duty to undertake the reform. As a result of this pressure, an area equivalent to France, 
Portugal, Austria and Ireland has been redistributed to over one million families of 
landless peasants in the past two decades.

With such staggering numbers, why is it that I am claiming that land reform 
has been a failed policy? And what is it about this policy area that gives it the 
characteristics of a complex system? Regarding the first question, it has to be noted 
that the ultimate objective is not simply to redistribute land from unproductive 
uses to landless peasants, but rather to do so in such a way that creates a viable 
class of family farms that are able to insert themselves in the market and become 
self-sustaining. This objective has not been achieved. Most settlement projects 
through which land has been redistributed have failed at becoming emancipated 
from government subsidies, with the original beneficiaries frequently selling or 
abandoning their plots, often leading to reconsolidation of the farms to more viable 
minimum sizes under the ownership of larger landowners with more wealth and 
experience. Despite the huge area of land that has been redistributed in the past 
decades by land reform programs, today more than half of agricultural production 
in Brazil is undertaken by an impressive 0.62% of the producers (Alves and 
Dias, 2010). Clearly this is not indicative of a successful policy that was meant to 
prompt a less unequal rural sector.

So what went wrong with this process of public policy? Although some of 
the blame of the failure of the early attempts at reform (pre-1995) can be traced 
to the ability of landowning interest groups to block policies contrary to their 
interests, the same cannot be said of the efforts since 1995 when the government 
was fully invested in seeing the reforms through (due to the electorate’s manifest 
preferences for land reform that were expertly exploited by the MST’s strategy of 
invasions and public demonstrations). If the government really wanted to achieve 
the reform’s objectives and actually invested the political and budgetary resources 
into the process, why did results and methods go so wildly awry? To see that in 
fact the government had very little control over the process, note that the original 
conception of the policy is that a large cadaster would be made of all the landless 
peasants and of all potential unproductive properties, which the land reform agency 
would use to expropriate and match one with the other. Because the pace of land 
reform under these rules was grudgingly slow, the landless peasants realized they 
could expedite the process by invading and occupying rather than waiting for 
the government to come around. As the countryside became spotted with rural 
conflict since the early 1990s, government has been running around reactively 
trying to set out the fires by expropriating land and creating settlement projects 
at an ever increasing pace. However, the lack of control over the process is such 
that the more effort and resources it expends, the greater the incentives for more 
invasions (Alston, Libecap and Mueller, 1999; 2000; 2012). 



Complex System Modelling in Brazilian Public Policies  | 267

One of the major problems was that the entire political debate about whether 
the government was making a suitable effort at land reform was framed along one 
single metric; the number of families settled in that given year. The government, 
the landless peasant movements and the press all focus on this single measure to 
determine if land reform is or is not being done. The government makes electoral 
promises of thousands of families settled per year, the organized peasants denounce 
that the real number settled is below that promised and the press mediates by 
focusing on that sole dimension. Thus the incentives for the government were 
to make ambitious promises and deliver by skimping on the quality of the land 
and the essential post-settlement follow-through.4 Once a family was given land 
their number was tallied in the overall statistics and the government would hurry 
off to give land to other landless peasants. But without the crucial subsequent 
assistance from the program, large numbers of settled peasants were unable to 
subsist and ended up selling or abandoning their land. But because the political 
debate did not focus on this margin of the program there were few incentives for 
the government to act otherwise. As most of the better available land had been 
distributed, and most of the potential beneficiaries with the aptitude for 
agricultural work had been settled, the government had to tap into less productive 
and more distant land (often in the Amazon) and into the masses of urban poor 
(which had little intention or ability to stay on the land), thus compounding the 
probability of failure to generate productive family farms. It is true that in the 
process of land reform a large redistribution of resources was made in benefit 
of an underprivileged part of society. However, the way this was done involved 
tremendous waste in terms of violence, uncertainty and human displacement, 
not to speak of environmental damage. 

Quite realistically an equivalent amount of redistribution could have 
been achieved at a much lower cost and suffering by simply making direct cash 
transfers as is shown to be possible by the Bolsa Familia program through which 
approximately 15 million families in Brazil receive small transfers conditional 
on actions such as keeping their children in school. The Bolsa Familia program 
is considered highly successful in having helped reduce inequality in Brazil in 
the past decade and also in reducing poverty, with almost none of the perverse 
incentives that this kind of program can often elicit (Soares, 2014). The success 
of this policy has made it a poster child often cited by the World Bank and 
other international organizations and has been copied by several other nations 
(Lindert et al., 2007).

4. Whereas the Bolsa Familia program (described below) also incited a political debate around the single metric of the 
number of beneficiaries, in this case the ultimate objective was effectively the transfer of resources and only secondarily 
other objectives such as keeping children in school. Thus the government faced incentives to actually accomplish the 
program’s objectives, rather than striving towards a misleading goal as in the case of land reform. 
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Fully explaining the success of Bolsa Familia (BF) and the failure of land 
reform requires much analysis and data that is beyond the scope of this chapter. 
Nevertheless, it is useful to compare these public policies from the perspective of 
how much they approximate the characteristics of complex systems. Both are social 
policies that seek to reduce poverty and inequality by transferring resources to the 
poor. Both involve millions of beneficiaries spread out over vast areas of over 5,500 
municipalities. And both have high political visibility and impact. Yet, whereas 
land reform is centralized in the hands of a single federal agency, the implemen-
tation of BF by the federal government co-opted the subnational governments – 
states and municipalities – to participate voluntarily through schemes where local 
governments are rewarded based on results. While the federal government retains 
the task of selecting the families and transferring the cash directly through ATMs, 
local governments administer and maintain a single dynamic cadaster that is 
essential in providing the information of who is in the program and whether the 
conditionalities are being met (Cunha and Câmara Pinto, 2008). By transferring 
the cash directly to the beneficiary the program avoids having the proceeds or the 
credit hijacked by intermediaries, a traditional problem in this type of policy. 
In land reform, on the other hand, the government has never managed to create a 
working land cadaster, which is a crucial step for a large scale reform. Besides the 
logistic problems of mapping out boundaries and ownership over a continental 
country with a highly convoluted history of squatting and land-grabbing, there 
is always resistance from landowners that fear the use of the information for tax 
purposes or expropriation. Thus, while good levels of information are available in 
the BF policy domain, it is lacking land reform. Furthermore, the essential task 
of transferring relatively small stipends in cash is relatively simple and unopposed 
compared to the problem-fraught task of i) taking land from one agent; ii) displacing 
large groups of often diverse individuals from other regions onto that land; and 
iii) seeing to it that they are able to settle in, adapt and eventually become productive 
and sustainable in competitive markets despite the lack of experience. Clearly there 
is much more that can go wrong in one policy area than the other, especially given 
that while BF has practically no opposition and receives international acclaim, land 
reform is historically an embattled and conflict-ridden. Furthermore, while in BF 
mayors competed to be seen as promoters of the policy (De Janvry, Finan and 
Sadoulet, 2012), land reform politics is embroiled in interest group competition, 
ideology and misinformation.

The point is not that land reform cannot be done, but rather that the type 
and scale of land reform that was tried did not match the realities of this complex 
policy area. The policy is information-intensive when information is scarce; it 
tries to centralize a policy that is inherently local; it assumes the ability to control 
the process when in reality it can only act reactively; it requires measurement and 
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evaluation along a series of diverse and subtle margins, while in reality a single and 
imprecise metric is used (the number of settled families); it deals myopically with 
a policy area that unfolds over the long-term. Given these characteristics it is clear 
that a land reform policy with a chance of succeeding in Brazil would necessarily 
have to look much different from that which was tried. In particular it would have 
to incorporate the fact that it this policy area is in many ways a complex system. 

5 APPLICATIONS OF COMPLEX SYSTEMS IN BRAZILIAN PUBLIC POLICIES 

This section compiles all the evidence encountered of research being done in Brazil 
on themes related to complex systems. If complex system approaches for public 
policy are to emerge in Brazil it is probable that they will trace their roots to previous 
research done by individuals and groups in academia and research institutes. 
That is, the research presented here can be seen as possible precursors to actual 
practical applications in public policy. Partly the distribution of studies documented 
here will reflect the developments in the international literature. But they should 
also partly mirror areas and problems where the applications of these methods are 
more promising for Brazilian circumstances. The studies are presented in subsections 
grouped by public policy area. To be included each item must necessarily deal with 
themes related to Brazilian public policies through a complex system approach. 
This includes both theoretical and empirical pieces, but those that are purely 
abstract and do not link to any problem or issue in this country have not been 
included. Clearly this list provides only a snapshot of what is naturally a dynamic 
process that is expected to grow substantially in coming years.

5.1 Land use and urban planning

This policy area involves the planning and regulation of land use and occupation 
in urban areas. It involves issues of sprawl, slums (favelas), density, and congestion, 
among many others. Cities are clearly complex systems composed of diverse, 
heterogeneous agents interacting locally according to simple rules and leading to 
self-organization and spontaneous order that routinely defies attempts at central 
planning and top down control. With an urbanization rate of 81% Brazil is 
eminently urban and its cities suffer from all modern pathologies, such as pollution, 
crime, congestion, segregation, sprawl, loss of public space, deficient public 
services, etc. Public policy in this area is generally done at the local level through 
local master plans, zoning laws and other legislation, with monitoring by a diverse 
set of agencies and organizations, from municipal secretariats, to district attorneys 
and the police. Most of the studies found in this area seek to model the complex 
nature of city organization and evolution through instruments such as cellular 
automata, agent-based models and network theory, all of which are well suited to 
capture cities endogenous self-organizing properties.
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CHART 1
Land use and urban planning

Authors Title Reference

1
Bommel, P.,
Poccard-Chapuis, A.B. Coudel, E.

An ABM to Monitor Landscape Dynamics 
and to Undertake Collective Foresight 
Investigations in the Amazon

Proceedings of the Third International Workshop 
on Social Simulation (BWSS 2012).

2

Delaneze, M.E.,
Riedel, P.S.,
Marques, M.L.,
Ferreira, M.V.,
Bentz, C.M.

Modelagem espacial utilizando autômato 
celular aplicada à avaliação das mudanças 
do uso e cobertura da terra no entorno da 
faixa de dutos Rio de Janeiro

Proceedings of the XV Simpósio Brasileiro de 
Sensoriamento Remoto – SBSR, Curitiba, PR, 
Brasil, 2011.

3
Feitosa, F.F.,
Le, Q.B., Vlek, P., Monteiro, 
A.M.V., Rosemback, R.

Countering Urban Segregation in Brazilian 
Cities: Policy-oriented Explorations Using 
Agent-based Simulation

Environment and Planning B: Planning and 
Design, 2012.

4
Furtado, B.A,
van Delden, H.

Modelagem Urbana e Regional com 
Autômatos Celulares e Agentes: Panorama 
Teórico, Aplicações e Política Pública

IPEA, Discussion Paper n. 1576, 2011.

5 Furtado, B.A.

Modelling Social Heterogeneity, Neighborhoods 
and Local Influences on Urban Real Estate 
Prices: Spatial Dynamic analyses in the Belo 
Horizonte Metropolitan Area, Brazil

Faculty of Geosciences, Utrecht University, 
Netherlands Geographical Studies 385, 2009.

6
Lim, K., Deadman, P.J.,
Moran, E., Brondizio, E.
McCracken, S.

Agent-Based Simulations of Household 
Decision Making and Land Use Change 
near Altamira, Brazil

In (ed.) H.R. Gimblett, Integrating GIS and 
Agent-Based Modeling Techniques for 
Simulating Social and Ecological Processes, 
Santa Fe Institute, Studies in the Sciences of 
Complexity, 2002.

7
Mello, B.A., Cajueiro, D.O., 
Gomide, L.H.B.
Vieira, R. e Boueri, R.

Teoria de Redes Complexas e o Poder de 
Difusão dos Municípios

IPEA, Discussion Paper n. 1484, 2010.

8 Saraiva, M.V.P.

Simulação de Crescimento Urbano em 
Espaços Celulares com uma Medida de 
Acessibilidade: Método e Estudo de Caso 
em Cidades do Sul do Rio Grande do Sul

Master's thesis. Programa de Pós-Graduação 
em Arquitetura e Urbanismo. Universidade 
Federal de Pelotas, Pelotas, 2012.

9
Soares-Filho, B.S., Pennachin, 
C. L., Cerqueira, G.

DINAMICA – a stochastic cellular automata 
model designed to simulate the landscape 
dynamics in an Amazonian colonization frontier

Ecological Modelling, v. 154, Issue 3, Sept. 2002.

Elaborated by the author.

5.2 Economic growth and development

This is a broad and diverse policy area that has many overlaps with other areas. 
It deals with policies linked to activities related to the components of GDP, i.e. 
consumption, investment, government expenditures and exports/imports, as well 
as the short-term determinants of these, such as fiscal and monetary policy, and the 
long-term determinants, such as institutions, rule of law and beliefs. Traditional 
economic theory is generally reductionist and believes that cause and effect can 
be modelled analytically and tested with data in detailed and linear ways, leading 
to policy recommendations to promote growth and development. The analysis 
rests on the assumption of strong rationality and focuses almost exclusively on 
equilibrium outcomes. The papers here, instead, treat the economy as a complex 
system composed of heterogeneous agents acting locally, with limited information 
subject to learning and adaptation, leading to hard to predict emergent phenomena, 
e.g. development or crises. The Hausman et al. project makes clever use of 
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network and evolutionary theory (the adjacent possible) to create a clever index 
of complexity for countries, which outperforms other indices in explaining the 
disparity in economic growth across countries. 

CHART 2
Economic growth and development

Authors Title Reference

1 Hausmann, R. et al. The Atlas of Economic Complexity
Cambridge MA: Puritan Press. 2011. 
<http://atlas.media.mit.edu/>

2 Vasconcellos, T.
O Índice de Complexidade Econômica: Uma 
Revisão Teórica e Aplicações ao Caso Brasileiro

Monograph. Departamento de Economia da 
Universidade de Brasília, 2013.

3 Dataviva.
Ferramenta que disponibiliza dados oficiais 
sobre exportações, atividades econômicas, 
localidades e ocupações de todo o Brasil

<http://dataviva.info/2014>

4
Alston, L.J., Mello, M.A., 
Mueller, B. e Pereira C.E.

Beliefs, Leadership and Critical Transitions: Brazil 
1964-2014

Princeton University Press. 2015

5 Mueller, B.
Emergence and Evolution of Beliefs and Institutions 
in Development

Working Paper. Dept. of Economics, Universidade 
de Brasilia. 2014.

6 Possas, M.L. e Dweck, E..
Ciclo e Tendência num Modelo Micro-Macrodinâmico 
de Simulação

<www.ie.ufrj.br/datacenterie/pdfs/
seminarios/pesquisa/texto1610.pdf.2006>

Elaborated by the author.

5.3 Epidemics and infectious diseases

The spread of disease over space and time is an important policy concern in all 
countries. Traditional epidemiological models such as SIR – susceptible, infected, 
resistant – fail to appropriately incorporate spatial dynamics that are at the heart 
of these problems. Complex system approaches are better able to deal with the 
emergent phenomena contained in epidemics, such as tipping points. Many of the 
sources found in this topic were thesis/dissertations from engineering or physics 
rather than from public health or medicine. 

CHART 3
Epidemics and infectious diseases

Authors Title Reference

1 Alvarenga, L.R.
Modelagem de Epidemias através de Modelos 
Baseados em Indivíduos

Master’s thesis. Programa de Pós-graduação em 
Engenharia Elétrica – Universidade Federal de 
Minas Gerais. 2008.

2 Carvalho, A.M.
Dinâmica de Doenças Infecciosas em Redes 
Complexas

Doctoral thesis. Programa de Pós-Graduação em 
Física da UFRGS. 2012.

3 Nepomuceno, E. G. Dinâmica, Modelagem e controle de epidemias
Doctoral thesis. Universidade Federal de Minas 
Gerais (UFMG). 2005.

4 Possas, C.A.
Saúde no ecossistema social: enfrentando a complexi-
dade e a emergência de doenças infecciosas

Cadernos de Saúde Pública. v. 17, n. 1, Jan./Feb. 2001.

5

Jacintho, L.F.O.,
Batista, A.F.M., Ruas, 
T.L., Marietto, M.G.B., 
Silva. F.A.

An agent-based model for the spread of the Dengue 
fever: a swarm platform simulation approach

Proceedings of the 2010 Spring Simulation 
Multiconference (SpringSim ‘10). Society for 
Computer Simulation International, San Diego, CA. 
2010.

6

Takahashi, C.C.,
Takahashi, F.C.,
Alvarenga, L.R.,
Takahashi, R.H.C.

Estudo do tempo de erradicação de epidemias 
em modelos baseados em indivíduos

Proceedings of the XVII Congresso Brasileiro de 
Automática. 2008.

Elaborated by the author.
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5.4 Public health

Although it may not be readily apparent, public health is one of the most prototypical 
complex adaptive systems with networks of networks that cannot be decomposed 
into their constituent parts without losing information on their crucial interrelations 
(Rouse, 2008). At the same time this policy area is one of the most problematic 
public policies in most countries, including Brazil. Few references were found 
using complex systems approaches, which suggests a vast area to be filled by future 
complexity research.

CHART 4
Public health

Authors Title Reference

1 Almeida-Filho, N. A Saúde e o Paradigma da Complexidade Cadernos IHU, n. 15. 2006.

2
Pinheiro Filho, F.P.,
Mori Sarti, F.

Falhas de Mercado e Redes em Políticas Públicas: 
Desafios e Possibilidades ao Sistema Único de Saúde

Ciência & Saúde Coletiva, v. 17, n. 11, Noviembre, 
p. 2981-2990. 2012.

Elaborated by the author.

5.5 Environment and climate change

Climate change and environmental problems may be the quintessential complex 
system challenge in the coming decades given the magnitude of the phenomena and 
the diversity and global interrelatedness of the agents and their actions. Traditional 
policy approaches that rely on command and control, as well as those that seek 
to develop market incentives have proven woefully inadequate. There is already a 
movement in academia towards recognizing the complex nature of the problem, as 
in these manifestos urging for different approaches: Levin et al. (2013) and Jordan 
et al. (2011). Brazil has always been a crucial country in environment-related 
issues due to the Amazon forest, large population and large fresh water reserves. 
In particular it would be natural for there to be studies on deforestation, for which 
complex system approaches are particularly well suited.

CHART 5
Environment and climate change

Authors Title Reference

1
Andrade, P.R., 
A.M.V. Monteiro 
and G. Camara.

From Input-Output Matrixes to Agent-Based 
Models: A Case Study on Carbon Credits in a 
Local Economy

Proceedings of the Second International Workshop 
on Social Simulation (BWSS 2010).

2

Costa, A.C. da R.,
Mota F.P.,
Dimuro, G.P.,
Santos, I.

Um framework para simulação de Políticas Públicas 
aplicado ao caso da Piracema, sob o olhar da 
Teoria dos Jogos

Brazilian Conferences in Intelligence Systems, 
2012. <http://www.lbd.dcc.ufmg.br/colecoes/
enia/2012/0027.pdf>

3 Mello, R.F.L.
Em busca da sustentabilidade da organização 
antropossocial através da reciclagem e do 
conceito de auto-eco-organização

Dissertation. Universidade Federal do Paraná. 1999.

Elaborated by the author.
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5.6 Financial markets and crises 

The financial crises of 2008/2009 made it evident that the core models of traditional 
finance – DSGE and VAR models – based on equilibrium concepts and often 
on Gaussian statistics, were inappropriate representations of the real world being 
unable to deal with large unpredictable events. The literature applying methods 
related to complex systems – often done by physicists – is already well developed. 
Several researchers in Brazil have already sought to apply these methods to Brazilian 
markets, making it one of the most developed areas of complexity studies in Brazil.

CHART 6
Financial markets and crises

Authors Title Reference

1 Gleria, I., Matsushita, R. Silva, S.
Scaling Power Laws in the São Paulo 
Stock Exchange

Economics Bulletin 7.3: 1-12. 2002.

2
Matsushita, R., Silva, S. Figueiredo, A., 
Gleria, I.

Log-Periodic Crashes Revisited Physica A 364: 331-335. 2006

3
Matsushita, R., Silva, S. Figueiredo, A., 
Gleria, I.

Hurst Exponents, Power Laws, and 
Efficiency in the Brazilian Foreign 
Exchange Market

Economics Bulletin 7.1: 1-11. 2007.

4 Tabak, B., Takami M.Y., Cajueiro, D.O.
Quantifying price fluctuations in the 
Brazilian stock market

Physica A: Statistical Mechanics and 
its Applications, v. 388, Issue 1: 59-62. 
2009.

5 Tabak, B.M., Cajueiro D.O., Serra, T.R.
Topological Properties of Bank Networks: 
The Case of Brazil

Int. J. Mod. Phys. C 20, 1121. 2009.

6
Cajueiro, D. O.,
Tabak, B.M.

Possible causes of long-range dependence 
in the Brazilian stock market.

Phys. A, v. 345, Issue 3-4: 635-645. 
2005.

7 Cajueiro, D. O. and Tabak, B. M
The role of banks in the Brazilian interbank 
market: Does bank type matter?

Phys. A 387, 27, 6825-6836. 2008.

Elaborated by the author.

5.7 Agent-based modelling and computer simulation

This subsection covers references that are primarily concerned with the method of 
simulating public policy (i.e. agent-based modelling) and only secondarily with the 
public policy itself. These studies are useful for they help advance and help diffuse 
the methods that can then be used by others primarily interested in the results 
for the policy area proper. Three editions of the Brazilian Workshop for Social 
Simulation5 have been held in 2008, 2010 and 2014, spearheading the effort to 
push this literature forward in Brazil. Most of the papers are methodological and 
not related to public policies, but nevertheless are important for advancing this 
field of research in Brazil (in this chapter we include only those that are related 
to public policies).

5. See <http://bwss2012.c3.furg.br/>. 
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CHART 7
Agent-based modelling and computer simulation

Authors Title Reference

1
Andrade, A.A.,
Frazzon E.M.

Simulação Baseada em Agentes: Para 
a Análise de uma Cadeia Global de 
Suprimentos

XXXII Encontro Nacional de Engenharia 
de Produção, Bento Gonçalves, RS, 
October 15-18. 2012.

2
Sichman, J.S.,
Rocha Costa, A.C.,
Adamatti, D., Dimuro, G.P.

An Overview of Social Simulation 
Research in Brazil

Proceedings of the Third International 
Workshop on Social Simulation (BWSS 
2012).

Elaborated by the author.

5.8 Crime and urban problems

This category is related to cities, but focuses on specific problems that arise when 
large number of highly connected heterogeneous agents interact in close proximity, 
with crime being the major related area of public policy. Crime and public safety 
are major problems in Brazilian cities and there is great scope for analyzing crime 
through the perspective of complex systems.

CHART 8
Crime and urban problems

Authors Title Reference

1
Berger, L.M.
Borenstein, D.

An Agent-Based Simulation of Car Theft: further 
evidence of the rational choice theory of crime

Economic Analysis of Law Review, V. 4, nº 1, 
Jan-Jun.: p. 103-119. 2013.

2
Pint, B.,
Crooks, A., Geller, A.

Exploring the Emergence of Organized Crime 
in Rio de Janeiro: An Agent-Based Modeling 
Approach

Proceedings of the Second International Workshop 
on Social Simulation (BWSS 2010).

Elaborated by the author.

5.9 Energy, transportation and infrastructure

Most infrastructure public services are organized in networks, i.e. telecommunications, 
transportation, electricity, gas, sewage, etc. There is a large international literature 
applying complex systems approaches to infrastructure and there is much scope for 
using these methods in Brazil. This country has massive problems in this public 
policy area, with underinvestment and infrastructure shortfalls often seen as a 
major impediment to growth.

CHART 9
Energy, transportation and infrastructure

Authors Title Reference

1 Avancini, D.P.
Demanda por transporte rodoviário urbano: um 
modelo computacional baseado em agentes

Monograph. Universidade Federal de Santa 
Catarina. 2013.

2
Zopelari, A.L.M.S.,
Silva Cesar, A.

Competitiveness and Social Inclusion within 
National the Programme for Production and Use 
of Biofuels: Negative Feedbacks on Profitability 
Awareness in Sharp Institutional Settlements in 
Brazil South Region Concerning Soybean Oil

Proceedings of the Third International Workshop 
on Social Simulation (BWSS 2012).

Elaborated by the author.
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5.10 Social networks

Brazilians are massive users of social media and the country is even quite advanced in 
the use of these technologies for the purposes of e-government and public policies. 
Social media are ideally understood as complex systems, given their interdependence, 
connectedness and non-linear dynamics. There is therefore the scope for research in 
this area through a complex system lens.

CHART 10
Social networks

Authors Title Reference

1
Barbosa Filho, H.,
Lima Neto F.B.,
Fusco, W.

Migration, Communication and Social Networks; 
An Agent-Based Social Simulation

Complex Networks: Studies in Computational 
Intelligence, v. 424, p. 67-74. 2013.

2 Marteleto, R.M.
Análise de Redes Sociais – Aplicação nos 
Estudos de Transferência da Informação

Ci. Inf., Brasilia, v. 30, n. 1: 71-81. 2001.

Elaborated by the author.

6 DISCUSSION

The previous section has shown that, in keeping with the transdisciplinary nature 
of complex systems science, there is reasonably good coverage in the Brazilian 
literature of themes that are important in this country’s public policies, even if 
the total number of references is still relatively low in most of them. There are, 
nevertheless, several conspicuous absences, that is, areas of public policies that are 
very important in Brazil but for which no research was found. The most glaring, 
perhaps, is education, which is unanimously understood by Brazilian society as 
the number one area where government investment should concentrate. Other 
areas of public policies that are generally important in Brazil and that have not yet 
been covered by this research are; deforestation, biodiversity, innovation, industrial 
organization, pollution, traffic, land reform, social assistance (i.e Bolsa Familia), 
racism and other social pathologies, among others. Also there is practically nothing 
in the area of political science, such as elections, political platforms, etc.

This chapter has shown that it is still early days for complex systems in Brazil. 
Not only are there no cases of public policies explicitly using these approaches, 
but even in the area of research and academia there is still very little being done. 
Clearly adoption is still in the flat part of the S-shaped diffusion curve that this 
approach is likely to go through in the coming years. The conference on “Modeling 
Complex Systems for Public Policy” organized by IPEA – the federal government`s 
economic research institute – for which this chapter has been produced, is likely 
to be a historic landmark in that path.
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CHAPTER 13

COMPLEXITY METHODS APPLIED TO TRANSPORT PLANNING
Dick Ettema1

1 INTRODUCTION: THE TRANSPORT SYSTEM AS A COMPLEX SYSTEM

Over the past decades, complexity theory has received increasing interest in the 
scientific and policy arena, and has led to applications in fields such as management 
and organisational science, economics (Cilliers, 2001); urban planning (Brian Arthur, 
2007; Batty, 2007; Bettencourt, 2014); and transportation (Frazier and Kockel-
man, 2004). Importantly, cities, of which the transportation system makes up an 
elementary part, are increasingly regarded as complex systems (Bettencourt, 2014). 
The complexity of cities is defined by Bettencourt (2014) by five characteristics: 
heterogeneity, interconnectivity, scale, circular causality and development. While 
heterogeneity and interconnectivity refer to individual agents and their interactions 
(see Bettencourt, 2014 for a detailed discussion), development and circular causality 
refer to the processes going on in cities, that materialise on more aggregate levels, for 
instance as land use patterns, economic growth or congestion. An important no-
tion of the complexity of cities is that developments take place as a result of actions 
between agents in a variety of domains, implying that urban developments are the 
outcome of intertwined social, economic, technological and ecological processes.

In a more formal sense, Manson (2001) mentions the relevant notion of aggregate 
complexity, which implies that the state of the system at a particular time is the 
product of the behaviour of individual elements (agents) in the system. These agents’ 
behaviour is guided by certain rules and mutual interactions, but agents are not 
aware of the behaviour of all other agents in the system. Feedback effects exist in the 
sense that individual agents may respond to the aggregate state of the system. The 
aggregation of individual behaviours leads to emergent outcomes on the level of the 
aggregate system, which may be highly nonlinear. In a similar vein, forces outside 
the system may trigger a chain effect of responses at the individual level, eventually 
leading via a series of feedback effects, to a shift to a new state at the system level 
(dissipation). The industrial revolution, caused by new technologies, is a typical 
example of this. An important notion in this respect, is that a complex system does not 
exist in isolation, but exists in an environment that exerts forces and influences on the 
complex system. An important decision is therefore how the boundaries of the system 
are defined, and whether influences are regarded as external or as part of the system.

1. Utrecht University.
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From the above, it follows that the transport system has properties of a 
complex system. It includes multiple agents, including the users of the system 
(pedestrians, cyclists, public transport users, car drivers and passengers) making 
decisions about whether, when, where and by which mode to travel. Aggregate 
system characteristics emerge from the aggregation of such behaviours, such as 
traffic loads and congestion levels on roads and patronage levels of public transport 
systems. Users respond to the state of the system when making their decisions. 
They may respond to congestion levels by changing trip frequency, destination, 
travel mode or travel time. However, also public authorities and service providers 
may be regarded as agents in a complex transport system. They decide about 
construction of infrastructure and provision of public transport services, at least 
partly responding to current traffic load and patronage levels. Also, the transport 
system may become dissipative in response to new technologies. For instance, 
the industrial production of cars and subsequent mass motorisation have led to a 
radical shift in modal split and trip lengths in many countries (Van Wee, 2014).  
This example also illustrates the need to properly define the boundaries of the 
system. For instance, mass motorisation has caused, but has also been stimulated 
by the process of urban sprawl, suggesting that the transport system might be 
extended to also include urban development, households’ residential location 
decisions and agents such as real estate developers. At the same time, it is noted 
that societal, economic and technological developments, which emerge outside the 
transportation field, may exert significant influence on the use of the transportation 
system. For instance, urban lifestyles may become more favourable among 
young adults, placing a lower emphasis on car use and the car as a status symbol 
(Frändberg and Vilhelmson, 2014). Also, new information and communication 
technologies may accommodate new forms of organizing travel, for instance by 
implementing flexible, mobile internet platforms for car sharing (Hansen et al., 
2010). In addition, economic development and its spatial manifestation in the form 
of job locations, will have a major impact on the demand (in time and space) of 
commuter and business trips, but is inherently difficult to forecast (Dawid, 2014). 
Finally, changing work habits combined with increasing ICT use may moderate 
the effects of economic development on business and commute traffic (Alexander 
et al., 2010; Aguilera, 2014).

Traditionally, transportation planners have aimed at accommodating individuals’ 
demand for travel in order to facilitate their achievement of individual, social and 
economic goals. The main preconditions are typically to guarantee a minimum 
level of accessibility for all and to avoid congestion, safety risks and pollution 
leading to health hazards. Typically, they have followed an engineering approach, 
based on the assumption that the demand for travel can be determined (and 
forecasted) based on the spatial distribution of population, jobs and facilities. To this 
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end, traffic models have been applied, which have accounted for the emergence 
of congestion as an aggregation of individual trip making decisions. However, 
the range of complex effects in the transport and land use system is potentially 
much larger, and may extend to aspects such as pollution and health, housing 
markets, equity and exclusion effects and sustainability issues. In recognition 
of this complexity, traditional traffic models have been extended to more 
comprehensive land use transport interaction (LUTI) models, using individual 
(agent-based) representations of individuals, households, dwellings and firms. 
While these models can account for a wider range of interactions and feedback 
effects, these increased range of options comes at the cost of increasing data hun-
ger and reduced certainty about the validity of the outcomes. Also, one may 
be critical as to what extent major drivers of changes in travel behaviour (such 
as economic growth, changes in societal norms or changes in business models of 
transportation firms) are well represented in traffic models or agent-based LUTI 
models. A major issue is therefore how existing model applications should be 
valued in the context of the complexity of cities and transportation systems, and 
how these models can be applied to explore the effects of complex processes inside 
and outside the transportation domain on the transport system.

The aim of this chapter, therefore, is to give an overview of traffic and transport 
simulation models, their options to describe complex effects of policies or 
autonomous trends, and discuss the implications for policy makers. The paper 
is structured as follows. Section 2 discusses the main characteristics of complex 
methods in transport planning. Section 3 discusses implementation issues related 
to these methods. Section 4 outlines implications for the transport system, 
followed by urban and societal implications in section 5. Section 6 discusses some 
recent developments in the development of complex systems in transportation.

2  MAIN CHARACTERISTICS OF EXISTING COMPLEX METHODS IN 
TRANSPORT PLANNING

Over the past decades various planning support tools have been developed that 
take into account the complexity of the transport system, as described above. 
These tools operate on different scales and assume different system boundaries. 
We will discuss the following tools, with increasing spatial scale and complexity:

1) Traffic simulation models;

2) Travel demand forecasting models;

3) Land use transport interaction (LUTI) models.

These models can be thought of as nested in each other, with an increasing number 
of agents’ decisions being represented (figure 1). Since LUTI models obviously 
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include the widest range of responses, they can also account for the widest range 
of complex, emergent effects, especially including interactions between the transport 
system on the one hand and the housing market, labour market, car fleet, energy 
system and land use system on the other hand. A relatively strong emphasis is 
therefore placed on discussing LUTI models throughout the chapter.

2.1 Traffic simulation models

Traffic simulation models (Barcelo et al., 2005; Rieser et al., 2007) describe how 
individual vehicles manoeuvre from a given origin to a destination in a road 
network. The most recent models include a representation of individual vehicles, 
which are equipped with a set of “behavioural” rules such as choosing speed and 
driving lane in response to other vehicles on the road and choosing and adjusting 
the route to the destination. In addition, for each vehicle an origin and destination 
is given. Typically, these models assume that the number of trips between origins 
and destinations as well as their departure time are given. In addition to individual 
vehicles, the models may include a representation of equipment such as traffic lights, 
which may also in a dynamic sense respond to the (simulated) vehicles on the road. 

FIGURE 1
Nested system of transport models

Land use Transport Interaction Model

Travel Demand Forecasting Model

Traffic Simulation Model

- Lane choice

- Speed

- (Route choice)

- Tripfrequency

- Destination choice

- Mode choice

- Car ownership

- Work status

- Residential/work location

- Demographic events

- Firmology (labout market)

- Land use change

- Housing market

Traffic simulation models typically display emergent characteristics (traffic 
load and speed per link), resulting from the behaviours of the individual vehicles. 
While such characteristics may also be obtained from aggregate algorithms defining 
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the relationship between traffic loads and speeds, traffic simulation models do so 
in much more detail and may also account for detailed network effects, such as 
queues blocking upstream crossings. Recent traffic simulation models are capable 
of simulating traffic flows based on an individual representation of cars for larger 
urban areas. Rieser et al. (2007) describe an application based on a representation 
of individual vehicle for the whole country of Switzerland. An important limitation 
of traffic simulation models is that decisions such as trip generation, destination 
choice, mode choice and departure time choice are exogenous, thus assuming that 
individuals do not respond to congestion on these dimensions. This may lead to 
an overestimation of congestion and travel times, since in reality individuals will 
consider such options to avoid overlong travel times.

2.2 Travel demand forecasting models

Other than traffic simulation models, travel demand forecasting models (TDFMs) 
describe trip generation, destination choice, mode choice and departure time choice 
of trips (McNally, 2008; Yai, 1989). The traditional version of TDFMs are four 
stage models, which model the four aspects of each trip (generation, destination, 
travel mode and route) subsequently and independently of each other. Also, 
different trip purposes (commuting, business, other) are modelled independently 
of each other. This results in an origin-destination matrix of trips, that is typically 
input to traffic simulation models. TDFMs (e.g. Algers, 1995; Jovicic and 
Hansen, 2003) include a set of discrete choice models describing the aforementioned 
behaviours as a function of personal characteristics and characteristics of the 
transport system such as travel time and travel cost. These models are applied on 
a representation of the population in a system of traffic zones. This can be done 
in different ways. Traditionally, models of trip frequency, destination and mode 
are applied for a number of different household and individual types in each zone, 
resulting in probability distributions. Given the numbers of each household type 
in a zone, this results in an overall distribution of trips by destination and mode. 
More recently, agent-based models have been developed with a representation of 
individual travellers, defined by residential zone and socio-demographic characteristics 
(e.g. the RAMBLAS model, Veldhuisen et al., 2000). For each agent, trip frequency, 
destination and travel mode are then determined individually. An agent based 
representation of trip making offers the advantage of a greater flexibility and a 
more straightforward linkage to modules that forecast aspects such as residential 
relocation, job change etc. (see also section 2.3).

TDFMs can be regarded as complexity methods in the sense that aggregate 
distributions of trips emerge from (semi)individual decisions of trip frequency, 
destination and mode choice. In addition, TDFMs include feedback effects in the 
sense that individual decisions are affected by system level outcomes, which are 
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however limited to travel time changes caused by congestion levels. Like traffic 
forecasting models, TDFMs typically tend to develop into an equilibrium situation, 
since the feedback effects have a dampening effect: congestion leads to a choice for 
different destinations, modes and travel times, leading to lower congestion levels. 
The boundary of the system is drawn around the current population and their 
residential location, of which behavioural rules and aspect such as car ownership 
are assumed invariant, and a transport and infrastructure system that is constant. 
As a result, external forces such as changes in technology, labour markets or the 
housing market, which may lead to radically different behavioural rules and 
outcomes, are not very well represented.

A trend taking place over the last decades is the gradual replacement of the 
traditional four stage models with so called activity-based travel demand models 
(Ettema and Timmermans, 1997; Arentze et al. 2000; Bowman and Ben-Akiva, 
2000). Without discussing the technical aspects of activity-based models in 
detail, the main principle underlying activity-based models is that travel is derived 
from activity participation, implying that in order to understand travel, the total 
activity pattern should be taken into account. This has various consequences. 
First, travel decisions for one trip may be related to travel decisions for another 
trip. The most obvious aspect is timing, since the timing of trips depends on 
the ordering of activities. However, also destination choices for various activities 
may be interdependent, e.g. if the location of shopping trips is dependent on 
the work location. Another dimension of (most) activity-based models is that 
travel decisions are made at the household level. This implies allocation of certain 
activities (e.g. shopping or serve passenger trips) to specific household members, 
but also the decision of who will use household vehicles. As compared to four 
stage models, activity-based models logically include a wider range of statistical 
models, such as trip chaining models, activity scheduling models, and time use 
and duration models. As a consequence, they are better able to represent certain 
emergent effects, where policies or developments in one domain have implica-
tions in another domain. For instance, activity-based models have the potential 
to forecast the effect of changes in time regimes (school or work hours) on trip 
timing, the effect of female work status on males’ shopping behaviour or the effect 
of shopping location choice on commute travel mode.

2.3 Land use transport interaction (LUTI) models

LUTI models (Wegener, 2013) include a representation of travel behaviour by 
a TDMF model, but this representation is embedded in, and interacts with, a 
representation of the spatial distribution of people, jobs and economic activities. 
Basically, LUTI models describe households’ demographic processes (birth/death 
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rates, household formation and dissolution), locational decisions (residence, jobs, 
changes in work status) and vehicle holding decisions, as well as economic processes 
such as job development in different locations and the development of land prices 
and residential development. These processes are influenced by travel times and 
accessibility levels described by an embedded TDFM. In most cases, economic and 
housing market developments are represented by economic input-output models. 
Recently, however, also agent-based simulation based systems, such as UrbanSim 
(Borning et al., 2008), ILUTE (Chingcuanco and Miller, 2012) and ILUMASS 
(Strauch et al., 2005) have been developed. 

As an example of an agent-based LUTI model, the structure of the ILUTE 
system is outlined in figure 2. ILUTE (Chingcuanco and Miller, 2012) includes 
a representation of individual households, made up of individuals, and defined 
by age, gender, education, work status and car ownership. In addition, there are 
representations of individual dwellings (defined by type, size, location and price/
rent), individual firms offering jobs (with specified experience and knowledge 
level) and land owners/developers who take decisions about real estate development 
and land use change. A suite of models is implemented to describe the 
behaviour of individuals and households, which mostly imply some form of 
interaction with other types of agents. An activity-based model (TASHA) 
is included that describes activities and travel decisions of households and 
individuals (see section 2.2.). A demographic simulation model describes the 
aging of individuals from year to year, as well as events such as dying, giving 
birth, marriage and household formation, household dissolution. Given the 
agent based structure, this implies the existence of a “market” of singles and 
a match making mechanism. To describe location and relocation decisions, a 
housing market simulation module keeps track of vacancy and occupancy of 
dwellings, and the matching between vacant dwellings and households aspiring 
another dwelling. Importantly, this matchmaking implies a price setting system 
that responds to the supply of and demand for dwellings of different types in 
different areas. In a similar sense, a module exists that describes the development 
of firms an jobs as a function of larger economic trends (Harmon, 2014) and 
makes matches between individuals with a certain level of skills and experience 
and jobs of certain requirements. ILUTE (as other agent-based LUTI models, 
such as UrbanSim) is set up in a modular fashion, which allows for a relatively 
straightforward linkage to other, dedicated models. For instance, ILUTE has 
been linked to emissions models to forecast individuals exposure to pollutants 
during their daily activity pattern, and to models of dwelling energy consump-
tion to forecast urban energy consumptions.
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FIGURE 2
Outline of ILUTE model system
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It will be clear that LUTI models can also be regarded as complex systems and 
that they represent the widest range of potential reactions to changes in the economy, 
demography or institutional system, not only by individuals and households, but also 
by economic agents and developers/policy makers. For instance, households may decide 
to relocate, change jobs or acquire/dispose vehicles in response to changes in accessibil-
ity. Likewise, changes in the location of jobs resulting from changes in accessibility 
can be represented, as well as changes in housing prices or urban development. As a 
result, agent based LUTI models are less likely to develop into an equilibrium state 
that is relatively similar to the initial state, and more likely to represent transitions to 
fundamentally different states. For instance, since LUTI models describe urban devel-
opment, vehicle owning decisions and travel behaviour, they would technically have 
been able to describe the related and reinforcing processes of increasing car ownership 
and urban sprawl. 

Another important characteristic of agent based LUTI models is their dynamic 
character. They simulate changes in urban development, demographics, housing 
and work locations and travel patterns for a series of years, implying that agents’ 
decision in year t+1 are conditional on aggregate system characteristics (travel 
times, prices, available dwelling, jobs etc.) in year t, which in turn accumulate from 
individual agents’ decisions. This dynamic approach allows to model the temporal 
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dimension of responses to policies. For instance, it has been found that responses 
to office relocation in terms of mode choice may lag behind up to five year, since 
a behavioural response may necessitate changes in household organisation, car 
ownership or residential relocation. While traditional equilibrium models would 
predict an immediate change to a new equilibrium, agent based dynamic models 
are better able to describe the stepwise process leading to the final outcome.

3 IMPLEMENTATION ISSUES

Developing traffic simulation models, TDFMs and LUTI models can be split into 
two major components:

1) Developing a representation of relevant structures and agents.

2) Developing a representation of behavioural rules of the agents, their 
mutual interactions and relevant feedback effects.

Following the development of the model it needs to be calibrated to verify 
if outcomes are generated with a reasonable degree of reliability. Finally, scenarios 
need to be developed for the application in order to evaluate policy alternatives. 
These stages will be discussed subsequently.

3.1 Representation of structures and agents

The structures to represent depend on the type of model. In case of traffic simulation 
models, the structure includes a representation of the road network in terms of 
links and nodes, and link characteristics such as travel speed and layout (e.g. width). 
Such data will in most cases be available in digital form at planning agencies. 
The structure may also include signalling equipment such as traffic lights and their 
specification. The software managing the signalling equipment can nowadays directly 
be linked either to physical detectors, as well as to traffic simulation software. 
In addition, origin and destination zones are defined, and the number of cars 
travelling between these zones through the network. Depending on the scale of the 
application (ranging from a single trajectory to a whole region) OD matrices can 
be derived from traffic counts or from an existing regional TDFM. Main agents 
are vehicles, the drivers of which are equipped with behavioural rules (see 3.2).

In TDFMs, the structure includes a representation of an area divided into traffic 
zones, which include a specific population, producing a number of trips for various 
purposes. In addition, a representation of travel times by various modes, for different 
times of the day is needed. For public transport these are derived from existing (and 
possibly adjusted to represent scenarios) time table information. For car, these are derived 
from travel times as calculated on a network (e.g. used in the traffic simulation models). 
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If necessary, these time may be adjusted based on the outcome of a traffic assignment 
or traffic simulation, to account for the effect of congestion on car travel times. 

For agent based LUTI models, additional structures are needed, also based 
on a zonal representation of the study area. Typically, these include households 
and individuals with their working status, vehicle ownership and income, but also 
representations of the housing market and of the economy (firms and jobs) in each 
zone. Agent based models require a population of individual households with all 
relevant characteristics specified on the individual level. Such data is seldomly available 
from official records. The usual approach is then to use synthetic populations 
(Zhu and Ferreira, 2014). In synthesizing populations, a set of individuals with 
specific characteristics is generated such that the aggregate distributions of age, 
gender, education etc. meet the actual distributions. Iterative proportional fitting 
is the most used method to generate synthetic populations, and can be applied to 
households/individuals as well as dwelling units. In essence, the same approach 
might be used to firms, but given the much lower number of firms per zone this 
poses difficulties. As a result, ILUTE and UrbanSim have so far modelled the labour 
market as a population of jobs, rather than a population of firms offering jobs. 
Likewise, while urban development and land use change are the result of decisions 
made by agents such as policy makers, real estate developers etc. these decisions are 
much less frequent and more complex in nature than e.g. household relocation or 
individual mode choice decisions. These processes are therefore mostly dealt with 
in a more stylized fashion. The most common approach is to model for zones or 
parcels in the modelling system, the probability of conversion into another land 
use type. Various statistical approaches (versions of discrete choice models) have 
been used for this purpose (Zollig Renner and Axhausen, 2013; Shen et al., 2014; 
Bhat et al., 2014). 

3.2 Developing behavioural rules and feedback effects

For traffic simulation models, car drivers are equipped with rules regarding the 
choice of speed and lane and route. These rules may be derived from experiments 
where drivers are observed in simulators, but are often chosen by the modeller based 
on prior experience of what produces a realistic outcome. Feedback is modelled 
automatically, since vehicles respond to the position and speed of other vehicles 
in the network.

In TDFMs, behavioural rules concern choices of i) making a trip for a specific 
purpose; ii) a departure time of the trip; iii) a destination; and iv) a travel mode. 
Typically, these choices are modelled with econometric discrete choice models, which 
describe the choice as an outcome of the characteristics of the choice alternatives. 
The traditional version of these models was the multinomial logit model (MNL), 
which had, however, the undesirable property that the ration of the choice prob-
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abilities of two alternatives is independent of the presence of a third alternative 
(also known as the red bus/blue bus problem). This property is undesirable since 
it may be expected that alternatives that share more common characteristics (e.g. 
bus and tram) are expected to substitute for each other relative to a more different 
alternative (e.g. car). In addition, travel choices on different dimensions were 
traditionally assumed to be independent of each other (i.e. described by separate 
MNL models), whereas in reality they may be related. For instance, the travel 
mode may depend on the choice of destination and vice versa. To account for such 
substitution and interdependency effects, more advanced model specification have 
been developed such as nested logit models (Ben-Akiva and Lerman, 1985) and 
mixed logit models (e.g. Hess and Polak, 2006). Also, in the context of spatial 
choice, MNL models fail to account for spatial autocorrelation, which has led to 
the development of alternative GEV choice models (Bekhor and Prashker, 2008).

The parameters in the choice model need to be estimated based on observed 
choices. These may be choices actually made and recorded in surveys or travel 
diaries (revealed preference), but also choices made under hypothetical conditions, 
presented in a survey (stated preference). The main feedback mechanism is 
travellers’ response to congestion. This is represented adjusting car travel time 
for congestion following the traffic assignment, which will influence the choice 
of trip-making, destination, departure time or mode, depending on the travel 
time coefficient.

Agent-based LUTI models include additional models for households behaviour 
(car ownership, housing location and housing type, work status) which are 
typically also based on discrete choice models. These are mostly based on observed 
choices obtained from surveys. Housing market and economic developments are 
also assumed to follow specific rules. Since a detailed discussion of the calibration 
of these models is beyond the scope of this chapter, the reader is referred to 
Chingcuanco and Miller (2012), Strauch et al. (2005), Borning et al. (2008) 
and Ettema et al. (2007) for detailed illustrations.

3.3 Scenario development

Complex traffic and travel models are applied to make predictions of the outcome 
of interventions or assumptions made about the future. The predictions often 
concern the traffic loads on roads or patronage levels of public transport. Usually, 
the aim is not so much to predict exact outcomes, but to gain an insight into the 
differences between different policy alternatives. In any case, applying a traffic 
or transport model to make predictions requires that structures and agents are 
specified for a future situation. Usually, the infrastructure and transport services 
are specified according to the interventions of which the effects needs to be forecasted. 
However, other inputs, such as the population per zone, the development of firms, 
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jobs and residential areas also need to be specified. To this end, modellers mostly 
rely on external forecasts from demographic and economic models as well as on 
policy plans that specify the development of residential and commercial areas 
in future years. With increasing forecasting horizons, it is useful to apply 
different scenarios of e.g. economic development, to test outcomes under 
different external circumstances.

In practice, travel demand forecasting scenarios are often based on extrapolation 
of current demographic and economic trends. For instance, Arentze et al. 
(2008), forecast the transportation implications of an aging population, based 
on extrapolations of labour force participation and behavioural parameters. 
These exercises are typically aimed at predicting a likely outcome, as a relatively 
marginal change from the current situation or baseline scenario. However, regarding 
cities (and their land use and transport systems) as complex systems would suggest 
that interactions between various system components and agents could lead to 
unexpected outcomes that would differ fundamentally from straightforward 
extrapolations. Examples of such interactions include the effect of ICTs on personal 
and delivery travel, which may, depending on the context, substitute, modify or 
stimulate travel (Mokhtarian, 2009). TDFMs and LUTI models are not well suited 
to represent such interactions, and their use in exploring such scenarios would 
require the formulation of additional assumptions, which should be included in the 
model structure. In a similar vein, Cervero (2008) notes that conventional TDFMs 
are not well suited to capture the effect of neighbourhood scale land use strategies. 
He advocates the use of dedicated add-ons to conventional models to represent the 
interaction between neighbourhood characteristics and travel behaviour. 

4 MODELLING BENEFITS FOR THE TRANSPORT SYSTEM

Transport providers and infrastructure developers may benefit from traffic simulations, 
TDFMs and LUTI models in various ways. In essence, these models deliver insight 
in the effect of operational variables, such as prices, travel speeds, frequencies under 
different scenarios. This allows providers and developers to invest in the most cost 
effective way in infrastructure and services. Cost effectiveness can be defined in a 
purely economic or in a societal sense. In an economic sense, the models can predict 
how many travellers will use a service (e.g. a bus line or a toll road) and what 
revenues will be made. Hence, profitability of investments can be estimated 
a priori. In a societal sense, the benefits of investments can be assessed. 
For instance, effects of new infrastructure and services can be assessed in changes 
in trip frequencies, mode use and consequently changes in congestion and 
travel times. Both the travel time gains and the accommodation of so called 
latent demand are considered to be social benefits, which are often quantified 
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to monetary values based on willingness-to-pay methods. This allows authorities 
to trade off investments against societal benefits in cost-benefit analyses.

Another benefit of traffic and transport models is that travel behaviour, 
traffic loadings and congestion under different longer term scenarios can be 
explored. Think for instance of different demographic and economic scenarios. 
The models can then give an indication to what extent the transportation sys-
tem can provide inhabitants sufficient accessibility to fulfil their needs, but also 
whether the transportation system is economically sustainable under scenarios 
of income change, demographic transition and urban development. 

5 MODELLING IMPACTS FOR CITY AND SOCIETY

While the preceding paragraph discussed the assessment of outcomes for the trans-
portation system, traffic and transport models can also be used to assess the impact 
of policies and autonomous developments for wider urban and societal issues.

First, traffic and transport models can be used to assess changes in accessibility 
(e.g. due to changes in congestion levels). For instance, when planning an urban 
extension, travel models may give an indication of the expected travel volumes but 
also the accessibility to specific services for the new inhabitants. These changes in 
accessibility may be linked to access to specific services for specific groups, such 
as the accessibility of healthcare for non-motorised/vulnerable groups (Nemet 
and Baily, 2000). In this way more specific societal issues can be addressed, also 
in relation to equity considerations. On the other hand, accessibility is relevant 
to service providers to determine their catchment area and market potential. 
For instance, retailers may use accessibility measures to determine the number 
of potential customers. Firms may be interested in the accessibility to skilled 
labourers within a certain travel time. Thus, traffic and transport models may be 
used to assess whether a region will remain economically viable and attractive to 
firms from a transportation point of view (see Wheaton, 2004 for a more stylized 
modelling effort).

Second, traffic and travel models predict traffic flows, which in turn result 
in negative outcomes such as local pollution and noise. The predictions may 
then serve to calculate concentrations of pollutants and noise volumes and 
assess the consequences for exposure and public health. Linking such outputs 
to the spatial concentration of different population segments, for instance 
health hazards of vulnerable groups can be determined (e.g. Pearce et al., 2006). 
Hatzopoulou et al. (2007) integrated an activity based travel model (TASHA) 
with emission models in order obtain a dynamic and detailed account of traffic 
generated emissions by location and time of day. In addition, they confronted 
these emissions with the locations of individuals according to their simulated 
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activity patterns, rather than with their home locations, to get a more realistic 
estimate of the impact of emissions.

Finally, since traffic and travel models predict travel by various travel modes, 
they can be used to assess to what extent people will use active travel modes such as 
walking and cycling. Given the worldwide concern about overweight and obesity, 
active travel is increasingly seen as an important way of counteracting these effects, 
as indicated by numerous studies (Saelens and Handy, 2008; Boarnet et al., 2011; 
Van Wee 2014). Assessing the effects of land use and transport interventions on 
active travel therefore is an important benefit of transport models. 

The same holds by and large for policies aiming at more sustainable forms 
of travel behaviour. While a shift from less (car) to more sustainable travel modes 
(public transport, cycling, walking) may be enforced by economic means (Bonsall 
and Willumsen, 2014), land use policies are increasingly seen as a promising road 
toward more sustainable travel practices (Van Wee and Handy, 2014). Given that 
traffic models and TDFMs describe mode choice behaviour based on the spatial 
distribution of individuals’ residences and potential destinations, they may prove 
valuable in assessing land use policies aiming at a shift toward more sustainable 
travel modes.

As discussed previously, LUTI models extend the set of responses as compared 
to TDFMs, by allowing for responses such as changes in car ownership, residential 
location and job change. This is relevant since it has been found that individuals’ 
and households’ responses use a variety of strategies to facilitate their desired travel 
pattern and respond to changes in travel or personal conditions (Oakil et al., 2014; 
Cao and Mokhtarian, 2005). In addition, LUTI models allow to investigate the 
interaction with other markets, such as the housing market, real estate market, 
labour market and the regional economy, which may respond to changes in the 
transportation context, as well as influence it. The literature presents some examples 
of the added value of LUTI models in this respect.

Erdogan et al. (2013) apply a LUTI model to show how changes in fuel prices 
do not only have direct effects on trip frequency, mode and destination choice, 
but also on longer term choices regarding residential and work location. Through 
the real estate and housing market, higher fuel prices might even lead to denser 
urban developments.

However, also infrastructural policies may have indirect effects, through their 
impact on households’ and firms’ locational decisions. Guerra (2014) describes an 
empirical study of the metro extension (Line B) in Mexico City. He reports that 
the metro extension attracted a significant share of new travellers, who previously did 
not use the car. There were land use effects in the form of commercial densification 
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around new metro stations. Again, LUTI models provide a promising tool for 
assessing both the transport and the land use effects.

Another highly relevant topic is the effect of rising income levels in developing 
countries leading to sharp increases in car ownership in countries such as Colombia 
(Gomez-Gelvez and Obando, 2013), China (Cervero and Day, 2014) and Brazil. 
Notably, the effects differ between contexts. While Gomez-Gelvez and Obando 
describe that car ownership in Bogota primarily increases as a result of an increase 
in the number of households, the number of cars per households in the Chinese 
context has substantially risen, leading to an increase in suburban development 
and urban sprawl. Cervero and Day conclude that transit oriented development 
may play a role in at least dampening the massive increase in car ownership and 
use in China. However, quantifying the effect of TOD requires jointly modelling the 
effects of households’ car ownership and location decisions, as well as their daily 
travel, where congestion may have a significant impact on these decisions. LUTI 
models may provide a fruitful tool to assess the joint effects of these developments. 

6 INNOVATIONS AND CHALLENGES IN TRANSPORT MODELLING

Complex transport models have been subject to various innovations over the 
past decades. In general, most of these innovations include a trend toward more 
complexity (in terms of more interaction and feedback between system elements) 
and more detail, which reinforce each other.

Traffic simulation models have profited from advances in computing power 
and data organisation, and are increasingly capable of modelling larger regions, 
up to a whole country such as Switzerland (Meister et al., 2010).

In TDFMs, two important trends are observed. First, a switch from the tra-
ditional four-step model, in which trips are modelled independently of each other, 
to activity-based models, in which trips form part of activity patterns. This has the 
important implication that the scheduling of trips becomes more realistic and that 
their timing can be predicted with more accuracy. Recently activity-based models, 
such as TASHA, have been extended to create activity schedules not only at the 
individual, but also at the household level, implying that household interactions 
can be modelled more reliably. A second trend is a trend toward fully individual 
micro-simulation instead of producing distributions for specific population 
segments per zone. This trend is facilitated by increasing computing power and 
data storage capacity.

Finally, complex transport models profit from the increasingly detailed data 
becoming available these days. The data concern very detailed data about transportation 
infrastructure and land use, available up to the parcel level. Combined with the 
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individual representation of agents (travellers) this allows for a more detailed and 
a more varied representation of travel behaviour.

Given the progress in transport and land use modelling over the past decades, 
the question can be raised how state-of-the-art transport and land use models should 
be judged in the broader context of the complexity of cities, of which transportation 
systems are a part. A key issue in this respect is whether transportation should be 
considered a simple or a complex problem (Bettencourt, 2014). A simple problem 
is a problem that is well-defined in terms of performance metrics and that offers 
fast and direct actions to move it toward the desired end state. A complex system, 
on the other hand, involves much more interactions, circular causalities and a vast 
problem space with many uncertainties (Bettencourt, 2014). Consequently, what 
actions can be used to influence the system and what their effect will be is much 
less readily evident.

Traditionally, transport planners have approached transportation planning 
as a simple problem. Travel demand and travel behaviour were assumed to follow 
in a straightforward way from the spatial organisation and the characteristics of 
the transport system. For instance, changes in travel time or costs lead to changes 
in travel volumes and modal split in a well-defined and expected way. In addition, 
transportation planners have assumed that the transportation system tends to a 
state of equilibrium, rather than focussing on developments of the system in 
response to external forces. In particular, they have used a small set of explanatory 
variables to extrapolate current correlations to future conditions, assuming that 
travellers’ preferences and needs are invariant. 

While this approach has definitely had many merits in providing insights 
when planning infrastructure in concrete settings, it also poses limitations to the 
way we think about the transportation system in an uncertain future. As a matter 
of fact, the complexity of urban societies leads to developments that make 
the assumptions on which transport and LUTI models are built questionable. 
Changes in the population composition, partly due to international migration, 
will lead to changes in people’s needs and preferences, also with regard to travel. 
For instance, societal norms towards sustainable or healthy lifestyles may change, 
with implications for the use of sustainable and healthy travel modes. Complex 
social processes of opinion and norm diffusion (Tessone, 2014) may play a role 
here. Also, using mobile ICT platforms, the organisation of transport services 
may fundamentally change, leading to bottom up initiatives for e.g. developing 
car and ride sharing programmes (Hansen et al., 2010). Also in this case, social 
interactions will fuel the diffusion and adoption of such systems. Further spread 
of mobile ICT tools and services may not only change our organisation of the 
work and private sphere, but also lead to changes in the way we perceive travel 
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time and make travel decisions (Lyons et al., 2007). Lastly, the development of 
electric vehicles and automated vehicles may radically change the way we choose 
to travel and use our travel time, but also our decisions whether to own, share or 
hire a vehicle (Pendyala, 2014). Again, however, the speed and extent of diffusion 
of such new systems is the outcome of complex social and economic processes. 
While each of the above may have a significant to major impact on future travel, 
existing transport and LUTI models are not equipped to deal with them, since 
they are based on the extrapolation of the current organisation of the system and 
current needs and preferences.

The question thus remains what tools transport planners can use to explore 
and anticipate such uncertain futures. A first option would be to use agent-based 
LUTI models, but to apply them for specific sensitivity analyses. Rather than aiming 
to forecast the most likely outcome, one may aim to find sets of parameters and 
inputs that lead to a radical shift in transport and land use or, in other words, lead 
to a dissipative outcome. Given these dissipative sets, a next analysis would involve 
an exploratory analysis of how such changes in preferences or input variables may 
come about. For instance, a low value of travel time for car users might be brought 
about by the introduction of automatic vehicles, allowing one to work or recreate 
while driving. As another example, extreme costs of transport might be related to 
scarcity of fossil fuels. Such analyses might give planners insight into what factors 
are likely to lead to major changes in the land use and transportation system. 
A second option to explore uncertain futures might be to directly study the diffusion 
of new technologies and forms of organisation, such as car sharing schemes or 
electric vehicles. Using models of market diffusion (Shaheen and Cohen, 2007; 
Jansen and Jager, 2002), the likelihood of such new developments to take off 
and policies stimulating them can be studied. Likewise, studying and modelling 
the diffusion of a change in attitudes (Tessone, 2014; Nowak et al., 1990) in a 
population may add to our understanding of how sustainable and healthy lifestyles 
pervade in population segments.
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CHAPTER 14

EDUCATION AS A COMPLEX SYSTEM: IMPLICATIONS FOR 
EDUCATIONAL RESEARCH AND POLICY1

Michael J. Jacobson2

1 INTRODUCTION

Scientific study of the behavior of complex physical and social systems over the 
past three decades has lead to significant insights about the world that classical 
approaches tended to over simplify or to ignore (Bar-Yam, 2003). However,  
Jacobson and Wilensky (2006) have noted that the application of complexity 
perspectives to educational research and policy is at an early stage. Given this ba-
ckdrop, the primary goals of this chapter are to discuss four main areas: i) education 
as a complex system; ii) complexity and methodologies for studying education;  
iii) educational systems research and educational policy; and iv) challenges of 
learning about complex systems and implications. These areas are considered in 
turn, followed by concluding remarks.

There has been a shift in the fields of the learning and cognitive sciences and 
educational research over the past decade from earlier work on learning concepts 
about complex systems to the application of perspectives about complex physical 
and social systems to enhance educational research and to inform policy.3 One 
indication of this latter trend is reflected in the use of complexity concepts by 
researchers who are studying education that have important implications beyond 
just an enriched technical vocabulary for researchers. For example, Bereiter and 
Scardamalia have argued that: 

As complex systems concepts such as self-organization and emergence make their way 
into mainstream educational psychology, it becomes increasingly apparent that there 
are no simple causal explanations for anything in this field. In general, what comes 
out of a socio-cognitive process cannot be explained or fully predicted by what goes 
into it. Creative works, understanding, and cognitive development are all examples 

1. This chapter will incorporate material (with permission) from Jacobson and Wilensky (2006), Jacobson and Kapur 
(2012), and Jacobson, Kapur, and Reimann (2014). I wish to acknowledge my research colleagues and collaborators 
over the years who have helped me learn and deepen my understanding of the intricacies and wonders of complex 
physical and social systems, especially Manu Kapur, Uri Wilensky, and Yaneer Bar-Yam.
2. Centre for Research on Computer Supported Learning and Cognition (CoCo) Faculty of Education and Social Work 
The University of Sydney Sydney, NSW 2006, Australia. E-mail: <michael.jacobson@sydney.edu.au>.
3. For an overview, see Jacobson and Wilensky (2006).
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of complex structures emerging from the interaction of simpler components (Sawyer, 
1999; 2004). Learning itself, at both neural and knowledge levels, has emergent 
properties (Bereiter and Scardamalia, 2005, p. 707).

Lemke and Sabelli further observe:

The education system is one of the most complex and challenging systems for rese-
arch. Much as we know about cognitive aspects of learning, pedagogical strategies, 
and reform implementation, we currently lack the modeling capability needed to 
help practitioners and policymakers explore the potential impact of proposed inter-
ventions, since efforts in this area are still at a very preliminary stage of development 
(Lemke and Sabelli, 2008, p. 128).

From these two perspectives, if current learning and educational research 
has established that there are “no simple causal explanations for anything in this 
field”, then the policy corollary is that there are no simple policies for educational 
initiatives and interventions. To address the implications of this policy corollary, I 
first consider how to view education as a complex system followed by an overview 
of current methodological approaches for conducting education research used to 
inform policy. 

2 EDUCATION AS A COMPLEX SYSTEM

An important framework has been articulated by Lemke and Sabelli (2008) for 
viewing education systems and educational reform initiatives from a complexity 
perspective, which has five main components: i) system definition; ii) structural 
analysis; iii) relationships among subsystems and levels; iv) drivers for change; and 
v) modeling methods. For the purposes of this chapter, the first three components 
are most relevant, and are briefly summarized in turn.

2.1 System elements

Lemke and Sabelli define an educational system in terms of its constituent 
elements and environmental dynamics, such as institutions and social prac-
tices, sources and users of information, and human and material resources. 
The elements to be included in an educational system must be tightly coupled 
and interdependent. For example, students are a critical element in the system 
and they learn in a variety of contexts, such as in formal learning environments 
with teachers at schools and universities and in informal learning environments of 
science museums, mass media, print publishing, and increasingly, online Internet 
mediated sources. Other elements (i.e., stakeholders) in educational systems can 
include school boards and trustees, government education authorities, research 
institutions, sponsors of researchers, and communities.
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Another aspect of an educational system is levels of organization. 
This must be viewed not simply as control hierarchies of lines of authority, but 
also in terms of emergent patterns and processes at mezzo and macro levels of 
the system. There are also information and material resources that flow across 
adjacent and non-adjacent levels of an educational system. For example, at one 
level, the individual grades of a student are sent to parents, as well as being 
transformed and reorganized through pattern-recognition that extracts only 
relevant information for the dynamics of the next higher levels of the school, 
district, state, or country. 

2.2 Structural analysis

The hierarchies of formal organizations provide one way to view an educational 
system, such as individual students and teachers, student groups, classrooms, 
departments, schools, and –depending on terms used in different national systems –  
districts, states or provinces, and the entire national system. Lemke and Sabelli 
(2008) propose that a structural analysis would take into account the different 
timescales that different levels of the system function at, and would analyze the 
dynamic processes within, and emergent properties across different system levels. 

Also critical in defining an educational system is the range of timescales of the 
critical processes. As a central goal of an educational system is fostering individual 
learning, relevant timescales span milliseconds of neuronal synaptic interactions 
and cognitive processes, to minutes for individual students and student-teacher 
conversational interactions, to hours of the school day, to months of school terms, 
to a year at a grade level, to years of primary, secondary, and tertiary education, 
and to years and decades of policy implementations at national levels.

A structural analysis of an educational system must also be concerned with 
issues such as the exchange of information that ranges from classroom activities over 
periods of minutes to curriculum change processes occurring over periods of years. 
Another issue concerns how particular conceptual understandings might develop 
from learning events in classrooms or a laboratory and from experiences in hallways, 
cafeterias, and outside of school. The development of long lasting identities,  
attitudes and values also occur in the context of networks of social interactions 
between peers in a class, in the local community, and in virtual social networks 
of online communities. A structural analysis should also be concerned with how 
the developmental emergence of identities, attitudes, and values that occurs over 
years will affect decisions and actions adults might make in very short timescales 
of seconds, minutes, or hours. At higher system levels, such analyses can examine 
how community problems and changing national priorities influence the overall 
agendas and programs of the larger educational system. Similar issues related to 
teachers could also be analyzed, such as interactions in terms of different timescales 
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with students, supervisors and administrators, teacher educators, curriculum 
developers, educational publishers, and university researchers.

2.3 Relationships among subsystems and levels

Critical in the analysis of complex systems are the relationships within and across 
subsystems and levels. Lemke and Sabelli (2008) argue that of particular importance 
are the levels above and below a specific focal level of interest. A teacher interested 
in implementing a new teaching approach, for example, might consider a level 
below – how students might respond – and a level above – how the principal 
might view the new approach. 

More generally for educational systems, the next higher level of the organization 
might generate positive or negative feedback that could enhance or constrain how 
the dynamics at the focal level unfold. In a similar manner, subsystems at a level 
lower might also provide feedback interactions that could influence the behaviors 
at the focal level. Also of interest in looking at the relationships across system levels 
are the degrees of freedom that exist after constraints are accounted for. 

Critical to understanding educational subsystems and levels are the kinds of 
matter and information that are exchanged, such as classrooms with computers, 
tables, and seating from the school administration and aggregate school performance 
reports provided to policy makers. These interactions across subsystems and levels 
might be tightly coupled, such as when school funding used to purchase computers 
is linked to specific targets for school performance in reports or large-scale national 
or international educational assessments.

In closing this section, there is a further general property of complex systems 
that is of relevance to research and policy involving educational systems, the 
dialectical co-existence of linearity and non-linearity (Jacobson and Kapur, 2012): 

The complexity of emergent behavior comes from the co-existence of linearity and 
non-linearity across and within multiple levels or scales of an open system. Indeed, 
because of this, complex systems exhibit seemingly opposing properties and behaviors: 
randomness and order, predictability (e.g., attractors, highly connected nodes or 
hubs) and unpredictability, coherence and incoherence, stability and instability, 
centralization and decentralization, and so on. It is not one or the other, it is both 
(Kauffman, 1995, p. 310).

3 COMPLEXITY AND METHODOLOGIES FOR STUDYING EDUCATION

Accepting the perspective that education in modern societies should be viewed as 
complex systems is important for academic research exploring how educational 
systems function and behave in terms of relevant subsystems and levels, feedback 
and information flows, emergence, and so on. Also, of particular importance  
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to this volume, a complexity perspective has implications for policies regarding 
educational systems at national and local levels. In fact, these two areas are connected 
in that the information flows available to policy makers are constrained by the types 
of methodologies that have been developed and validated by academic research. 

Broadly speaking, existing methodological approaches for educational research 
fall into two main categories: quantitative and qualitative (Firestone, 1987). 
Quantitative approaches (including quasi-experimental) are pervasively used 
in educational research (Kapur et al., 2007; Suthers and Hundhausen, 2003).  
Rooted in a positivist philosophical tradition, quantitative methods typically seek 
to establish causal or quasi-causal explanations of design or intervention effects 
versus control or comparison conditions . In contrast, qualitative approaches have 
a phenomenological philosophical basis that seeks to describe and to understand 
educational contexts and environments. Although there are educational resear-
chers who exclusively use only one of these methodologies, since the late 1980s it 
has become increasingly common for researchers who study learning to use both 
quantitative and qualitative methods in a complimentary manner in order to 
understand the educational issues being investigated from the different types of 
information generated by these two methodological perspectives.

However, an important question must be asked. Are the existing quantitative 
and qualitative methodologies used in educational research – whether separately 
or in combination – in fact sufficient for providing appropriate information and 
understandings of the dynamics of educational systems viewed from the complexity 
perspectives outlined in the previous section? 

Unfortunately, the answer is “no”. This is because the major mathematical tools 
used in quantitative methods (e.g. differential equations, statistical modeling) are 
fundamentally linear tools that work by breaking a system into its components or 
parts, studying the parts individually, and then adding the parts together to form 
the whole. However, emergent phenomena generally have nonlinear properties that 
cannot be analyzed by “adding up the parts” as the patterns at the macro-level of 
complex systems generally have different properties than the constituent parts at 
the micro-level of the system. As Holland (1995, p. 5) explains, “nonlinearities 
mean that our most useful tools for generalizing observations into theory – trend 
analysis, determination of equilibria, sample means, and so on – are badly blunted”. 

Finally, there is another important limitation that cuts across both quantitative 
and qualitative approaches: they are largely limited to explaining and understanding 
what has already emerged (Epstein and Axtell, 1996). For example, once patterns or 
organizations (e.g., opinions, norms, convergence in group discussions) emerge, they 
can be subjected to quantitative methods to explain aggregate-level relationships. 
At the same time, qualitative methods can be employed to gain rich descriptions 
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and understandings of the trajectories that led to emergent organizations. However, 
if one could unwind time, the same trajectory may not have unfolded even if one 
started with similar initial conditions (Kauffman, 1995). Part of what makes an 
emergent pattern irreducible and therefore its own shortest description is its high 
sensitivity to initial conditions. Consequently, to understand an emergent phenomenon, 
one needs to understand and explain not only the trajectory of evolution that 
actually unfolds but also the possibility space of trajectories of evolution that could 
unfold. Thus, relying mainly on quantitative and qualitative approaches places 
limitations on understandings of the possibility space over which an emergent 
phenomenon may unfold. 

Realizing that quantitative and qualitative approaches each have value for 
educational research, there have been calls for greater integration of these approaches 
moving forward (Firestone, 1987). However, there is an imperative for a methodology 
that not only builds on quantitative and qualitative methods but that is also able 
to appropriately investigate the emergence of learning given the argument that 
both the quantitative and the qualitative approaches – alone or combined – have 
limitations for this undertaking. 

In Jacobson and Kapur (2012), agent-based modeling (ABM) is proposed 
as a methodological complement to quantitative and qualitative approaches in 
educational research given that it is increasingly being used not only in the natural 
sciences (Jackson, 1996) but also in economics (Arthur, Durlauf and Lane, 1997), 
sociology (Watts and Strogatz, 1998), socio-cultural psychology (Axelrod, 1997), 
organizational science (Carley, 2002), just to name a few areas. Grounded in 
complexity theory, ABM is providing important theoretical and empirical insights 
into the dynamics of complex systems (Eidelson, 1997). 

ABMs, when integrated with quantitative and qualitative approaches, can 
potentially reveal insights that may otherwise remain elusive about the dynamics 
of emergence in learning processes and environments, much like how qualitative 
methods can reveal insights into a phenomenon that may not be possible with the 
use of quantitative methods alone. We are beginning to see examples of educational 
and learning research in which ABMs and other modeling techniques are being used 
as an important methodological compliment to traditional approaches, which is 
discussed in the next section.

4  FROM RESEARCH TO POLICY: TOOLS TO STUDY EDUCATION AS  
A COMPLEX SYSTEM

As noted above, Lemke and Sabelli (2008) argue that there was a critical need for 
modeling capabilities that could inform practitioners and policymakers about how 
proposed educational reform interventions might unfold. Recent work indicates 
important progress is being made to address this important need.
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Maroulis et al.  (2010) provide an overview of research involving the appli-
cation of complex systems perspectives, especially computer modeling, to educa-
tional and policy research. They note, for example, that researchers are using new 
visualization tools to examine longitudinal network data in which macro-level 
outcomes such as classroom discipline emerge from micro-level conversational 
interactions of students. Other researchers in sociology are using computer mo-
deling to identify macro-level social groups that emerge from local interactions 
of students in school networks, rather than using a priori student categories such 
as “athletes” or “scholars” (Frank et al., 2008). Maroulis et al. (2010) observe that 
visualization and computer modeling approaches such as these can be used on 
existing data, and thus represent important new analytical tools for researchers 
who are studying educational complex systems.

In terms of research into policy and educational reforms, Maroulis et al. 
(2014) report on their work using ABMs to study initiatives to provide parents 
with school choice in the United States. Briefly, proponents of school choice re-
form argue that competition introduced by allowing parents to select the schools 
their children attend will lead to better schooling and incentives for school reform.  
In contrast, opponents of this type of reform claim resources are drained away from 
schools and that school quality is thus hurt not helped, by such a reform. Research 
into this issue since the 1990s had employed standard quantitative and qualitative 
methods, but these studies have provided inconclusive and even conflicting findings. 

Maroulis et al. (2014) investigated this policy debate by creating ABMs 
of a school district’s transition from a local neighborhood school “catchment 
area” system to a school choice system. The agents in the system were schools 
and students. School agents varied in terms of the quality and building capacity 
of existing schools, and new schools that entered into the system by imitating 
top existing schools. Student agents varied in their ability and background, and 
they would rank schools in terms of achievement and geographic proximity.  
The academic achievement of the student agents combined individual traits and 
the “value added” by the quality of the school they attended. Real data from 
Chicago Public Schools was used to initialize the model (see figure 1).

Analysis of the ABM identified dynamics not revealed in previous quantitative 
and qualitative research. Specifically, model runs demonstrated that the timing of 
new schools entering the system was a critical factor. The overall system improves 
because new schools entering the system imitate the top existing schools. However, 
a high emphasis on achievement at the schools leads to new schools entering the 
system earlier, which resulted in lower achieving new schools. Thus, there was a 
paradoxical mismatch between the macro-level and micro-level behaviors of the 
system in that increasing the emphasis on school achievement at the household level 
did not generally lead to increasing achievement at the district level. From a policy 
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perspective, results of using this ABM suggest the critics of school choice reform were 
correct that school achievement in the overall system would not rise. However, the 
reason proposed by the critics  – draining of resources away from existing schools – 
was not actually the causal factor; rather, it was the timing of new schools entering 
the system. This ABM of the Chicago Public School system also provided insights 
into other systemic effects, such as policy approaches to minimize the unintended 
transfer of top students to private schools where vouchers issued by the government 
were used to pay for the private schooling (Maroulis et al., 2010).

FIGURE 1
Visualization from agent-based model of school choice in Chicago, Illinois

Source: Maroulis et al. (2014).
Obs.:  Small dots represent students, large circles represent schools, circle size represents academic performance, and dark red 

and dark green colors show high and low poverty areas respectively.
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Levin and Datnow (2012) provide another example of the use of computer 
modeling to explore the influence of principal leadership related to implementing 
a high school reform. An educational reform approach involving Data Driven  
Decision Making (DDDM) has been found to be an effective approach for 
guiding educational decisions. The data used to inform the development of the 
ABM – which Levin and Datnow refer to as a multi-mediator model (MMM) – was 
drawn from a case study of an urban school in the United States where the use 
of DDDM had been found to influence positive school outcomes. The MMM 
allows the manipulation of interactions between the district administration that 
wishes implement the DDM reform, the actions of the principal as the site leader 
promoting the DDDM reform, the principal’s interactions with teachers within 
the school, and the interactions of teachers with their students. 

FIGURE 2
A multi-mediator model of DDDM educational reform, including principal, teacher, 
student, and district actions

District actions

Provide DDDM
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Actions that conflict
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Ignore own achievement results

Source: Levin and Datnow (2012).
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The MMM model developed by Levin and Datnow is shown in figure 2. 
Green lines show positive feedback between the network nodes in the model, and 
red lines show negative feedback. The model also illustrates across level feedback 
interactions, such as positive feedback between the District Actions “provide 
DDDM structural support” to the Principal Actions “provide DDDM structural 
support”. However, note that there is negative feedback between Principal Actions 
“build human social capital” and “promote trust” and Teacher Actions “actions 
that conflict with DDDM”. Consistent with the qualitative case study data, the 
models runs revealed that it is necessary for the principal to do both “build human 
social capital” and “promote trust” in order for the DDDM reform initiative to 
be sustainable. One may view the persistence of the DDDM reform as a type of 
phase transition in the school system. Going beyond the data, the MMM may 
then be used to explore “what if ” scenarios. For model runs where the principal 
only engages in one or the other of these two actions, the MMM suggests that 
there would be a high probability that a DDDM reform would fail; that is, there 
would not be a phase transition in the school system. Future research is needed 
involving other case studies, including some with a school where DDDM was not 
successfully implemented to see if there is a “fit” between the new data and the 
MMM, with the possibility that the MMM may need to be revised to account for 
additional factors and dynamics in the new cases.

These projects represent proof-of-concept research that illustrates how 
the use of computer modeling, particularly ABMs, can provide research and 
policy insights about complex educational systems. In this brief overview of 
this very early research, it is clear that complexity-based computer modeling 
approaches can provide analytics and information that goes beyond traditional 
quantitative and qualitative educational research approaches. As Jacobson and 
Kapur (2012) observed, these projects use modeling methods to compliment 
and extend traditional educational research methodologies, not to replace 
them. Considerable work is now needed to develop and validate modeling 
approaches that would meet the needs of policy makers and practitioners. 
Still, these early efforts are quite promising and future research in these areas 
is clearly warranted.

5  CHALLENGES OF LEARNING ABOUT COMPLEX SYSTEMS AND IMPLICATIONS

In this chapter, I have argued that research into the dynamics and properties of 
complex physical and social systems is relevant for understanding important cha-
racteristics of educational systems. Further, there is now a body of research that 
has demonstrated ways in which complexity conceptual perspectives and metho-
dologies can in fact be effectively used to study aspects of educational systems that 
compliment existing educational research approaches.
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However, although complex systems are commonly experienced, research 
indicates that there are significant differences in ways that experts and novices 
think about complex systems (Hmelo-Silver, Marathe and Liu, 2007; Jacobson, 
2001). This is not surprising as currently core ideas about complex systems (e.g., 
self-organization, chaos, emergence) and research methods (e.g., agent-based 
modeling) are currently not systematically taught in any of the science curricula of 
major OECD countries. This is an issue as it means the majority of non-scientist 
adults (i.e., former students) who might be involved in professional areas, 
government policy organizations, or political service are unlikely to have had 
any direct exposure to complexity perspectives as part of their formal schooling. 
To address this issue, there is a case to be made about the need to make changes 
to science standards, to develop new curricular materials, to educate and prepare 
teachers to teach new advanced knowledge areas such as complex systems, to 
develop relevant assessments, and so on, all of which are all areas that have policy 
implications. One step in this direction is the Next Generation Science Standards 
(National Research Council, 2013), which does provide recommendations for 
starting to teach complexity concepts at pre-university levels in the United States. 
The learning of complexity concepts and methods may also be an issue for many 
practicing social scientists who might be involved with doing research about edu-
cational systems, which has implications for professional development at this time.

There is a broader and perhaps deeper learning challenge concerning complexity 
perspectives beyond conceptual understanding, which is the epistemic implication 
of complex systems theory and methods. A key, and perhaps counterintuitive, 
epistemic aspect of complex systems views is that the apparent complexity in the 
behavior of many complex systems may be described in terms of the interaction of 
system elements based on relatively simple rules. This perspective seems implicit 
in views of Simon (1996, p. 1): “The central task of a natural science is to make 
the wonderful commonplace: to show that complexity, correctly viewed, is only 
a mask for simplicity; to find pattern hidden in apparent chaos”. I call this the 
simplicity-complexity epistemic view.

Complexity perspectives represent a challenge to what I believe is a reasonably 
common epistemic view of complexity-complexity, which is that complex systems 
such as educational researchers study must have “complex” explanations whereas 
simple systems would, of course, have simple explanations. Indeed, a complexity-
-complexity epistemic bias – and its corollary, a simplicity-simplicity epistemic bias –  
would seem to be obvious characteristics of “common sense.” For example, a sim-
ple machine such as a pulley may be explained as a robe wrapped around a wheel 
with a grove to raise or lower something, whereas the behavior and operation of 
a complex machine such as a modern jet airliner could only be explained with 
complex concepts from physics (i.e., Bernoulli effect), engineering and materials 
science, business models to finance and maintain, and so on.
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While there has been no direct research into this conjecture, I believe that 
many educational researchers and probably policy agency individuals tend to have 
epistemic commitments to the complexity-complexity bias. If this is so, then an 
important epistemic challenge of complexity perspectives for educational research 
and for policy makers is that one does not necessarily need complex explana-
tions for complex behavior; such behavior may very well be explained from the 
“bottom up” via simple, minimal information, such as utility functions, decision 
rules, or heuristics contained in local interactions (Nowak, 2004). Of course, it 
may be that future educational research into educational complex systems may 
or may not align with a simplicity-complexity epistemic view. Still, being aware 
of epistemic assumptions such as these has value to educational researchers and 
education policy makers.

6 CONCLUSION

In closing this chapter, I revisit questions that were posed by Lemke and Sabelli (2008):

Can the new tools of complex system analysis help us understand the potential impact 
on the educational system of new technologies and help us predict the paths that 
different efforts at systemic reform follow? (…) Can they help us identify critical 
relationships within the educational system that resist systemic change or afford 
opportunities for new alternatives? (…) If the answers to any of these questions are 
to be “yes”, we will require collaboration within a diverse new community of researchers 
seeking a common framework for sharing ideas from different disciplines and 
approaches to both complex system analysis and to education.

It would seem that now several years since these questions were posed, we can 
in fact say a provisional “yes” to several of them. Given this positive affirmation, 
and given the range of educational needs and challenges in the 21st century, both 
in developed and developing countries, there is an urgent need to foster a broader 
awareness of the intellectual and methodological tools of complexity for applicability 
to the study of educational systems. There is a similar concurrent urgency for poli-
ticians and other stakeholders in education who shape educational policy as well. 
It is hoped that this chapter will contribute to the dialog to advance awareness of 
both the urgency and the opportunities of viewing education as a complex system.
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CHAPTER 15

COMPLEX APPROACHES FOR EDUCATION IN BRAZIL
Patrícia A. Morita Sakowski1 

Marina H. Tóvolli2

1 INTRODUCTION

Education systems encompass a large number of heterogeneous agents, whose 
interactions give rise to learning, teaching, cognition and education. They are 
comprised of interconnected layers, each of which provides support and restraints 
to the others. Through mechanisms of feedback and adaptation, these systems and 
their agents co-evolve. All these features make education systems complex.

The heterogeneous agents in an education system are, for example, students, 
teachers, and parents. Every student learns in a different way, every teacher has his/
her methods of teaching, and every parent raises his/her child in his/her distinct 
manner. Learning emerges not only from information passed from teachers, but as 
the result of interactions between students and other individuals, both in formal 
and informal environments.

Education systems are comprised of various interconnected layers. In a macro 
perspective, they involve government institutions, such as the Ministry of Education 
and the network of schools and universities. However, the ministries of Finance, 
Health and Transport, among others, can also be considered part of this system, 
as they influence the allocation of financial resources, the health conditions to the 
population, and the accessibility to schools, respectively.

In a lower level, schools cannot be separated from the context in which they 
exist. Out-of-school factors, such as the safety of the neighborhood or the social-
economic standing of the community, impact the attendance of students and their 
academic performance. Similarly, higher education influences and is influenced 
by basic education. 

At the interpersonal level, students interact with their peers, teachers, parents, 
school managers and the community as a whole, while at the intrapersonal level, 
learning results from mental processes influenced by personal interests, personal 

1. Researcher and Chief of The Planning and Institutional Articulation Advisory Board (Aspla/Ipea).
2. Research Assistant at Ipea.
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history, hormone levels, working memory and other specific features in response 
to stimuli from the environment. 

Educational features in a society emerge thus from the interaction of all these 
different scales, which cannot be isolated from each other. Due to the complex 
nature of educational systems, traditional linear methodologies are not sufficient 
to capture their dynamics. The presence of multiple causalities and non-linearity 
might even put in doubt the external validity of results obtained in rigorous ran-
domized controlled trials, as controlling for all key variables might be unattainable 
in educational research (Cohen, Manion and Morrison, 2003).

Given the complex nature of education, complex systems’ methodologies 
can help analyze education in different ways. First, simply understanding the 
complex nature of educational systems might help researchers refrain from having 
a mechanistic view of education, governed by simple causalities and levers that 
lead to predictable results. 

Second, modeling education can provide a better comprehension of the 
dynamics of the system. By trying to identify the key elements and rules within a 
system, one can little by little understand how the different agents interrelate as well 
as simulate possible outcomes of a given intervention, for instance. In this respect, 
the role of models as theory communicators should be emphasized (Heemskerk, 
Wilson and Pavao-Zuckerman, 2003). By means of collaborative research, models 
can be improved, at the same time enriching the understanding of the phenomena.

The availability of loads of data on education also makes viable association 
studies. Machine learning techniques and network analysis can provide valuable 
insights into general trends or specific aspects to be furthered studied. Besides, 
tackling the complexity of educational systems might be the way of finding simple 
solutions (Berlow et al., 2014). For example, by understanding the network of 
relationships involved in the system, one could identify the central nodes or leverage  
points through which changes could be brought upon.

It is important to mention that complex systems methodologies are not a 
substitute for traditional educational research methods, though, but a complement 
to them. Knowledge about educational systems might emerge from the combina-
tion of evidence-based research, traditional quantitative and qualitative methods, 
associative studies and modeling.

As presented in the previous chapter, considerable amount of research has 
been done exploring the complex nature of educational systems, learning and 
teaching worldwide. In Brazil, however, this area is still incipient. The aim of this 
chapter is to analyze what has been done in the area in the country so far and to 
explore how the complexity approach can help education in Brazil. Following 
this introduction, section 2 focuses on the use of complexity concepts to think 
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education in a more theoretical sense. Section 3 presents applications of complex 
systems’ methods and methodologies in the country. Finally, section 4 discusses 
why the complexity approach seems particularly suitable for analyzing and helping 
improve education in Brazil.

2 COMPLEX THINKING IN EDUCATION

The discussion of the complexity perspective in Brazil has particularly been marked 
by the contributions of the French philosopher and sociologist Edgar Morin. Many 
studies have been focused in discussing complexity concepts and the need to rethink 
education, with a special concern on reframing pedagogical practices. This new 
perspective challenges the traditional paradigm based on instructive theories, and 
proposes a new paradigm from the epistemological postulates formulated in the 
biological and quantum theories. 

The traditional or Newtonian-Cartesian paradigm has as main postulates the 
fragmentation and the dualistic view of the universe. It has influenced the education, 
the schools and the pedagogical practices worldwide (Behrens and Oliari, 2007). 
The pedagogical practices have been built upon a Cartesian view of dichotomy of 
the dualities, such as subject-object, part-whole, rational-emotional, local-global, 
ignoring the interconnection between these binary pairs. What is seen is the subdi-
vision of knowledge in areas, institutes, and departments, in which principles like 
fragmentation, division, simplification and reductionism are dominant, resulting in 
a de-contextualized pedagogical practice (Santos, 2008). These principles, brought 
about the disciplinary structure of knowledge, made knowledge lose its meaning 
(Petraglia, 1995).

According to Araújo (2007), the pedagogical practices have emphasized 
instructive aspects in the place of creative, reflexive, constructive and cooperative 
aspects, producing i) a rigidity process, a transmission of content that favors the 
memorization of isolated information; and ii) a process that ignores the context, 
the involvement of the students, and their heterogeneity.3 The student is seen as 
a spectator; someone that must copy, memorize, and reproduce the information 
passed on by the teacher (Behrens, 1999). 

In general, most teachers tend to perceive and represent the world through 
the classical physics’ lens, by which reality is seen as stable, predictable, and prede-
termined. In contrast with the traditional paradigm, the quantum and biological  
theories present some epistemological principles, such as the dialogical and uncer-

3. Araújo (2007), particularly interested in the emergent challenges of the online education, notes that there are 
distance learning courses that still present a disciplinary structure, strongly marked by the instructive vision. For the 
author, instructive models are scientifically archaic, and they tend to simplify the process of knowledge construction. 
This implies the need to investigate the use of technologies in distance learning courses from an e-learning perspective, 
allowing the construction of an autonomous thought.
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tainty, which help us to rethink education and to reframe the pedagogical practices 
(Moraes, 2004a). Some of these principles are briefly presented below.

2.1 The dialogical principle

Morin (2011) points out the dialogical principle as an important complexity 
concept. This principle refers to the capacity of association between two items 
that are antagonistic and at the same time complements. For example, order and 
disorder are antagonistic, but they can be complements in some situations, by  
collaborating and producing organization and complexity, in such a way, that there 
is duality within the unity.

Considering the dialogical principle, Guimarães et al. (2009) argue that the 
involvement of opposites implies the valuing of pedagogical practices that take 
into account conflict; that observe the whole, the parts and interaction of the 
parts, instead of isolating them. By this view, the fragmented curriculum would 
be replaced by a curriculum that enables communication and dialogue among 
wisdoms, promoting the construction of the whole.

2.2 The complementarity of opposites
Related to the dialogical principle, there is the idea of complementarity of opposites.4 
In the educational context, Santos (2008) calls attention to the dichotomization 
and emphasis in only one attribute of the binary pairs, such as rationality, what 
contributes to an unilateral view and an incomprehension of the learning process. 
As a result, the students are not able to articulate the diverse individual dimensions. 
By this scenario, Santos (2008, p. 77) proposes an articulation of the binary pairs, 
so as to obtain a more complete view of the phenomena being observed. For the 
author, “reason without emotion does not capture the human characteristic, while 
emotion without reason leads to nowhere.” 

Another example is the binary order-disorder. For Santos (2008) there is a 
symbiotic relationship of interdependence between order and disorder. In relation 
to educational management, she argues that:

order is represented by legislation and by organization, legal and bureaucratic 
norms, curricular structure. In the management of this organization, the dis-
order and the ambiguity arise, introduced by the subjects that give dynamicity  
to the model of functionality and rationality of the system. Human beings, with 
their diversity, give support and functionality to the management of the organization.  
People’s behavior in the institution is a mixture of dependence and autonomy (another 
binary pair). Order is desirable, but disorder, spontaneity, disobedience, provide vitality 
to the institution, although, in excess, lead to its disintegration (Santos, 2008, p. 78).5

4. The principle of complementary of opposites was proposed by the Danish physicist Niels Bohr, by which he argues 
that wave and particle composes the same reality (Santos, 2008).
5. All quotes in this chapter were translated by the authors.
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2.3 Uncertainty and nonlinearity

These ideas lead us to the importance of uncertainty and non-linearity. As pointed 
out by Santos (2008), the principle of complementarity of opposites argues for the 
articulation of dualities, such as certainty and uncertainty, denying a reductionist 
and deterministic view. The uncertainty concept goes against the dichotomized 
dualistic view, which emphasizes only order and certainty. The school maintains 
a scenario of certainty by repeating norms, values, and social sanctions, and by 
following the institutionalized rules, such as evaluation rules, in a way that the 
teacher’s behavior becomes predictable. Most of the time, teachers disregard 
the uncertain and complex characteristics of the knowledge building process, 
depersonalizing and homogenizing the students. Santos (2008), by considering 
that the characteristics of the subject, of the knowledge and of the society are  
dynamic, argues that the articulation of certainty and uncertainty in the pedagogi-
cal practices is fundamental.

Besides, the uncertainty concept opposes the linear causality view grounded 
in the Cartesian rationality, by questioning the stability, the determination and 
foreseeability of the phenomena (Moraes, 2004a; 2004b). Non-linear dynamics 
counteract the pedagogical practices based on instructive theories that compre-
hend the knowledge building process as linear, and that do not account for the 
collaborative and interactive learning (Araújo, 2007).

2.4 Organizational recursion

Another important complexity concept is organizational recursion. According 
to Morin (2011, p. 74), a recursive process is “a process in which the outcomes 
and effects are at the same time causes and inputs of what had produced them”. 
The recursive principle breaks up with the idea of cause and effect, by presenting the 
cyclic concept that everything that is produced returns on what had produced it. 

This idea is congruent to the educational system if we consider it as a system 
that self-organizes; in the sense that a student is an outcome of a determined edu-
cational system, and at the same time the student influences the system. Therefore, 
the retroactive relations between the student and the system make the system evolve 
and develop (Moares, 2004a).

The same idea is seen when we talk about the construction of knowledge. 
According to Bonilla (2002), information and knowledge are related. But since 
meaning lays within the interpreter, information only gains meaning within a 
human context. Knowledge then would be the process of attributing meaning to 
information; and this would occur in the interactions among the agents, and in-
teractions between agents and the world. Therefore, the construction of knowledge 
comprehends a recursive organization, in which agents transform knowledge, and 
knowledge transforms the agents that had produced it.
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2.5 The autopoiesis principle

Related to organizational recursion is the principle of autopoiesis formulated by the 
Chilean biologists and philosophers Maturana and Varela.6 This principle refers to 
an autonomous unit that constitutes itself as a network of components production, 
in which each component participates recursively in the same network. That is, 
there is no separation between the product and the producer; in such a way that 
the autopoietic organization is itself the product of its operations (Varela et al., 
1974; Maturana and Varela, 1995).7

Based on this idea, Moraes and Torre (2006) argue that learning implies au-
topoietic processes, since knowledge and learning are interpretative and recursive 
processes, produced by the agent when he/she interacts with the environment. 
The authors call attention to the impossibility to predict what happens with the 
student only by observing the environment in which he/she is embedded, since 
the environment does not determine, but it can only unleash the changes on the 
cognitive-emotional structure of the student. This implies that a teacher’s dynam-
ics can work well with a specific group of students, but not with another group.

In accordance with Moraes and Torre, Santos (2008) argues that for the 
pedagogical practice this implies that the professor should adopt a methodol-
ogy that pushes the students to produce knowledge by their own. The professor 
would facilitate the dialogue among the wisdoms, respecting the heterogeneity of 
each student, since each student has his/her own way of learning and of solving 
problems. By considering that the environment influences the individual, Santos 
(2008) emphasizes that knowledge should be seen as a result of the entanglement 
of physical, biological and social aspects. For her this implies the need to reframe 
the perception’s concept.

2.6 Hologramatic principle

The last principle presented here is the hologramatic principle. Proposed by Edgar 
Morin (2011), the hologramatic principle refers to the idea that the part consti-
tutes the whole, and the whole constitutes the part. The author uses the idea of 

6. Maturana and Varela, aiming at comprehending the living being organization, postulate the autopoietic principle, 
affirming that all living being is an autopoietic organization. The cell, for example, “is a network of chemical reactions 
which produce molecules such that: i) through their interactions generate and participate recursively in the same network 
of reactions which produced them; and ii) realize the cell as a material unity” (Varela et al., 1974, p.560). 
7. The main difference between the former organizational recursion and the autopoiesis is how the authors understand 
autonomy per se. Morin (2011) considers a relative autonomy – the individual is indeed dependent on the environ-
ment –, while Maturana and Varela (1995) admit an absolute autonomy. For them, each autopoietic unit presents a 
particular structure, and when the autopoietic unit interacts with the environment, the structure of the environment 
does not determine; but it only unleashes structure changes of the unit. That is, due to the autopoiesis organization, 
the system is autonomous of the environment. The system and environment are interrelated but not dependent; each 
system operates independent from the other.
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the physical hologram to argue that the smallest image’s point of the hologram 
contains almost the whole information of the represented object.

This goes against the current disciplinary structure of knowledge, based on 
Cartesian orientations, in which it is believed that the sum of the parts listed in the 
curriculums is equal to the whole knowledge. This disciplinary structure hinders 
the student to establish relationships between the knowledge obtained (Santos, 
2008). Considering that to understand the parts, one needs to understand the 
inter-relationships between the parts and the whole, Santos argues that in order 
to explain isolated phenomena, the context is essential. For the author there is the 
need to invert the binary part-whole, and to interconnect the fragmented totality.

One way to overcome the current fragmented disciplinary structure, and to 
articulate the opposites is transdisciplinarity. Transdisciplinarity points out that 
what seems contradictory in one level of reality, may be coherent in another level of 
reality; meaning that there is no absolute truth, but instead relative truths, subjects 
to constant changes. As such, transdisciplinarity offers a wider understanding of 
reality; reality assumes a wider meaning (Santos, 2008).

From the transdisciplinarity view, knowledge is seen as a web of connec-
tions, a network. Knowledge is multidimensional, given the different levels of 
reality in the cognitive process (Santos, 2008). For Santos, by following traditional 
pedagogical practices, teachers tend to disregard the hologramatic principle, and 
not to articulate the diverse wisdoms in the construction of a multidimensional 
knowledge. Given the complexity of the phenomena, understanding an object in 
its diverse dimensions, requires both transdisciplinary knowledge and transdisci-
plinary observers. As put by the author:

Transdisciplinarity maximizes learning by working with images and concepts that 
mobilize mutually mental, emotional and body dimensions, intertwining horizontal 
and vertical relations of knowledge. It produces situations in which there is larger 
involvement of students in their own construction of meanings (Santos, 2008, p. 76).

3 COMPLEX SYSTEMS’ METHODS AND METHODOLOGIES IN EDUCATION

The previous section presented a discussion on the use of theoretical concepts of 
complexity to think education in Brazil. This section focuses on the applications 
of complex systems’ methods and methodologies in education in Brazil. These 
applications can be divided in two main groups: those predominantly related to 
modeling and those mostly related to data availability. The separation is mostly for 
analytical reasons, as these two groups are fundamentally intertwined and intercon-
nected. Modeling encompasses Cellular Automata and Agent-Based Modeling; 
System Dynamics; Network Analysis; and Intelligent Tutoring Systems, while 
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Educational Data Mining; Learning Analytics, and Data Visualization compose 
the second group.8

3.1 Agent-based models and cellular automata

In Brazil, agent-based models and cellular automata have been used mostly for 
teaching complexity concepts, Science and Maths at different educational levels. 
Xavier and Borges (2004), for instance, discuss the use of cellular automata for 
teaching about emerging patterns and complex behavior to students in the last year 
of basic education. Uehara and Silveira (2008) focus on the application of cellular 
automata for teaching Calculus in Computer Science undergraduate courses. Other 
examples include the use of computational modeling and simulation for teaching 
Physics (Gomes and Ferracioli, 2002), Chemistry (Recchi and Martins, 2013), 
Biology (Pereira and Sampaio, 2008), and Environmental education (Santos et 
al., 2001).9 

The software Netlogo is popular in many of these applications. Recchi and 
Martins (2013), for example, used Netlogo to teach Chemistry and Science in an 
undergraduate course. In the course, the students were asked to develop projects 
using the Netlogo software. One interesting study conducted by one group of 
students simulated the diffusion of AIDS. By doing this, the students were able 
to better understand the concepts and mechanisms of infectious disease, as well 
as the factors that contribute to its proliferation. As such, the software promotes 
a dynamic learning process, in which the student is able to intervene and interact 
with the software, and to construct knowledge by him/herself. 

The use of cellular automata and agent based modeling for teaching is also 
thorough abroad. A research project at Stanford University, for instance, promotes 
the use of computational models to link physical and virtual experiments in Science 
classes (Blikstein, 2012). In contrast to Brazil, agent-based models have been more 
directly applied to analyze educational policy abroad. Maroulis, Bakshy, Gomes and 
Wilensky (2010) simulate an agent-based model in order to investigate the impact 
of choice-based reforms in Chicago public schools (see previous chapter), while 
Millington, Butler and Hamnett (2014) use an agent-based model to analyze the 
impact of distance-based school-place allocation policies in the United Kingdom. 
Similar kinds of study have not been found in the country. 

8. For more information on methods and methodologies of complex systems, see chapter 3.
9. The use of games in education can also be considered a simulation based approach and is gaining popularity in 
Brazil (Borges et al., 2013).
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3.2 System dynamics

As OECD (2009, p. 10) puts it, 

Dynamical systems models are generally sets of differential equations or iterative 
discrete equations, used to describe the behavior of interacting parts in a complex 
system, often including positive and negative feedback loops. They are used to enable 
simulation of, among other things, the results of alternative system interventions (for 
example, which incentives are most likely to yield adoption of alternative energies by 
consumers and power companies). They have also been used to anticipate unintended 
consequences of policies (for example, the impact of increased availability of health 
insurance on decreases in preventive health behaviors).

Only one application of System Dynamics to educational policy was found in 
Brazil. Concerned about a possible failure of reaching the enrollment goal established 
in the National Education Plan (NEP),10 Strauss and Borenstein (2014) applied 
the dynamic systems methodology to better analyze and understand the dynamics 
of the higher educational system in Brazil. They developed a model that allowed 
them to simulate the behavior of many variables, such as government regulation, 
demand and supply, and the private and public sector, in order to analyze the effects 
of different policies. The scenario analysis enabled a better understanding of the 
dynamic behavior of the higher educational system in Brazil, giving support to the 
development of effective strategies and the improvement of educational policies.

One similar example abroad is the work by Murthy et al. (2010) who use 
a system dynamics simulation model to analyze and plan future investments of 
a distance education program at a leading engineering institute in India. Other 
related papers (Al Hallak et al., 2009; Dahlan et al., 2010; Rodrigues et al., 2012) 
use the system dynamics approach as decision support systems for higher educa-
tion management. 

3.3 Network analysis

Different examples of network analysis applied to education were found in Brazil. 
Mesquita et al. (2008) apply the methodology of network analysis to investigate the 
organization and potential action of a group of teachers, technicians, coordinators  
and schools directors from the municipal schools of the city of Fortaleza, who 
have as common goal the socio-educational inclusion of individuals with special 
needs. By identifying each actor’s role, the size and density of the network, and 
the key actors that sustain and may expand the network, the analysis supports the 
construction of effective actions that can foster a better functioning of the group. 
This involves stimulating the sharing of information and experiences in order to 
promote the inclusion of individuals with special needs.

10. The PNE (2011/2020) establishes the goal of increasing the liquid enrollment rate of higher education to 33% of 
the population between 18-24 years-old (Ministério da Educação, 2011).
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Aquino Guimarães et al. (2009) apply network analysis in order to examine 
the network of graduate programs in management in Brazil. Given the lack of aca-
demic research tradition in the area, the authors consider that articulation among 
the graduate programs would increase national publications in management and 
consolidate this scientific field in the country. That is, a strong and dense network, 
regarding the diversity of grounded edges and the number of actors (programs) 
involved respectively, tend to promote an increase in the amount and quality of 
scientific production. 

Therefore, a better understanding of the graduate programs’ network allows 
that each program identifies its role in the network and its potential contributions 
for the strengthening and expansion of the network. Besides, it contributes to the 
formulation of more adequate public policies, by providing important informa-
tion to the development of graduate programs in the country (Aquino Guimarães  
et al., 2009).The study shows that the network of graduate programs in manage-
ment in Brazil is weak and diffuse, what indicates that there are few partnerships 
and shared activities among the programs. Besides, the nature of the institution, 
whether public or private, seems not to be an important factor for the constitution 
of the network. By the study, Aquino Guimarães et al. (2009) argue that institu-
tional policies that may foster the practice of joint researches and the exchange of 
professors and students should be taken into account as a way to increase coopera-
tion and the strength of the graduate programs’ network. 

A similar study investigates the network of research institutes of public and 
social management in Brazil (Rossoni et al., 2008). The analysis demonstrates a 
diffuse network, in which the stronger links lie between institutions within the 
same state. Besides, the structure of the network is related to the scientific produc-
tion index of each research institution. In the same line, Silva et al. (2006) use the 
network analysis method to examine the co-authorship network of professors in 
the postgraduate program of information science.

Another interesting application examines interactive systems and Learning 
Objects (LOs) in the teaching and learning process. Rossi et al. (2013) use the 
network analysis method to evaluate learning from the use of a game that exercises 
mathematical operations with fractions. The method allowed the authors to analyze 
students’ participation in the game and their performance, and to identify learning 
deficiencies within a group of students.

Further studies using network analysis could encompass the use of contagion 
and opinion formation11 models to analyze how education propagates in society.12

11. See chapter 7 on the complex nature of social systems.
12. For a more general overview of the use of network analysis on educational research, see Daly (2010) and Carolan (2013).
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3.4 Intelligent tutoring systems

Intelligent tutoring systems are linked to the application of artificial intelligence 
to education and can be described as “computer software designed to simulate 
a human tutor’s behavior and guidance” (Educause, 2013, p. 1).13 Intelligent 
tutoring systems differ from other computer-aided instruction, in that they are 
able to interpret complex student responses and they learn as they operate. This 
means these systems do not merely check whether an answer is right or wrong, 
but identify where in that response the student has gone wrong. Also, they can 
adjust their knowledge base using data generated by students using the system, and 
alter their tutoring behavior in real time to be more effective (Educause, 2013). 
Massive online courses (MOOCS), such as Coursera and Edx are examples of 
computer-aided instruction, as they do not adapt according to student’s behavior. 
They consist mostly of pre-recorded videos and exercises whose content does not 
change based on how students respond. They do have the potential to turn into 
intelligent tutoring systems though. 

The best example for intelligent tutoring systems in Brazil is arguably “geekie”.14 
Geekie is an intelligent tutoring system developed in the country, which offers 
computer-aided tutoring for students connected to the internet. In 2014, Geekie 
partnered with the Secretariat of Education of different states in Brazil to offer 
its intelligent tutoring system for free for students to prepare for ENEM (Exame 
Nacional do Ensino Médio), a national exam taken by students to enter university. 
When the student first logs into the system, he or she takes a diagnosis test, based 
on which the system identifies the student’s difficulties and proficiency level in 
different content areas and builds a personalized study plan. The students’ progress 
reports are sent to teachers and managers, so that they can adapt their lesson plan 
accordingly. In its website, Geekie states that the system has had an impact on 13 
thousand public schools and over 2 million students.

Research on intelligent tutoring systems is plentiful in Brazil and tends to 
be concentrated in Computer Science Departments. The Brazilian Symposium 
and the Brazilian Congress on Informatics in Education (SBIE and CBIE), for 
instance, bring together much of the research in the area. Bittencourt et al. (2009) 
and Brusilovsky and Peylo (2003), for example, build adaptive learning platforms, 
which use data from the student to provide a customized learning experience.

Müller and Silveira (2013) use a recommendation technique – analogous to 
the ones employed to suggest products to consumers – in order to suggest users in 
a system that might help others in solving a particular problem. In other words, 
the system uses social matching to support the formation of pairs. The system 

13. More information on intelligent tutoring systems can be found in Koedinger et al. (2013).
14. Available at: <www.geekie.com.br>.
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is aimed at teachers that might be having difficulties using a computer-teaching 
platform. When a teacher has a doubt, the system helps finding a person with a 
similar system configuration and skill level to help solve the first teachers’ question.

3.5 Learning analytics and educational data mining

All these intelligent tutoring systems, MOOCs, and other educational technologies 
are producing vast amounts of data, that can help understand how students learn 
and, by doing this, enable more intelligent, interactive, engaging and effective 
education (Koedinger et al., 2013).

Data mining and analytics refer to “methodologies that extract useful and 
actionable information from large datasets”, such as the aforementioned ones. When 
these methodologies are applied to education, they are referred to as educational 
data mining and learning analytics (Baker and Siemens, 2014).15

Baker and Siemens (2014)16 categorize the key methodologies in the field in 
five main groups: prediction methods, structure discovery, relationship mining, 
distillation of data for human judgment and discovery with models. The main 
models for prediction are classifiers, regressors and latent knowledge estimation. 
For example, by studying students’ data, one can try to identify students with a 
higher risk of dropping out; and by analyzing students’ answers, one can estimate 
latent knowledge. Structure discovery encompasses clustering, factor analysis, 
social network analysis, and domain structure discovery. In an exercise to which 
students answer in different ways, clustering techniques can help identifying a 
cluster of wrong answers and detecting concepts that are being misunderstood, 
so that videos can be sent to students to clarify such points. Relationship mining 
involves four main groups: association rule mining, correlation mining, sequential 
pattern mining, and causal data mining. Distillation of data for human judgment is 
related to visualization17 strategies to present data to educators in a timely fashion,  
such as heat maps, learning curves and learnograms. Finally, discovery with models 
involves the use of a prediction model inside another prediction model, or within 
a relationship mining analysis, for example.

Big data in education seems to be the area which has advanced the most. In 
the world, Learning Analytics and Educational Data Mining have been used, for 
example, to study online courses, to support the development of more effective 
e-learning systems, and to explore how children “game the system” (Baker and 
Yacef, 2009; Kotsiantis, 2012; Siemens and Baker, 2012). Eye tracking data and 

15. For more on the development of the two communities – Learning Analytics and Educational Data Mining – and 
their differences, see Siemens and Baker (2012) and Baker and Siemens (2014).
16. The paper provides detailed explanations and examples of applications of these methodologies.
17. The issue of visualization is discussed in more details in the following section.
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movement sensors have been used to give insights into the very learning process 
taking place when a child is doing an assignment (Blikstein, 2011); and machine 
learning has been used to help predict when a student will drop-out or fail school 
(Bayer et al., 2012; Márquez-Vera et al., 2013). 

In Brazil, though, such applications are scarcer, although still plentiful. 
Kampff (2009) tried to identify characteristics and behavior of students who 
had a higher risk of failing in a virtual learning environment. The system then 
alerted the teacher that the student might need some special attention and sug-
gested what the teacher could do based on previous experiences. Pimentel and 
Omar (2006) used students’ data to identify the relationship between cognitive 
and metacognitive skills, that is: does what we believe to know relate to what we 
actually know? Finally, Rigo et al. (2014) discuss improvements needed in the 
application of educational data mining, such as the implementation of interactive 
solutions, so that results can effectively support the detection of behavior linked 
to dropping out of school. 

3.6 Visualization

Loads of data on education might be available, and powerful models might help 
simulate policy interventions and understand education mechanisms better. These 
efforts will have minor contributions though, if stakeholders cannot understand 
what all these data and models are saying. This is why the distillation of data for 
human judgment mentioned in the previous section is crucial.

As Rand (chapter 2) puts it, stakeholders and decision makers need to 
understand the analyses in order to make appropriate decisions. “In some cases, 
they do not have the complex systems literacy necessary to understand the results. 
Education (about complex systems) will help this, but so will increased efforts in 
visualization, since visualization can make results and models easier to understand.” 

Gentille also emphasizes the importance of visualization and interactivity: 
“Thought must be given to how simulation results are presented to stakeholders, 
minding their interests, salience and experience. Promote ad-hoc data exploration  
because it facilitates model verification, validation and knowledge discovery” 
(Gentile, 2014).

One of the most prominent examples in Brazil regarding visualization is 
the site Qedu.18 Qedu is a free open-access portal, which presents information 
on school quality for the federal, state, municipal and school level. Basically, it 
brings together all data that are being generated by different learning assessments 

18. Available at: <www.qedu.org.br>.
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conducted in Brazil, and presents them in an easier and more manageable way for 
the ample public to understand.

The portal shows, for example, that only 12% of children in the last year of 
basic school in Brazil reached adequate learning in Maths in 2011. It also allows the 
user to see how this percentage varies per state. In Alagoas and Amapá, for instance, 
this percentage (3%) is the lowest in the country, while the states of Minas Gerais 
(22%) and Santa Catarina (17%) show the best results. When zooming in the state 
of Minas Gerais, though, the results per city are very heterogenous. In Gameleiras, 
in the North of the state, this percentage is 3%, while in Coronel Xavier Chaves, 
also in the North, this percentage is 85%. Besides, the site allows the user to see 
the result as far as the level of the school. This can be an important instrument for 
parents and the population in general to accompany the performance of students, 
to help them choose schools and demand from them, and to be an active agent 
who can try to influence the educational system.

4 DISCUSSION

This chapter provided an overview of the application of the complex systems’ 
approach to education in Brazil. The first part explored the use of complexity 
concepts and views to think education in a theoretical sense, while the second 
focused on applications of methods and methodologies. This analysis brought up 
a couple of insights for teaching, learning and for educational policy in Brazil, 
which are discussed in this section. 

First, teaching students and stakeholders complexity concepts might be relevant. 
As Rand (Complex systems: concepts, literature, possibilities and limitations, chapter 
2 of this book) puts it, from a young age people tend to develop a deterministic 
and centralized mindset, that is, they expect systems to have deterministic rules 
that govern their behavior and that there is a central controller in most systems. 
However, most complex systems show the opposite. Therefore, exposing students 
to complexity concepts might help counteract this tendency.

Also, complex systems methods can be considered relatively new in educa-
tional research in Brazil. Researchers with a thorough knowledge of the theme 
are relatively scarce and there is less tradition of quantitative or computationally 
intensive approaches in education research. Actually, most of the applications tend 
to come from computer science rather than education departments. Teaching edu-
cators complex systems concepts and familiarizing stakeholders with its terms and 
methodologies might thus be an important step towards improving educational 
research, which can bring important insights to educational policy.
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Second, promoting a transdiscilipinary curriculum at the student level and 
conducting interdisciplinary analysis at the policy-research level might be crucial to 
promote effective learning and to tackle the complex nature of educational systems. 

As Carter and Reardon (2014, p. 16, our griffon) comment on educational 
inequality: 

The multidimensional problems of inequality require multidimensional solutions, perhaps 
developed through innovative, interdisciplinary collaborations between seasoned 
researchers and the next generation of researchers. As we move forward, tackling 
inequality through research, policy, and practice mandates an ecological approach 
that attends to the multiple, interlocking domains of inequality. Mixed-method research 
projects, in particular, may be necessary to produce both generalizable findings and 
deeper insight into the subtle, often invisible social mechanisms that shape individu-
als’ lived experiences.

Third, it seems important to recognize and incorporate students’ heterogeneity 
in educational practice and research. Given the high levels of inequality in Brazil, 
taking students’ heterogeneity in account is critical. 

Forth, computational modeling and simulation are powerful tools to teach 
complex concepts at the student level, and to analyze complex problems at the 
research and policy level. Models can help understand underlying mechanisms 
and be used as decision support tools.

Fifth, network analysis can be employed for promoting system’s resilience, 
identifying key nodes, and promoting information flow. On the data side, data are 
precious resource to improve knowledge about learning and to validate and improve 
models. Visualization efforts are crucial though to promote information flow and 
learning within the educational system and the emergence of bottom-up solutions.

Finally, gearing education policy and practice towards personalized learning, 
that is “instruction that is tailored to learning needs, tailored to learning preferences, 
and tailored to the specific interests of different learners” (Pea et al., 2014, p. 13), 
might be an interesting path to follow. Personalized learning supports learning for 
all students and is argued to improve educational performance, to promote cost 
efficiencies through educational productivity and organizational optimization, and 
to accelerate educational innovation (Pea et al., 2014, p. 13).

This seems to make particular sense in Brazil, given the mentioned hetero-
geneity of students, that encompasses different aspects, such as socio-economic 
background and intrinsic individual characteristics. One aspect worth pointing 
out is the heterogeneity present within classes in Brazil, given the high school 
year distortion in the country. In 2011, 15% of students from the 1st to 5th grade 
(primary school) were two or more years behind the appropriate grade; 28% of 
students from the 6th to 9th grade (middle school); and 30% of students of high 
school (Qedu). This scenario results from both failing school years and dropping out.
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A continuous progression policy was adopted in some states in Brazil to 
improve this situation. After evaluating the program, Menezes-Filho et al. (2008) 
state that 

findings point to a higher promotion rate and a lower dropout rate at the 
urban state schools that adopted the program. The school performance impact 
estimates point to a significant reduction in proficiency of 8th grade secondary  
education students, whereas the impact for 4th grade students was not  
significant (Menezes-Filho et al., 2008). 

This suggests that the continuous progression policy might be important 
towards promoting attendance and avoiding dropout, but that it is insufficient. 
In this sense, personalized learning could be complementary towards learning 
and proficiency, by incorporating students’ heterogeneity; and by being scalable 
if implemented by means of intelligent tutoring systems.

Acemoglu et al. (2014) argue that “web-based education will have broadly 
equalizing effects. Not only will human capital around the globe be enhanced,19 but 
human capital inequalities may also decrease.” We think that personalized learning 
is a good opportunity to help develop human capital and diminish educational 
inequalities in Brazil. At the same time, it is important to point out that it is also 
a risk. If we do not keep up with the new developments in education and do not 
work on the infrastructure issued for this view to develop for the population at 
large, these advances could have the very opposite effect.

Finally, it is important to highlight that the aforementioned insights are 
possible paths derived from the complex systems’ approach to education. Further 
investigation is warranted to confirm the validity of these aspects.
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CHAPTER 16

OVERCOMING CHAOS: LEGISLATURES AS COMPLEX 
ADAPTIVE SYSTEMS

Acir Almeida1

1 INTRODUCTION

This chapter argues that legislatures are complex adaptive systems and briefly as-
sesses the potential contribution from the complexity approach for the analysis 
of the evolution of legislative institutions, understood here as a system of formal 
and informal law-making rules. It also shows how this approach sheds light on 
the evolution of law-making patterns in post-1988 Brazil, at the national level.

The complexity approach mobilizes concepts, theories and methodologies 
from many different scientific fields for the study of processes and patterns from 
complex adaptive systems. A system is considered complex if it is composed of a large 
collection of diverse, interdependent agents, not subject to centralized control. 
One crucial property of a complex system is that the results that emerge from the 
interactions amongst its agents cannot be understood by simply “adding up” the 
behaviors of its individual parts. A complex system is adaptive if it is continually 
self-organizing in response to the results it generates and to changes in its environment 
(Eidelson, 1997; Holland, 1992).

A democratically elected legislature is a complex adaptive system. It is composed 
of many heterogeneous agents who, in principle, are not subject to centralized 
control. These agents have individual goals, but cannot achieve them by acting in 
isolation from one another – given the collective nature of legislative decisions, 
every one of them needs the cooperation from at least a certain number of others. 
However, since legislative resources (e.g., plenary time) are limited, not all goals 
can be realized in a timely fashion. Hence, the complex nature of legislatures 
lies on the strategic interactions legislators need to engage in with each other to 
advance their goals.

Three collective problems are especially relevant for law-making purposes: the 
rational use of legislative rights; the acquisition and dissemination of information 
about the expected impacts of alternative policies; and the stability of collective 
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decisions. If not properly dealt with, these problems may lead, respectively, to 
legislative paralysis, policies with highly uncertain consequences, and unstable collective 
decisions. In their worst form, these features may render the legislature ineffective 
as a law-making body or, more generally, dysfunctional as a system.

Legislators solve these collective problems by regulating the exercise of their 
legislative rights. In other words, they adopt legislative institutions, here defined 
as: a collection of rules and procedures defining who can do what, when, and 
how in regards to law-making; that are recognized and shared by all individuals 
from the relevant population; and, finally, that are relatively resilient to the 
idiosyncratic preferences of these individuals (March and Olsen, 2006, p. 3-4; 
North, 1990, p. 3-6).

Most frequently, legislative institutions have a formal nature – i.e., they  
assume the form of rules that are openly written in official documents and are enforced 
through official channels. But this is not always the case: norms and conven-
tions are also important determinants of the functioning of many democratic 
decision-making systems. Equally important is that informal institutions may very 
well shape how formal institutions work (Helmke and Levitsky, 2006). Another 
important feature of legislative institutions is that they often have distributive 
effects – they serve the interests of some groups at the expense of the interests of 
others (Knight, 1992, chap. 2). As result, underlying legislative institutions there 
is a constant conflict between forces of change, on one side, and of preservation, 
on the other. And the result of such conflict may manifest itself on the formal or 
informal elements of the institutions, or even on how they interact with each other.

We know a great deal about the efficiency-enhancing and stability-inducing 
properties of different legislative institutions. However, much less is known about 
their dynamics. How do these institutions evolve? What are the forces that promote 
or hinder institutional adaptation? How is this process of adaptation influenced 
by the broader political environment? We believe the complexity approach of-
fers a potentially useful conceptual toolbox to understand this dynamic process.

The remaining of this chapter has the following structure. The second section 
explains the complex nature of legislatures by analyzing the main collective action 
and social choice dilemmas legislators face, and also explains why these problems 
may turn the legislature into a dysfunctional system if they are not properly dealt 
with. The third section describes the two main organizational models that the 
literature identifies as institutional solutions to those collective and social choice 
problems. The forth section addresses the question of the evolution of legislative 
institutions, pointing both to the limitations of traditional approaches in explaining 
the emergence and change of institutions and to recent developments towards a 
complexity-oriented approach. The fifth section briefly indicates possible applications 
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of this approach to the analysis of the evolution of legislative institutions in 
post-1988 Brazil. The sixth section closes the chapter with a brief summary.

2 LEGISLATIVE CHAOS

For the sake of argument, it is fruitful to begin by imagining a legislature in its 
“state of nature”. This is the situation in which “all business is conducted in the 
plenary session (no committees) and members’ ability to talk and make motions 
is largely unrestricted and unregulated” (Cox, 2006, p. 141). Therefore, for any 
bill to become law in a state-of-nature legislature it needs to go through one (and 
only one) simple process: it must be formally proposed, discussed and then voted 
upon in the plenary session, where it must gather the support from a majority.

In this hypothetical state, the use of plenary time becomes a collective 
dilemma – i.e., a conflict between group goals and individual self-interest. Since there 
is only so much that can be done in any plenary session, the number of relevant 
policy decisions per session depends on how efficiently the plenary time is used. 
Absent any restriction on the use of legislative rights, every legislator is likely, on 
the one hand, to present to the plenary as many bills as sees fit and, on the other 
hand, to make as much use as she can of plenary time in order to block or delay 
any bill she does not agree with. Each member thus realizes that her optimum 
bargaining strategy is to block any other bill unless her bills are approved. The 
most likely result under these conditions is legislative paralysis (Cox, 2006, p. 143).

Even if legislators manage to collectively use plenary time rationally, there 
is still a second collective dilemma faced by a state-of-nature legislature, namely,  
the acquisition and dissemination of relevant information about the consequences 
of alternative policies (Krehbiel, 1991). Modern legislatures must make several 
complex policy choices concerning many different policy areas, but most legislators 
have scarce if any information about the consequences of those policies. Poorly 
informed decisions have higher risk of generating results quite different from the 
ones intended, and this represents a loss of utility for all interested parties. How-
ever, given that the acquisition of information requires time and effort, individual 
legislators have strong incentives to free ride on the knowledge of others. Moreover, 
the unequal distribution of private information raises the additional problem of 
opportunism, with more informed legislators trying to influence the choices of less 
informed ones by withholding relevant information. Thus, in the legislative state of 
nature policy decisions are likely to be made under condition of high uncertainty, 
leading to policies with poorly predictable outcomes.

Now, suppose those two collective problems are solved, such that legislators 
are able to make well informed decisions in a timely fashion. Even under these 
conditions, they may not be able to come to a coherent collective choice amongst 
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the bill, some amended version of it, and the status quo. The reason is that majority 
rule decision may fail to yield a choice option that is majority-preferred to every 
other available option (Black, 1948). This result, called “majority cycling”, was later 
encompassed by Arrow’s famous General Impossibility Theorem, which states that 
no collective choice rule exists satisfying a set of reasonable conditions, and that 
the particular condition violated by the method of majority rule is the transitivity 
of collective preference (Arrow, 1963).2 Moreover, it has also been demonstrated 
that it is possible in multidimensional choice settings to find a sequence of pair-wise 
majority votes that leads to the collective choice of virtually any available option 
(McKelvey, 1976). These results imply that majority-rule decisions are inherently 
unstable and that virtually anyone of the choice options may obtain. For these 
reasons, majority decisions are said to be inherently chaotic.3

In principle, legislators could benefit from spontaneous cooperation, by 
engaging in logrolling – i.e., deals of the form “I’ll vote later for your bill if you 
vote now for mine” (Tullock, 1981). By voting in favor of issues they care less 
in exchange for votes on issues they care more, legislators might be able to enact 
legislation and reduce the risk of cycles. The problem is that legislative bargains 
are fragile in terms of durability and enforceability – nothing precludes legisla-
tors from reneging on present deals by joining a different coalition in the future  
(Weingast and Marshall, 1988).

Majority decisions are not subject to cycles when the choice options can be 
aligned along a single policy dimension and voter preferences are single-peaked, 
such that, for every voter, any option closer to the one regarded as ideal is pre-
ferred to more distant ones. When these conditions obtain, majority rule yields an 
equilibrium outcome, the option closest to the voter whose ideal policy occupies 
the median position on the relevant dimension (Black, 1948). Nevertheless, if 
the choice involves more than one policy dimension – which is often the case –, 
majority rule equilibrium only obtains under very stringent assumptions about 
the locations of voters’ preferences (Plott, 1967).

These collective and social choice dilemmas reflect the complex nature of 
legislatures. The three problems associated with the dilemmas (paralysis, uncertainty, 
and cycling) imply that policy-making in a state of nature legislature – i.e., when 
there are no restrictions on the use of individual legislative rights – is expected to 
be ineffective and virtually chaotic: important, controversial policies should only 

2. A preference order is transitive if, for any three alternatives A, B, and C, the conditions A ≥ B and B ≥ C imply A ≥ C, 
where “≥” means “is preferred as much as”. For collective preferences, transitivity may not hold, as in the case of three 
individuals (I1, I2, and I3) with preference profiles I1: A ≥ B ≥ C, I2: B ≥ C ≥ A, and I3: C ≥ A ≥ B, which lead to 
the following (intransitive) majority preference: A ≥ B ≥ C ≥ A.
3. The term “chaotic” is used here in the social choice tradition, referring to the unpredictability and instability of majority 
voting when the policy space is multidimensional. Not to be confused with the property of having a trajectory very sensitive 
to small perturbations in initial conditions.



Overcoming Chaos: legislatures as complex adaptive systems  | 341

rarely come to a vote; whenever they did, legislators would make poorly informed 
choices; and such choices should be quite unstable and difficult to predict.

Real-life legislatures, however, rarely are ineffective or chaotic. This contradiction 
between theory and practice spurred scholars to investigate which aspects of leg-
islatures solve collective dilemmas and induce decision-making stability. What they 
found is that the answer lies in the set of institutional arrangements that invariably 
underpin the operation of majority rule (Shepsle and Weingast, 1994). Such arrange-
ments, which are self-imposed by legislators, solve those collective problems by 
constraining the use of legislative rights. They generate order and effectiveness 
in an otherwise chaotic collective body. The next section briefly describes two 
ideal type configurations of these institutional arrangements.

3 TWO MODELS OF LEGISLATIVE ORGANIZATION

A common feature of real-life legislatures is that, on the one hand, legislators have 
equal voting rights but, on the other, they have unequal agenda-setting rights. 
“Agenda-setting” refers to the control over the flow of bills to the plenary and the 
procedures under which they are considered in this arena. They include, for example, 
rights to propose legislation, to expedite, to block or to delay the vote on bills, and 
to determine the terms of the debate and the nature of legislative amendments.

The distribution of agenda-setting rights is tightly associated with how 
legislatures organize their business. There are two ideal type models of legislative 
organization, defined according to the degree of concentration of those rights: the 
committee model, in which agenda-setting powers are dispersed across autonomous 
legislative committees, each with the monopoly over some set of policy areas; and 
the cartel party model, in which those powers are concentrated in the hands of the 
majority party leadership.

3.1 The committee model

The committee model has the following characteristics: i) there are a number of 
standing committees, each with exclusive jurisdiction over one or a few policy 
areas; ii) legislators self-select themselves into the committees whose jurisdictions 
they care most about; iii) committees have the exclusive right to propose legislation 
in their jurisdictions; and iv) only amendments relevant to the bill under 
consideration are allowed in the plenary.

In this stylized model, the legislative process has the following sequence: 
i) once a bill is proposed, it is sent to the committee which has jurisdiction over 
its issue; ii) the committee decides by majority rule whether or not to send the bill 
(or a modified version of it) to the plenary; iii) if it does, the plenary then votes on 
the bill and the amendments eventually offered to it. Note that, if a bill contains 
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more than one policy issue, each issue is considered separately in the committee 
with jurisdiction over it.

By means of the committee system, legislators are able to avoid decision-
making paralysis and instability (Shepsle, 1979). As discussed above, vote trading 
is not a solution for legislative paralysis when there is no mechanism to prevent 
legislators from reneging on their promises. The committee model functions 
as such mechanism: given the committee’s monopoly over the agenda within 
its jurisdiction, it has the power to veto any bill that is contrary to its interests, 
thus making reneging on legislative deals ineffective. Moreover, since different 
policy issues are assigned to different committees on a one-to-one basis and only 
germane amendments are allowed, majority decisions are always restricted to a 
one-dimensional choice space, a situation for which (assuming single-peaked 
preferences) we know there is one equilibrium solution: the median preference 
on the dimension.

Another relevant aspect of the committee model is its role in motivating the 
endogenous production and dissemination of relevant information about the relation 
between policies and their results (Krehbiel, 1991). Since legislators self-select 
themselves into committees, these are supposedly composed of legislators with a high 
interest on their respective issues, with more motivation to incur the costs of becoming 
better informed. However, for this motivation to be effective, legislative majorities need 
to avoid tampering with committee bills in the plenary. For this purpose, majorities 
impose restrictions on themselves, which may apply to their rights of amendment or 
to call a vote on bills already approved in committee. The committee’s agenda power 
and the restrictive procedures under which its bills are deliberated in plenary induce 
the committee to produce and disseminate information.

3.2 The cartel party model

In the cartel party model, control of the legislative agenda is concentrated in the 
hands of the leadership of the majority party or coalition, and it is exercised through 
the appointment of loyal delegates to offices with agenda-setting powers, like the 
chairmanships of the legislature and the committees. Through this cartelization of 
agenda-setting offices, the majority party pushes its own initiatives onto deliberation 
and blocks bills and motions that it opposes from ever coming to a plenary vote 
(Cox and McCubbins, 1993).

The effectiveness of the cartel party model, however, depends on the party 
leadership having the means to prevent opportunism amongst its ranks, by keeping 
its delegates and the rank-and-file in line, behaving according to the party’s 
collective interests. For this reason, party members usually entrust their leaders 
with punishment mechanisms, like the power to expel members from legislative 
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caucuses, to deny them re-nomination to the party electoral list, or to deny them 
future office opportunities.

The cartel party model prevents legislative paralysis both because it deprives 
minorities from the means to block or delay bills and because the propositions 
that come to the plenary are those for which the members of the majority party 
have previously agreed upon. Independently of how agenda power is distributed, 
the model also avoids decision-making instability, since only the preference of the 
majority party is decisive, as long as its members vote together, as a unified block. 
In addition, since the party benefits electorally from the reputation of producing 
“good policies” (at least in the limited sense of accomplishing the intended results), 
party leaders have incentives to stimulate the acquisition and dissemination of 
relevant information within the party’s ranks.

Either the committee model or the cartel party model can, in principle, solve 
the collective problems faced by legislators. These models can be thought of as the 
two extremes of a hypothetical continuum, from the most decentralized to the most 
centralized form of legislative organization, respectively. Actually, only a handful 
of cases seem to fit well these two ideal types. One classical example of committee 
model is the United States’ lower chamber, the House of Representatives, before 
the 1970s. The British House of Commons has always been an exemplary case 
of the cartel party model. Most modern democratic legislatures, however, fall 
somewhere in between these two extremes (Mattson and Strom, 1995).

4 EMERGENCE AND CHANGE OF LEGISLATIVE INSTITUTIONS

If legislatures are complex adaptive systems, then we should take seriously the question 
of how legislative institutions evolve. This requires understanding legislative change 
as a dynamic and endogenous process. However, even though we know a great deal 
about how different organizational models solve the collective problems legislators 
face, much less in known about how the institutions that characterize these models 
emerge and change. In what follows, I briefly discuss the existing literature about 
the evolution of legislative organization and the potential contributions from the 
complexity approach.

4.1 Rational choice institutionalism

The conventional approach in analyses of the evolution of legislative institutions 
is rational choice institutionalism (RCI). This is a micro-level perspective that 
emphasizes individual forethought, calculation, and rational purpose. From this 
view, institutions are equilibrium solutions to collective problems, which emerge 
and change as a result of individuals’ goal-oriented choices. Over time, institutions 
may generate a host of unforeseen consequences that, in turn, may motivate 
individuals to make further institutional changes.
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There are three competing rational choice theories about legislative or-
ganization, each giving emphasis to different actors or goals. The distributive and 
the informational theories offer alternative explanations for the emergence of a 
strong committee system. According to the first, legislators empower committees 
in order to secure the production of particularistic policies for their constituencies 
(Shepsle, 1979; Weingast and Marshall, 1988). Assuming that legislators’ main 
motivation is to get reelected and that for achieving this goal they need to advance 
the interests of some minority of constituents, the distributive theory postulates 
that each legislator will try to form a winning coalition, which requires exchange 
and cooperation. As discussed above, a system of heterogeneous committees that, 
nonetheless, are internally homogeneous (in terms of the issues that mostly interest 
their members), coupled with a strong agenda-setting power over the bills under 
their specific jurisdictions, enables the formation of durable logrolling coalitions. 
Therefore, from the distributive theory, we should thus expect the committee 
system to be strong and autonomous when legislators have more particularistic 
or heterogeneous policy preferences.

The informational theory argues that legislators create strong committee 
system to enable them to make informed public policy choices (Krehbiel, 1991). 
It assumes that legislators’ main concern is with the uncertain consequences of 
their policy decisions and, as previously discussed, it considers the reduction of 
legislative uncertainty the main collective action problem. By delegating agenda 
powers to committees, the plenary motivates their members both to acquire expert 
knowledge about particular policy areas and to disseminate it to the legislature as 
a whole. So, if policy uncertainty is high, such as in periods of rapid social and 
economic change, committees tend to be granted more power.

The distributive and the informational theories assume that parties are 
irrelevant for the explanation of legislative organization. Alternatively, the cartel 
party theory postulates that a majority party or coalition is the organizing force 
and that it designs legislative institutions in order to achieve its collective policy 
goals (Cox and McCubbins, 1993). The key assumption of this theory is that 
legislators’ electoral fortunes strongly depend on their parties’ reputation amongst 
voters. Therefore, the main collective problem faced by legislators is to build and 
preserve a (good) policy-related reputation for their parties. Thus, party members 
delegate legislative powers to party leaders, especially control over nomination 
to the offices that dictate the legislative agenda, enabling the latter to enforce 
intra-party cooperation. The committee chairmanship is one of such offices.  
In fact, the cartel party theory does not require committees to be weak – only 
that they not be autonomous. Strong committees may be a means for parties to 
maintain control over legislative decisions.
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Thus, according to these theories, it is more likely that the organization of a 
legislature is closer to the committee model when: i) legislators’ policy preferences 
are more particularistic; or ii) they do not form clear partisan clusters and policy 
uncertainty is high. On the other hand, legislative organization is more likely to be 
closer to the cartel party model when legislators’ preferences are more universalistic 
and form clear partisan clusters.

The conditional party government theory articulates these conditions into an 
account of how legislative organization changes over time (Aldrich, 1994; Rohde, 
1991). It assumes that legislatures are organized by parties into committees, and 
it argues that they alternate between periods of party government and periods 
of committee government, depending on the degree of intra-party cohesion and 
party divergence. When there is a majority party or coalition and an opposition 
whose members’ preferences form two distinct clusters – i.e., there is high within-
group homogeneity and high between-group heterogeneity – the incentives for 
majority members to delegate to their party leader are stronger and, therefore, 
the conditions for party government are optimal. In this case, members of the 
majority party are willing to grant more agenda-setting power to their leadership. 
On the other hand, to the extent that the preferences of majority and minor-
ity party members overlap, there are fewer incentives to centralize power in the 
hands of the party leadership and, therefore, conditions are more favorable for 
committee government.

All these theories share the view that legislative institutions are static equi-
librium solutions to collective problems. There are at least three limitations from 
this perspective in what concerns the question of institutional evolution. The first 
is that the view of institutions as solutions to certain problems has a functionalist 
nature – i.e., it tends to assume that the institutions’ (expected) benefits are crucial 
for their adoption and persistence, ignoring the possibility that these benefits may 
be unintended consequences. Besides, the notion of “solution” is hard to reconcile 
with the possibility that legislators may be locked in inefficient equilibria, which may 
eventually make the legislature decay into a dysfunctional system (Pierson, 2000).

The second is that the equilibrium view does not require understanding the 
processes that lead to particular equilibria or that may disturb the equilibrium 
once achieved. This makes the process of institutional change of relatively minor 
interest for rational choice institutionalists and, consequently, inhibits theoretical 
progress on the subject.

The third limitation is that the static view cannot accommodate endogenous 
change. Change, therefore, can only be motivated by factors exogenous to the in-
stitutions under study. In this regard, the conditional party government theory is 
based only on changes in the distribution of legislators’ policy preferences, which 
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is, itself, the product of electoral outcomes – by definition, a variable exogenous 
to the legislative process. These three limitations make RCI ill-equipped to tackle 
the question of institutional evolution.4

4.2 Historical institutionalism

In political science, “historical institutionalism” (HI) is the one approach that has 
had the most success in exploring institutional change (Pierson, 2000; Steinmo et 
al., 1992; Thelen, 1999). It is a macro-level perspective that stresses the extent to 
which institutions evolve in ways unplanned and undirected by the people composing 
them. It is not that human action is irrelevant for institutional development – 
it is simply that the process is not explicitly controlled by individuals. Instead of 
viewing institutions as static equilibrium solutions, HI sees them as the dynamic 
legacy of concrete historical processes.

In fact, HI scholars see political and social phenomena through the same 
lens of complexity scholars. In the words of Lewis and Steinmo (2010, p. 243):

historical institutionalists are like the environmental biologist who believes that to 
understand the specific fate of a particular organism or behavior, one must explicitly 
examine that organism or behavior in the ecology or context in which it lives. This 
implies a different scientific ontology than that commonly found in the hard sciences 
of physics and chemistry. While objects in the physical world often adhere to constant 
‘‘laws’’ of nature, biological organisms often defy attempts to reduce them to their 
essential components because of their complexity. Historical institutionalism is rooted 
in a similar ontological shift in social science (Lewis and Steinmo, 2010, p. 243).

HI makes use of concepts like “path-dependence” and “punctuated 
equilibrium,” that convey the ideas, respectively, that future developments are 
conditioned by past trajectories and that long periods of small, incremental change 
may be interrupted by brief periods of radical, discontinuous change. Related to 
path-dependence, there are also the concepts of “critical juncture” and “feedback.” 
The first expresses a defining moment in the evolution of an institution, in the 
sense that it constitutes the starting point for a path-dependent process. The second 
concept expresses a phenomenon whereby each successive step along a particular 
path produces consequences that help either to sustain (positive feedback) or to 
undermine (negative feedback) that path.

Most applications of this approach, however, are directed to the explanation 
of the persistence of macro institutional arrangements, often over very long periods 
of time. In these applications, change tends to follow a punctuated equilibrium 

4. As a matter of fact, the editors of a relatively recent book that applies rational choice theories to the political and 
institutional history of the U.S. Congress conclude that “legislative scholars [should] develop more dynamic theories 
that account for institutional and behavioral change” (Brady and McCubbins, 2002, p. 472).
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model, in which there are brief moments of human agency and choice, when one 
set of institutions is replaced by another. Such model thus suggests that institutional 
arrangements either persist or break down. For this reason, applications of HI tend 
to obscure endogenous sources and mechanisms of persistence and change. Not 
surprisingly, this approach has been criticized for not properly specifying the links 
between micro-behavior and sources of institutional change.

There have been some efforts to put together the insights from RCI and HI 
in order to better articulate the micro-foundations of institutional change. An important 
contribution is Greif and Laitin (2004). They offer a rational choice theory of 
endogenous institutional change that builds on ideas from HI, particularly the 
notion of feedback effects. Their main innovation is to redefine exogenous parameters 
as endogenous variables (called “quasi-parameters”), which shift marginally by 
equilibrium behavior in a way that allows either for (endogenous) institutional 
change or persistence. However, it is not clear how these endogenous forces can 
be identified ex ante.

The recognition that institutional change is not only the product of exogenous 
shocks, but that it is also embedded in the ways in which agents interact with one 
another and their environment, implies making a serious effort in understanding 
endogenous processes of institutional evolution.

4.3 Towards an evolutionary institutionalism?

If we want to take institutional evolution seriously, a promising starting point is 
the conceptual toolbox from evolutionary theory. Indeed, recent developments 
in the institutionalist literature have been in the direction of evolutionary theory, 
motivated particularly by the ideia that, instead of focusing exclusively on either 
macro-structure or micro-behavior, we should focus on the interactions between 
these two levels to understand how institutions evolve. Some political scientists 
make the case that the shortcomings from HI may be successfully addressed by 
making full use of the conceptual tools from evolutionary theory (Blyth et al., 
2011; Lewis and Steinmo, 2010; 2012; Lustick, 2011).

Basically, an evolutionary theory has two pillars: a mechanism of transmittable 
variation, that generates units with transmittable differences; and a mechanism of 
selection, that determines the relative success with which these differences propa-
gate. An evolutionary explanation requires some specification about how variation 
occurs, so that objects with observable differences are produced through some 
process. It must also explain how selection occurs – i.e., how some principle 
operates to select certain variations and not others – and how variations that have 
been selected are reproduced.
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How does this explanatory scheme translate to the case of institutional change? 
Variation refers to some agents occasionally acting differently from institutional-
ized expectations. Selection refers to the adoption of the same deviant behavior 
by other agents from the relevant population. If the agents that adopt the deviant 
behavior do better (on average) than the others, then this behavior is likely to 
propagate and lead to changes in expectations and, finally, to institutional change. 
But, if they do not do better, the deviant behavior is not likely to propagate and, 
therefore, the institution will remain stable.5

Mahoney and Thelen (2010) provide a theory of endogenous institu-
tional change that is reasonably close to the evolutionary model. In their 
theory, both the political context (environment) and the institution shape 
the type of relevant agent that emerges in any specific institutional context, 
and the kind of strategy (deviant action) this agent is likely to pursue to 
produce change. The relevant aspect of the political context is the strength 
of veto possibilities for defenders of the institutional status quo, whereas the 
relevant aspect of the institution is the level of discretion in its interpretation  
and enforcement. Different combinations of strong/weak veto possibilities and 
low/high discretion give rise to different types of change agents and possible 
modes of institutional change. The four modes specified by the authors are: 
displacement of the previous rules by new ones; the attachment of new rules 
to existing ones (layering); the changed impact of existing rules (drift); and 
the changed enactment of existing rules (conversion).

In addition to providing an explicit account of an endogenous process of 
change, Mahoney and Thelen’s model offers at least two other interesting insights 
for understanding the evolution of institutions. First, their model not only emphasizes 
the underlying conflicts between challengers and defenders of existing institutions,  
it also takes into account that “the success of various kinds of agents in effecting 
change typically depends crucially on the coalitions they are able to deliberately forge 
or that emerge unexpectedly in the course of distributional struggle” (Mahoney and 
Thelen, 2010, p. 29). This coalition-building process and the success in forging a 
pro-change majority may be thought as the selection process in evolutionary theory. 
The second interesting element from the model is that it acknowledges that some 
changes do not necessarily manifest themselves on the formal aspects of the rules – 
i.e., they may be informal too (the authors denominate this process “conversion”).

Mahoney and Thelen’s model seems very promising for the analysis of the 
evolution of legislative institutions. Actually, in his analysis of institutional innovation 
throughout the history of the U.S. Congress, Schickler (2001) identifies some 

5. Note that an evolutionary theory does not require analogs to the mechanisms that are relevant for biological evolution. 
It also does not imply any idea of progress ahead at the evolutionary path. And, finally, it does not need to be functionalist.
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patterns of institutional change that are consistent with the model. Specifically, 
he finds evidence that political entrepreneurs played an important role in aligning 
multiple interests behind important changes. This result is consistent with the idea 
of change agents building pro-change coalitions. He also finds that changes seek-
ing to promote a single interest typically provoked a response from members that 
sought to protect competing interests. This result, for its part, is consistent with the 
assumption of distributive conflict. Another pattern consistent with the theory is 
that institutional change often involved superimposing new arrangements on top 
of preexisting structures intended to serve different purposes (layering).

But, the model does have one important analytical shortcoming: it does 
not specify how agents’ preferences concerning institutional maintenance and 
change are formed. The authors simply define different types of actors based 
on whether or not they seek to preserve the institution and whether or not 
they abide by the institution. But they offer no clue about how these actions 
(and the underlying preferences) relate to the outcomes of the institution and 
environmental conditions. This severely limits the understanding of endogenous 
mechanisms of change.

To be sure, this is a problem that all current theories of institutional evolution 
share. Rational choice theories assume a constant and universal set of preferences. 
Although HI scholars are interested in explaining why preferences vary across time 
and space, they have little to offer in terms of an explanation of human motivations, 
beyond the general point that history shapes preferences. Notwithstanding, 
there is a growing optimism that evolutionary theory may provide significant 
contributions when it comes to explaining the formation of political preferences 
(Lewis and Steinmo, 2012).

Another potential contribution from evolutionary theory refers to the multi-
layered view of institutions that several scholars have adopted. Ostrom (2005), for 
example, distinguishes between “operational”, “collective-choice”, and “constitutional” 
rules, which govern, respectively, daily interactions, the choice of operational 
rules, and the choice of collective-choice rules. In order to analyze how rules are 
formed at one level, the higher levels rules are considered (temporarily) fixed. 
The process of institutional change thus unfolds somewhat like this: each individual 
calculates her expected costs and benefits from an institutional change, and if a 
minimum coalition necessary to affect change agrees to it, an institutional change 
can occur. What constitutes a “minimum coalition” is determined by the higher-level 
rules – for example, in a dictatorship the dictator alone might constitute a 
winning coalition; in a democracy, a majority would constitute a winning coalition. 
Therefore, institutional change depends both on the decision makers assessment 
of how the change is likely to affect them and on higher-level rules. This complex, 
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multi-layered view of institutions is the kind of complex system to which evolution 
theory adds insight, as its tools were specifically designed to integrate levels of 
analysis by connecting individuals to populations.

In sum, evolutionary theory, which is the approach used to analyze the dynamics 
of complex systems, offers one potentially fruitful approach to the explanation of 
how legislative institutions emerge and change.

5 THE CASE OF LEGISLATIVE INSTITUTIONS IN POST-1988 BRAZIL

This section makes the point that national legislative institutions in post-1988 
Brazil are undergoing a major structural change and then briefly explores how 
the insights from the complexity approach may be useful for understanding 
this transformation.

5.1 Characterizing the institutional change

The formal law-making rules adopted by the members of the Brazilian Con-
gress in 1988-1989 and that consolidated the transition to the current demo-
cratic regime have some features that disperse and others that concentrate power. 
Power is dispersed in the sense that the committee system has a key role in the ordinary 
legislative process. With a few exceptions, every bill is supposed not only to be 
examined and discussed in standing committees, but also to be conclusively voted 
on.6 The plenary can override the committee’s decision, but it requires a majority to 
approve a petition for the bill to have a final floor vote. Moreover, committee seats 
and chairmanships must be allocated to parties proportionally to their legislative 
size, ensuring representation of the minority opposition on key committee posts.

However, the rules also concentrate extraordinary agenda-setting powers on 
the presidency of the Republic and the congressional party leadership. The presi-
dent has the power to issue decrees with immediate force of law on relevant and 
urgent matters, which must be voted on in the plenary, after being analyzed by ad 
hoc committees.7 The president also has the power to invoke urgency procedures 
for any government bill, implying that if Congress does not vote on it in 45 days 
it is precluded from deliberating on any other bill.8 Party leaders, for their part, 
have the power to represent backbenchers on urgency petitions to discharge any 
bill from committee and bring it to an immediate vote on the floor, at any time.9 
These three agenda-setting devices can be used to bypass the committee system and 

6. Article 58 of the 1988 Brazilian Constitution (CF/1988), Art. 24 of the Standing Orders of the Chamber of Deputies (RICD), 
and Art. 91 of the Standing Orders of the Federal Senate (RISF).
7. Art. 62 of the CF/1988, and Resolution 1-1989 of the Brazilian Congress.
8. Art. 64 of the CF/1988.
9. Art. 155 of the RICD and Art. 336 of the RISF.
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thus to appeal directly to the plenary floor, determining on what issues Congress 
must decide and when.

In the first fifteen years after the adoption of the formal rules, decree and 
the congressional urgency procedure were used intensely to advance the executive’s 
agenda, leading to strong presidential dominance in law-making and a subordinate, 
if not minor, role to congressional committees (Figueiredo and Limongi, 2007; 
Pereira and Mueller, 2004). From 1989 through 2006, the president issued and 
Congress accepted an average of 6.9 non-budgetary decrees per month, comprising 
72% of all non-budgetary presidential initiatives enacted into law by Congress.10 
Moreover, amongst the non-budgetary presidential bills that were enacted into 
law in the same period, 58% were approved in the Chamber under its urgency 
procedure. This led Congress to enacting into law a number of presidential initia-
tives three times lager than the ones proposed by its own members (most of them, 
by the way, were not even fully analyzed by the committee system).

For reasons that are not yet entirely clear, Congress seems to have delegated 
control of the legislative agenda over to the executive and this despite the fact 
that no president has had a single party majority. A necessary condition for this 
delegation to be successful seems to be the cooperation between the president 
and congressional party leaders, in the form of president-led majority coali-
tions (Figueiredo and Limongi, 2007). Interestingly, the only time when this 
cooperation did not function was under the administration of President Collor 
de Mello (1990-1992). This was also a time when the executive experienced its 
poorest legislative performance.

In the last decade or so, a rather radically different law-making pattern seems 
to be consolidating, even though the basic features of the formal institutional set-up 
have remained stable and presidents have consistently formed majority governing coali-
tions. First, presidential dominance has progressively given place to congressional 
dominance. Graph 1 depicts the annual counts of presidential and congressional 
non-budgetary laws (main vertical axis) and the rate of presidential dominance 
vis-à-vis Congress (secondary vertical axis), measured as the percentage of presi-
dential initiatives amongst those laws. Beginning in the year 2002, there was a 
substantial decrease on the annual number of laws originated from the presidency 
and, beginning in 2008, the number of laws originated from Congress experienced 
a sharp increase. These two movements have made the legislative dominance of 
the president to fall from the annual average of 78% in the period 1989-2001, to 
60% in 2002-2007, and finally to 37% in 2008-2014.

10. Data computed by the author, based on the following sources: Câmara dos Deputados (no date), Cebrap (no 
date), and Senado Federal (no date). The counts of presidential laws include the different versions of decrees that were 
continuously reissued for several months (Amorim Neto and Tafner, 2002, p.10).
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GRAPH 1
Annual counts of non-budgetary laws initiated by the president and by Congress, and 
annual rate of presidential dominance (1989-2014)
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Source: Amorim Neto and Tafner (2002, p. 10); Câmara dos Deputados ([no date]); Senado Federal ([no date]).
Elaborated by the author.
Obs.: The counts of presidential laws include the different versions of decrees that were reissued.

The legislative process of non-budgetary presidential initiatives has also changed 
with a more active role for the committee system nowadays. As it can be observed 
in Graph 2, beginning in the early 2000s, there has been a moderate reduction in 
the percentage of presidential laws enacted by decree and a substantial reduction 
in the percentage of presidential bills (enacted into law) that were not reported by 
at least one of the committees to which they had been referred to in the Chamber 
of Deputies. The first of these percentages decreased from the annual average 
of 67% in 1989-2001, to 62% in 2002-2007, and then to 47% in 2008-2014. 
The second decreased from 60%, to 51%, and, finally, to 26%, respectively.

There is also evidence that the Chamber has been increasingly delegating 
the final decision over bills increasingly more to committees. Graph 3 shows 
the annual number of bills from the presidency and from Congress conclusively 
approved by the Chamber’s committee system, as a percentage of the laws that 
in fact could be subjected to this process.11 It is clear that legislation initiated by 
both the president and the members of Congress has been increasingly decided 
upon exclusively by committees. This pattern does not vanish with the exclusion 
of non-controversial honorific (mostly from Congress) and administrative (mostly 
from the presidency) legislation.

11. It excludes laws initiated by decree, budgetary laws and other much less frequent cases, as detailed in Art. 24 of the RICD.
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GRAPH 2
Annual percentages of non-budgetary presidential laws that were enacted by decree 
and of non-budgetary presidential laws enacted by statute that were not fully reported 
by the Chamber’s committee system (1989-2014) 
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Elaborated by the author.
Obs.: The counts of presidential laws include the different versions of decrees that were reissued.

GRAPH 3
Annual percentage of laws that were enacted conclusively by committee, by initiator 
(1990-2014)
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Admittedly, fine-grained data are still necessary, particularly about the new 
role played by congressional committees, it seems fair to conclude that law-
making in the Brazilian Congress has gone through a major transformation, from 
an initially executive-dominated process, in which decisions were predominantly 
made on the plenary, with few opportunities for standing committees to perform 
their advisory role, to one in which Congress is more proactive and committees 
are prominent players. Although the formal institutional set-up has remained fairly 
stable, the set of rules and organized practices under which the “law-making game” 
is played have changed, thus making it appropriate to conceptually characterize 
that transformation as a case of institutional change.

As the following sections will try to show, there are several indications that 
the change in Brazilian legislative institutions has several traits that render it a 
promising case for the application of the complexity approach or, more specifically, 
the evolutionary view of institutional change.

5.2 A static perspective

In terms of the theoretical models discussed above, in section 3, one promising 
interpretation of the phenomenon is that law-making in the Brazilian Congress 
has become less like the cartel party model and more like the committee model. 
In other words, it is possible that the main agent towards whom control of the 
legislative agenda is delegated has shifted, from the president (the leader of the 
cartel) to committees.12

According to the conditional party government thesis (section 4.1), which is 
a theory of institutional change based on the RCI approach, the most likely reason 
for that shift is some (exogenous) change on the distribution of legislative preferences, 
one that implies higher divergence within the governing coalition or lower 
divergence between government supporters and oppositionists. In fact, there was 
one such change in Brazilian politics, coinciding with the appearance of the new 
law-making pattern. In 2003, after eight years under the control of the center-right 
Brazilian Social Democracy Party (PSDB), the presidency passed to the leftist 
Workers’ Party (PT). For almost all its term, the PSDB headed a center-to-right 
majority coalition composed of three to four other parties. All governing coalitions 
formed since 2003 (and up to this date), however, were much more heterogeneous, 
including not only leftist but also center-right parties, with six to nine partners. 
Based on the records of voting behavior in the Chamber, there is strong evidence 

12. On the application of the cartel thesis to the Brazilian political system it is important to have in mind two aspects: 
although no presidential party have controlled a majority of seats, majority governing coalitions are systematically 
formed under the leadership of presidents; and where a legislator stands relative to presidential policies seems to be 
the most informative signal about her policy preferences (Santos, 2003, cap. 2). For these reasons, for the members of 
the governing coalition the president is the functional equivalent of the party leader in the cartel thesis, in terms of the 
logic underlying the decision to delegate agenda-setting powers.
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that the PSDB-led majority coalitions behaved as a legislative cartel until 2000, 
but there is no evidence that any majority coalition formed after 2000 behaved as 
such (Amorim Neto et al., 2003, p. 563; Santos and Almeida, 2009, p. 98). Therefore, 
the change in the president-led majority coalition from relatively homogeneous to 
highly heterogeneous should explain the decentralization of agenda-setting powers 
from the presidency to congressional committees, as would predict the conditional 
party government thesis.

Nevertheless, there are some indications that the increasing reliance on the 
committee system was not so much a purposeful choice (as would be assumed by the 
RCI approach), but rather an unanticipated consequence of previous institutional 
choices (and, thus, more consistent with the HI view of institutional change). 
Moreover, the record of rules and practices concerning the legislative process of 
decrees shows that, besides the abrupt transformation materialized through the 
constitutional reform of 2001, there were also equally relevant piecemeal and 
subtle changes, more in line with the adaptive processes studied by the evolution-
ary view of institutional change. These points are illustrated next, by means of a 
brief description of the evolution of the rules and practices of the “decree game.”

5.3 An evolutionary perspective

Whatever the reasons that led the constituents to grant constitutional decree 
authority to the president, it seems to have made very much sense at the time.13 
During most of the second half of the 1980s, Brazil had been under a severe and 
persistent economic crisis, with very high inflation. The dominant strategy of 
stabilization policies was shock therapy, and three different traumatic attempts 
had already failed since 1986. Given the complex, urgent, and uncertain nature 
of such policies, and the lack of congressional expertise on the issue, delegating 
control of the legislative agenda to the president probably had seemed natural. 
After the promulgation of the constitution, the country had two more experiences 
with economic shock therapy (in 1989 and 1990), and both relied heavily, again, 
on presidential decrees.

Originally, the 1988 Constitution stated that the president could issue decrees 
(Medidas Provisórias – MPVs) on relevant and urgent matters, and that they should 
be approved by the full Congress (i.e., by majorities of deputies and senators at 
the same plenary session) within 30 days, otherwise they would become invalid. 
Nonetheless, the critical economic context offered a good justification for presidents 
to test the limits of this delegation. Amongst the very first decrees issued by 
President Sarney (1985-1990), one hardly could be considered relevant or urgent 

13. For a discussion of the alternative explanations for the delegation of decree authority to the Brazilian president, 
see Almeida (1998, ch. 2).
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(MPV 10, from October 1988) and another one was reissued on its expiration 
date, after Congress had failed to vote on it (MPV 29, from January 1989). 
The first of these “deviations” was promptly accepted by Congress, and until today 
there has been no systematic use of the relevance and urgency clause to discipline the 
use of decrees. The second deviation, the reissuing of decrees, on the other hand, 
was the object of a report from a special joint committee, which stated that, until 
Congress regulated the matter, the president could reissue non-voted decrees as 
long as its text remained the same.14

Notwithstanding the initial leniency of Congress with the use of decrees, it 
managed to make a stand against several abuses by President Collor (1990-1992). 
It effectively resisted decrees that encroached congressional exclusive jurisdiction 
over the penal issues (MPVs 153 and 156, from March 1990) and the reissuing 
of a rejected decree (MPV 185, from May 1990), which eventually led the Cham-
ber’s Committee on Constitution and Justice (CCJ) to approve a bill restricting 
decree authority on June 6, 1990 (Folha de São Paulo, June 8, 1990, p. A-5).  
The new Congress that convened in February, 1991, immediately passed the 
bill in the Chamber, though it was never brought to a vote in the Senate. In any 
event, it was probably enough since the use of decrees dropped dramatically for 
the remainder of Collor’s term.

Congress loosened the grips once again in 1994, when the issuing of new 
decrees and the reissuing of non-voted decrees became a regular practice, such that 
in the next seven years (even after inflation was stabilized) it escalated up to the 
point where decrees were only rarely voted by Congress and most were reissued 
for at least seven consecutive months (and many of which a text different from 
previous versions).

The reissuing of decrees was debated in Congress during the whole period 
and an amendment to the Constitution was approved by the Senate on May, 1997, 
with the support from the same majority coalition that accepted the indefinite 
reissuing of decrees in the first place. But it was only on September, 2001, that 
Constitutional Amendment 32 was finally approved by Congress. It basically i) 
explicitly prohibited the reissuing of decrees; ii) expanded to a total of 120 days 
the expiration of non-voted decrees; iii) required decrees to be voted on first in the 
Chamber and then in the Senate, instead of in the full Congress; and iv) blocked 
plenary deliberations on any other item if there was any decree awaiting a vote 
and that had been issued for more than 45 days. The 2001 reform was effective 
in halting the reissuing of decrees and, although their use remains a controver-
sial issue, since then there has been no major change in the use of this powerful 
agenda-setting device.

14. Report n. 1-1989, from February 1989.
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Several aspects of the above sequence of events and practices can be interpreted 
under the light of evolutionary theories of institutional change. Mahoney and Thelen’s 
(2010) theory, for example, offers interesting insights on the evolution of the “decree 
game.” Decree authority has experienced changes of two types: conversion (the new 
practices adopted in the early years) and displacement (the 2001 constitutional 
reform). The first type was promoted by the president, whereas the second, by a 
congressional majority.

According to the theory, conversion results when change agents act as 
opportunists, a situation that corresponds to a target institution that has high level 
of discretion in interpretation or enforcement and to a political context of weak 
veto possibilities for defenders of the status quo (e.g., low probability of a congressional 
majority rejecting decrees). In the case of decrees, the Constitution allowed much 
discretion on its interpretation since there is no definition of which matters are 
“relevant and urgent” and there was no explicit restraint on the reissuing of decrees. 
The second type of institutional change (displacement) results when change agents 
act as insurrectionaries, which corresponds to a target institution with low discretion 
in interpretation and enforcement, and weak veto possibilities for defenders. 
This type matches the reaction of Congress, in 2001, when an extraordinary major-
ity was formed to change the constitution and to explicitly prohibit the reissuing 
of decrees.

Another relevant aspect that calls attention when the dynamics of the institutional 
change in considered is that the relation between the 2001 reform (the one that 
restricted the president’s decree power) and the strengthening of the committee 
system that is observed afterwards, is not straightforwardly explained. As discussed 
above, according to the static view of the conditional party government theory, 
these events can be interpreted as the two sides of the same coin, in the sense that 
they reflect different movements towards the same end (a shift in agenda-setting 
powers from the president to the committee system).

Moreover, the literature about Congress has identified a more direct linkage 
between those events. The reform generated the unanticipated consequence that 
plenary sessions became frequently blocked by decrees not voted on in the 45 days’ 
time (Pereira, Power and Rennó, 2008). In 2002, for example, 76% of the Chamber’s 
ordinary plenary sessions were blocked. One solution adopted by both the Chamber 
and the Senate to circumvent the blockage of plenary sessions was the transfer of 
final decisions on bills to the committee system, which contributed to bringing 
standing committees to the forefront of the legislative process (Machiaveli, 2009, 
p. 123-128; Santos, 2007, p. 56).
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There is evidence, however, that the strengthening of the committee system 
had been under way long before the 2001 reform and that it has persisted on its own. 
Graph 4, below, depicts, for the Chamber, the annual percentages of non-budgetary 
laws that were conclusively voted on in committees (relative to all laws that could 
have been subjected to this process) and of blocked plenary sessions. It is clear 
that, even before blocking became a problem, laws were increasingly being enacted 
exclusively by the committee system. Moreover, even though blocking has 
decreased sharply in the years 2013 and 2014, the tendency to delegate final 
decisions to committees persisted.

GRAPH 4
Annual percentages of laws that were enacted conclusively by committee and of 
blocked plenary sessions, Chamber of Deputies (1990-2014)
(In %)
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In sum, the transformation of legislative institutions in post-1988 Brazil 
presents several elements that render it a promising case for the application of the 
complexity approach. The evolution of the law-making game is full of adaptations 
triggered by deviating behaviors that seemed to work well for the interests of a 
congressional majority. Moreover, the strengthening of the committee system 
has been a gradual, long-term process, but that probably was (unintentionally) 
boosted in the aftermath of the 2001 reform.
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6 SUMMARY

This chapter has made the point that legislatures are complex adaptive systems. 
They are complex because they are composed of many diverse, interdependent 
agents (the legislators) who are not subject to centralized control. In order for 
legislatures not to become dysfunctional or chaotic, its members need to over-
come a series of social choice and collective action dilemmas. To circumvent 
these problems, members adopt legislative institutions, formal or informal rules 
that structure the law-making process by defining who can do what and when.

Legislative institutions vary according to the degree to which they concentrate 
agenda-setting rights, with the committee model at the most decentralized end 
and the cartel party model at the most centralized end. Two important and still 
unresolved theoretical questions concerning legislative institutions are why and 
how they change along these two extremes. This chapter explored the contributions 
of dynamic, evolutionary theories of institutional change. These theories focus on 
the adaptive nature of complex systems, like legislatures.

The evolution of Brazilian legislative institutions after 1988 was offered as 
a potentially interesting case study for exploring the application of evolutionary 
theories of institutional change. The point was made that this case presents several 
elements that render it a promising case for the application of evolutionary theory 
and, more generally, the complexity approach.

REFERENCES

ALDRICH, J. A. A model of a legislature with two parties and a committee system. 
Legislative Studies Quarterly, v. 19, n. 3, p. 313-339, 1994.

AMORIM NETO, O.; COX, G. W.; MCCUBBINS, M. D. Agenda power in 
Brazil’s Câmara dos Deputados, 1989-98. World Politics, n. 55, p. 550-578, 2003. 

AMORIM NETO, O.; TAFNER, P. Governos de coalizão e mecanismos de alarme 
de incêndio no controle legislativo das medidas provisórias. Dados, v. 45, n. 1, 
p. 5-28, 2002.

ARROW, K. J. Social choice and individual values. 2nd ed. New York: Wiley, 1963. 

BLACK, D. One the rationale of group decision-making. Journal of Political 
Economy, v. 56, n. 1, p. 23-34, 1948.

BLYTH, M. et al. Introduction to the special issue on the evolution of institutions. 
Journal of Institutional Economics, v. 7, n. 3, p. 299-315, 2011.

BRADY, D. W.; MCCUBBINS, M. D. Afterword: history as a laboratory. In: 
______. (Eds.). Party, process, and political change in Congress. Stanford: 
Stanford University Press, 2002.



Modeling Complex Systems for Public Policies360 | 

BRASIL. Câmara dos Deputados. Sistema de tramitação das proposições 
legislativas (Sileg). Available at: <www.camara.leg.br/sileg>.

CEBRAP – CENTRO BRASILEIRO DE ANÁLISE E PLANEJAMENTO. 
Banco de dados legislativos Cebrap. Available at: <https://goo.gl/iISg4g>.

COX, G. W. The organization of democratic legislatures. In: WEINGAST, B. 
R.; WITTMAN, D. A. (Eds.). The Oxford handbook of political economy. 
New York: Oxford University Press, 2006.

COX, G. W.; MCCUBBINS, M. D. Legislative leviathan: party government in 
the House. New York: Cambridge University Press, 1993.

EIDELSON, R. J. Complex adaptive systems in the behavioral and social sciences. 
Review of General Psychology, v. 1, n. 1, p. 42-71, 1997.

FIGUEIREDO, A. C.; LIMONGI, F. Instituições políticas e governabilidade: 
desempenho do governo e apoio legislativo na democracia brasileira. In: MELO, 
C. R.; SÁEZ, M. A. (Eds.). A democracia brasileira: balanço e perspectivas para 
o século 21. Belo Horizonte: UFMG, 2007.

GREIF, A.; LAITIN, D. D. A theory of endogenous institutional change. American 
Political Science Review, v. 98, n. 4, p. 633-652, 2004.

HELMKE, G.; LEVITSKY, S. Introduction. In: HELMKE, G.; LEVITSKY, S. 
(Eds.). Informal institutions and democracy: lessons from Latin America. 
Baltimore: The Johns Hopkins University Press, 2006.

HOLLAND, J. H. Complex adaptive systems. Daedalus, v. 121, n. 1, p. 17-30, 1992.

KNIGHT, J. Institutions and social conflict. New York: Cambridge University 
Press, 1992.

KREHBIEL, K. Information and legislative organization. Ann Arbor: University 
of Michigan Press, 1991.

LEWIS, O.; STEINMO, S. Taking evolution seriously in political science. 
Theory in Biosciences, v. 129, n. 2-3, p. 235-245, 2010.

______ . How institutions evolve: evolutionary theory and institutional change. 
Polity, v. 44, n. 3, p. 314-339, 2012.

LUTSTICK, I. S. Taking evolution seriously: historical institutionalism and 
evolutionary theory. Polity, v. 43, n. 2, p. 179-209, 2011.

MACHIAVELI, F. Medidas provisórias: os efeitos não antecipados da EC 32 
nas relações entre Executivo e Legislativo. 2009. Master's thesis – Universidade 
de São Paulo, São Paulo, 2009.



Overcoming Chaos: legislatures as complex adaptive systems  | 361

MAHONEY, J.; THELEN, K. A theory of gradual institutional change. 
In: ______. (Eds.). Explaining institutional change: ambiguity, agency, and 
power. New York: Cambridge University Press, 2010.

MARCH. J. G.; OLSEN, J. P. Elaborating the “New institutionalism”. In: 
RHODES, R. A. W.; BINDER, S. A.; ROCKMAN, B. A. (Eds.). The oxford 
handbook of political institutions. New York: Oxford University Press, 2006.

MATTSON, I.; STROM, K. Parliamentary committees. In: DORING, H. (Ed.). 
Parliaments and majority rule in Western Europe. Frankfurt: Campus, 1995.

MCKELVEY, R. Intransitivities in multidimensional voting models and some impli-
cations for agenda control. Journal of Economic Theory, n. 12, p. 472-482, 1976.

NORTH, D. C. Institutions, institutional change, and economic performance. 
New York: Cambridge University Press, 1990.

OSTROM, E. Understanding institutional diversity. Princeton: Princeton 
University Press, 2005.

PEREIRA, C.; MUELLER, B. A theory of executive dominance of congressional 
politics: the committee system in the Brazilian Chamber of Deputies. The Journal 
of Legislative Studies, v. 10, n. 1, p. 9 - 49, 2004.

PEREIRA, C.; POWER, T. J.; RENNÓ, L. R. Agenda power, executive decree 
authority, and the mixed results of reform in the Brazilian Congress. Legislative 
Studies Quarterly, v. 37, n. 1, p. 5-33, 2008.

PIERSON, P. The limits of design: explaining institutional origins and change. 
International Journal of Policy and Administration, v. 13, n. 4, p. 475-499, 
2000.

PLOTT, C. A notion of equilibrium and its possibility under majority rule. 
American Economic Review, n. 57, p. 787-806, 1967.

ROHDE, D. W. Parties and leaders in the postreform House. Chicago: 
University of Chicago Press, 1991.

SANTOS, F. O poder legislativo no presidencialismo de coalizão. Belo 
Horizonte: Editora UFMG; Rio de Janeiro: IUPERJ, 2003.

SANTOS, F.; ALMEIDA, A. Urgency petitions and the informational problem 
in the Brazilian Chamber of Deputies. Journal of Politics in Latin America, 
n. 3, p. 81-110, 2009.

SANTOS, L. I. C. Características e perspectivas do poder conclusivo das 
comissões permanentes da Câmara dos Deputados do Brasil. 2007. Monograph 
(Specialization) – Centro de Formação, Treinamento e Aperfeiçoamento (Cefor) 
da Câmara dos Deputados, Brasilia, 2007.



Modeling Complex Systems for Public Policies362 | 

SCHICKLER, E. Disjointed pluralism: institutional innovation and the development 
of the U.S. Congress. Princeton: Princeton University Press, 2001.

BRASIL. Senado federal. Portal atividade legislativa. Available at: <www.senado.
leg.br/atividade>.

SHEPSLE, K. A. Institutional arrangements and equilibrium in multidimensional 
voting models. American Journal of Political Science, n. 23, p. 27-59, 1979.

SHEPSLE, K. A.; WEINGAST, B. R. Positive theories of congressional institutions. 
Legislative Studies Quarterly, v. 19, n. 2, p. 149-179, 1994.

STEINMO, S.; THELEN, K.; LONGSTRETH, F. (Eds.). Structuring politics: 
historical institutionalism in comparative analysis. New York: Cambridge 
University Press, 1992.

THELEN, K. Historical institutionalism in comparative politics. Annual Review 
of Political Science, n. 2, p. 369-404, 1999.

TULLOCK, G. Why so much stability? Public Choice, n. 37, p. 189-205, 1981.

WEINGAST, B. R.; MARSHALL, W. T. The industrial organization of Congress: 
or, why legislatures, like firms, are not organized as markets. Journal of Political 
Economy, v. 96, n. 1, p. 132-163, 1988.



CHAPTER 17

THE TERRITORY AS A COMPLEX SOCIAL SYSTEM
Marcos Aurélio Santos da Silva1

1 INTRODUCTION

The concept of territory as a social construction, bounded by a geographic space, 
increasingly predominates in the elaboration process of public policies for sustainable 
regional development (Saquet, 2010; Boueri and Costa, 2013). It is in the social 
dimension, supported by public policies, that arises the bottom-up development 
and the organized and articulated local initiatives which trigger territorial socio-
political-economic events (Claval, 2008). 

The territory arises, thus, as the integration mechanism for public actions, 
because it is considered that, at some time, all government interference will take 
effect and will be influenced by it. The spatial character of public policies is a real-
ity, especially when dealing with issues of regional development. In Brazil, some 
Ministries have used the territorial approach to leverage policies, plans and programs 
of development, with emphasis on: the National Regional Development Policy of 
the Ministry of National Integration (MIN), the National Plan for Water Resources 
of the Ministry of the Environment, and the Program of Territorial Development 
of the Ministry of Agrarian Development (Matteo et al., 2013). 

However, Ministries do not share the same concept of territory. While 
the MIN develops its national policy for regional development bolstered by the 
promotion of the economic dynamism of micro and meso Brazilian regions, 
the Ministry of the Environment has been working with the territory bounded 
by river basin and has as goals, among others, the decrease of extreme hydro-
logical events and conflicts about water. The Ministry of Agrarian Development 
(MDA), through its Department of Territorial Development (SDT), has as goal the  
sustainable development of contiguous rural areas. These areas must present some 
characteristics, such as: strong presence of family farming, low population density  
(< 80inhab/km2), and an “active civil society”.2 Based on these indicators the SDT/MDA  
created the Rural Territories that constitute groups of municipalities and their 

1. Computer Scientist, MSc. in Applied Computing, researcher at Embrapa Tabuleiros Costeiros – Av. Beira 
Mar, 3250, Aracaju, SE, 49025040. E-mail: <marcos.santos-silva@embrapa.br>.
2. Active civil society means that there are many organized social groups which represent the civil society and that they 
interact and make formal and informal communicative connections to make collective decisions. 
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neighbors which share some commonalities regarding economic, cultural or his-
torical identities (Brasil, 2005). 

Some challenges arise when analyzing the territory under the bias of its social 
dimension. Despite being a strong concept in geography, the territory still needs to 
develop its bases in other disciplines such as sociology and economics (Abramovay, 
2007; Signoret, 2011). In fact, the territory can be considered a complex system with 
the subject, the social actor or a set of social actors, being in the center of the process 
of territorialisation (Moine, 2006; Leloup, 2010; Queirós, 2010; Encarnação et al., 
2010; Lima, 2011; Signoret, 2011). Signoret (2011) argues that the territory is a 
process of adhesion of some collectivity to a common project linked to economic 
activities or simply to a historical cultural legacy that reinforces the elements of identity 
and belonging. However, despite this progress, many questions are still open when 
it comes to the analysis of territorial systems: what would be a suitable theoretical-
methodological framework for this study? If the territory is a fuzzy social construct, 
how to map these spatially located social phenomena? Trying to answer these ques-
tions, this chapter integrates some concepts of geography, sociology, and computing 
to structure a scientific basis for the study of the territory via the systemic approach.

Thus, the territory will be analyzed as a socioterritorial complex system, where 
the social relations will be studied in the light of the Sociology of Organized Action 
(Crozier and Friedberg, 1977; Moine, 2006; 2007). This social theory has been 
formalized in mathematical terms, Sociology laboratory (Soclab) framework,3 so 
as to allow a systematic observation of the social systems (Sibertin-Blanc, Amblard 
and Mailliard, 2006; Sibertin-Blanc et al., 2013). The process of social modeling  
using the Soclab framework has been applied to some analysis’ problems of  
territorial collective action, such as: a water management in France (Adreit et al., 
2009; Casula, 2011; Baldet, 2011) and the mapping of territorial institutional 
social relations in the Southern Rural Territory of Sergipe (Silva, Sibertin-Blanc 
and Gaudou, 2011; Silva et al., 2014; Silva, 2014).

Using the concepts and techniques discussed here, this chapter intends to con-
tribute to the formulation of a theoretical-methodological framework for the evaluation 
of socioterritorial systems which allows the development of diagnostics, as well as the 
analysis of the consequences of territorial public policies. This chapter will also: dem-
onstrate how the territory and its social components can be systemically analyzed, by 
the definition of the socioterritorial system; present the Soclab framework, which is a 
formalization of the Sociology of Organized Action used for analysis of socioterritorial 
systems; and show some applications of socioterritorial analysis by the Soclab framework.

3. The term Sociology laboratory framework (Soclab framework) corresponds to a method of sociological research based 
on systemic modeling and computational simulation. However, the term Soclab is also used to describe the software 
that assists this process, the Soclab software.
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The chapter is organized as follows: section 2 presents the socioterritorial 
systems, where the territory is treated as a concept and defined in the light of 
the theory of systems; section 3 introduces the Sociology of Organized Action 
social theory that will be used as reference in our territorial sociological analysis; 
section 4 unveils the Soclab framework; it describes the metamodel SOA/SCA, 
its mathematic formalization, the methods of modeling (identification of social 
actors, resources and their relations) and social simulation (social game); section 5 
investigates the prisoners’ dilemma according to the Soclab framework; section 6 
shows an example of a hypothetical socioterritorial system modeling and simulation; 
section 7 presents some applications of the Soclab framework to socioterritorial 
systems, emphasizing the analysis of social power relations in the Southern Rural 
Territory of Sergipe; section 8 provides the final considerations.

2 SOCIOTERRITORIAL SYSTEM

This section presents a territorial definition based on the social systemic approach, 
the socioterritorial system. This idea is supported by the fact that the social dimen-
sion plays a key role in modern territorial development and that the territory must 
be treated as a concept and investigated from a sociological perspective.

The influence of decisions’ decentralization on collective actions focused on 
regional development is growing due to the complexity of interdependencies among 
the social actors and the public power at various scales (Claval, 2008). One of the 
basic premises of this new model is the bottom-up endogenous development, which 
emerge from local actions and consultations, in addition to the agreements and 
balances of opposing political forces that are nourished of regional dissemblances, 
such as cultural identity and history. Then, it is necessary to study the territory 
considering the dynamics of its social dimension, in addition to its biophysical 
attributes and its political and administrative divisions.

Saquet (2010) has produced an in-depth analysis of the evolution of the territory 
as a concept and concludes that there is a need for a focus on social relations, with 
an emphasis on systemic and integrative approaches. Leloup (2010) highlights the 
importance of social relations in territorial analytical study as well as the coordina-
tion among the actors in the process of territorial development. The author, as well 
as Lima (2011), emphasizes the following requirements for the composition of a 
territory: the subject, the social actors with certain autonomy; a common project; 
a geographical limit; and some territorial regulatory process. According to Signoret 
(2011), territory only exists if there is a collective project that assembles the 
people around a common theme and that increases the social interdependence.  
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The territory is not only the landscape where social relations happens, but also the 
result of this complex social network which composes it.

In the conceptual territorial systemic model proposed by Moine (2006; 2007), 
see figure 1, it is observed three subsystems that communicate with each other and 
form the socioterritorial system, they are: the subsystem of social actors, which brings 
together communicational processes, strategic decision-making and governance; 
the spatial subsystem that gathers components of lived space; and the subsystem 
of representations that acts as an ideological, societal and individual filter between 
the two other subsystems. According to Moine (2006, p. 126; emphasis added), 
“le territoire est un systéme complexe évolutif qui associe un ensemble d’acteurs d’une 
part, l’espace géographique que ces acteurs utilisent, aménagent et gérent d’autre part”. 4

FIGURE 1
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Source: Adapted from Silva et al. (2014). 
Elaborated by the author.

The three subsystems designed by Moine integrate the spatial dimension (lo-
cal, where social actors act on the real space; and global, where social actors decide 
about the designed space); the temporal dimension (past, present and future); and 
the organizational dimension, conditioned by the governance system. The socioter-
ritorial system can then be seen as a complex social system, relatively stable, where 
the social game occupies a central role. According to Moine (2007, p . 41), “il s’agit 
d’un ensemble humain structuré qui coordonne les autres actions de ses participants par 
des mécanismes de jeux relativement stables et qui maintient sa structure, c’est-à-dire 

4. "the territory is an evolutive complex system that associates a set of social actors on the one hand, and the geographic 
area that these social actors use, modify, and manage on the other hand".
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la stabilité de ses jeux et les rapports entre ceux-ci, par des mécanismes de régulation 
qui constituent d’autres jeux”.5

Unlike other approaches in geography (Cole, 1972; Christofoletti, 1979), 
the method discussed here focuses on social actors, who are responsible for ter-
ritorial governance, be it public or private. Geographic systems as cities, forests 
and agricultural areas, for example, have the following properties of complexity: 
indeterminate nature of the causes of the observed phenomenon; impossibility of 
understanding the problem by isolating its parts; self-organization from the interac-
tion among the various parts of the system; feedback as a reorientation mechanism 
around the goal of the system; autoregulatory process as a way of maintaining the 
system; and recursion, which is the definition of the system by itself.

The study of socioterritorial systems requires the addition of the social dimen-
sion (social systems) to the geographic systems. This means that new elements of 
complexity must be added to this analysis, they are: the undefined, unstable and 
poorly structured character of relations among people and groups, conditioned by 
different values and cognitive systems; the constant presence of counterintuitive 
and not expected effects of social actions; the conflict as a constant; and a high 
degree of nested subsystems with high temporal variability.

Socioterritorial system differs from socio-ecological systems in some aspects. 
Socio-ecological systems have a predominantly local scope, they usually deal with 
the optimization of the use of a single natural resource, and they are well defined 
as, e.g., irrigation systems, fisheries, forestry and extractive activities. In these cases, 
it is possible to model and simulate the system of collective action and decision-
making based on specific criteria such as, e.g., the flow of water, the availability 
of fish, the deforestation rate or the limit of collection rate in extractive activities. 
Poteete, Janssen and Ostrom (2010) developed a comprehensive work on modeling 
and simulation of socio-ecological systems. Similarly, the companion modeling 
uses the role playing game and simulation of socio-ecological systems to facilitate 
the negotiation process among the social actors (Étienne, 2010).

Socioterritorial systems have fuzzy borders at a regional scale, and additionally  
the involved resources go beyond the natural ones. Here, the central issue is 
governance, sociopolitical power relations in a broad sense. The decision-making 
procedures are not fully known and informal relations have a great relevance. It 
is not possible to apply optimization solutions to these socioterritorial systems; 
the main goal, instead, is to understand its social structure, the relations between 
the social actors, and its operation on issues that affect the collectivity.

5."...it is a human agglomerate structured that coordinates the actions of its members by means of game engines (social), 
relatively stable, and that it maintains its structure, i.e. the stability of these games and the relationships between them, 
by regulatory mechanisms that constitute other games".
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It is concluded that the socioterritorial system can be defined as a complex 
system, composed of three subsystems (social, representation and spatial), that has 
as its main objective the regional sustainable development. The phenomenon to be 
observed is the emergence and maintenance of the social power relations that give 
governance structure and some social cohesion to the territory. Despite showing 
diffuse borders and few formal rules, the socioterritorial system can be analyzed 
as a whole with low cohesion but with clear objectives. 

Faced with the need to analyze the territory as a social system by means of a 
systemic modeling process, it is necessary to choose a social theory that meets the 
following requirements, it must: be adherent to the systemic thought; emphasize 
the political social system; and be sufficiently comprehensive to aid the process of 
understanding not strongly structured social systems. The Sociology of Organized 
Action (SOA) or Strategic Analysis initially proposed by Crozier and Friedberg 
(1977) and developed by Friedberg (1993) proved to be in line with the theory of 
systems (Roggero, 2000); prioritizes informal aspects, i.e. informal management 
practices and behavior modeling of social systems; and, is sufficiently generic to 
assist in the process of construction of knowledge about organizations with dif-
fuse borders. Besides, this theory has been applied to the analysis of territorialized 
problems (Adreit et al., 2009; Sibertin et al., 2013; Casula, 2011; Baldet, 2011; 
Silva et al., 2014; Silva, 2014).

3 SOCIOLOGY OF ORGANIZED ACTION (SOA)

This section will present the Sociology of Organized Action social theory, its 
components, premisses and a proposal connection mechanism with the socioter-
ritorial system.

The Sociology of Organized Action (SOA) is based on the study of the 
organization as a political system, consisting predominantly of power relations 
among social actors. The SOA has the following principles (Sibertin et al., 2013): 
i) the organization is a social construct, produced by the social actors. In other 
words, it is self-determined and independent of the external environment. 
The organization is not only the product of formal standards, but the integration 
of informal and formal rules; ii) the social actor always have enough freedom to 
achieve their own objectives, as well, it will never become a mere organizational 
instrument; iii) the strategies of social actors are characterized by mobilization 
of resources to carry out some form of power over the other to achieve their own 
goals, which are not always in line with the aims of the organization; and iv) it is 
assumed a minimum collective order, which is established by the various inter-
dependencies among the relations of power and dependence.
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Crozier and Friedberg (1977) observed the organization (formal or informal)  
as a social construct, not natural or spontaneous, consisting of a finite set of social 
actors which share one or more objectives. The actions of the social actors are limited 
or shaped by formal standards of organization and cultural traditions which have 
evolved historically. The personal choices that arise from circumstantial situations 
or which are motivated by internal values also limit the action of each social actor. 
Each actor will have a certain capacity of action that will guide the definition of his 
strategies in the social game that, in turn, seeks to balance the collective objectives 
and individual aspirations.

Thus, the coordinated collective action needs a stabilization mechanism that 
assists the balance of forces in the social game. In this case, the power acts as a 
regulator and is defined by the authors as “(...) la possibilité pour certains individus ou 
groupes d’agir sur d’autres individus ou groupes” 6 (Crozier and Friedberg, 1977, p. 65). 
This action on another individual means to establish a connection, an agreement, 
a contract between the two. The power can be seen as a consensual relationship 
and not as an attribute, static and unchanging, of each social actor. These power 
relations will be, therefore, the structure by which social actors will act. However, 
the foremost component of this theoretical formulation is the ‘uncertainty zone’. 

In fact, each social actor will have one or more uncertainty zones as factors for 
integration within a structured field of action in the social game. The uncertainty 
zones can be interpreted as a resource controlled by a social actor and needed by 
others, such as, for example, a specific technical knowledge, a moral ascendancy 
of an individual in a particular group, the ability to punish etc. Whereas in this 
social game there is no absolute submission of any social actor. Each social actor 
will have at least an element of persuasion, uncertainty zone, that he will explore 
at the moment of elaboration of their strategies. The uncertainty zones are a key 
concept in SOA. In fact, social actors create interdependence by means of these 
zones which generates more engagement and social cohesion. These uncertainty 
zones will structure the power relations that may congeal over time and generate 
resistance to change.

According to Crozier and Friedberg (1977) the social game unfolds through 
a System of Concrete Action (SCA) which is nothing more than the context where 
the social actors and their relations of interdependence are immersed. According 
to Silva et al. (2014, p. 67):

SCA is an open system, which disregards the other systems whose actors are part 
(environment) and that represents an intelligible simplification of the real world from 
the formalization of the structure of the field of action in study. The SCA assumes 
a minimum of flow of information and mutual understanding among the actors. 

6. "(...)the possibility of certain individuals or groups to act over other individuals or groups".
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One of the assumptions of the SCA is that the actor is heuristically rational and 
seeks the realization of its objectives that are defined within a changing context. The 
social actor acts, rationally, in function of their assumptions about their partners, 
and of their interpretations of the actions of them. The focus of the SCA is on the 
local actions that are, at the end of the process, responsible for the emergence of the 
social system. To model a SCA it is necessary to identify the actors and their inten-
tions, the relations of control and dependence in relation to the uncertainty zones, 
in addition to the repertoire of possible strategic behaviors. 

It is noteworthy that the majority of territorial public policies aims the 
sustainable territorial development. This development would be based on the de-
centralization of governance, in terms of increased social engagement in decisions 
on the territory, the expansion of the level of communication between the social 
actors and the construction and expansion of social networks. In fact, in addition 
to the economic system and the human-nature system, it has been the territorial 
political system that regulates the power relations that constraint the governance 
process (Silva et al., 2014).

Therefore, it is seen that the social game is the connecting element between  
the socioterritorial system and the SCA. The socioterritorial system can be seen 
as an organization characterized by fuzzy borders and internal rules. In this  
system the informal rules or historical-cultural behavior are more relevant than 
any structure or formal rule. 

One of the challenges of bringing together socioterritorial systems and SOA/SCA  
is the correspondence between the social system and the space subsystem. The 
geographic space or the space subsystem can be considered in three ways: i) as an 
element contributing to the spatial dependence of social actions, so the location 
could facilitate the cooperation or not by means of physical proximity among 
the social actors, which may be represented by social relations; ii) as a resource or 
geographic object, which may be represented by means of “uncertainty zones”; and 
iii) as an externality that presses the socioterritorial system which can be another 
social system, a uncertainty zone controlled by an external social actor or a relation 
between an element of the system and an external one.

The next section will unveil the Soclab framework that formalize and imple-
ments the core conceptions of the SOA/SAC. 

4 THE SOCLAB FRAMEWORK

The System of Concrete Action has formalized by Sibertin-Blanc, Amblard 
and Mailliard (2006); Sibertin-Blanc et al. (2013), by means of the Soclab 
framework, to allow the theoretical study of computational modeling of social 
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organizations, as well as to serve as a reference for empirical researches on the 
field. The metamodel SOA/SCA (figure 2) is composed of two central entities, 
social actor and resource7 (“uncertainty zone”), and two entities that links each 
other and which denotes the relations of dependence and control of one or 
more social actors with respect to a given resource (Sibertin-Blanc, Amblard 
and Mailliard, 2006). The entity resource represents the uncertainties zones in 
SOA/SCA and has as attribute its state, which indicates the degree of access of 
social actors to it.

FIGURE 2
Unified Modeling Language (UML) class diagram for the SOA/SAC metamodel
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Source: Adapted from Sibertin-Blanc et al. (2013).
Elaborated by the author.

4.1 Notation and terminology8

Formally the Soclab can be defined as follows:

• a set Α of N social actors, Α = {α1,α2, ... ,αΝ}.

• a set R of M resources, R = {r1,r2, ... ,rM}, represented by the vector of states. 

• r = [λ1, λ2, ... , λM]T, where λm represents the level of access to the resource 
rm , λm ∈[−10, 10]. The value λm indicates the space of behavior or the 
level of access to the resource rm by other social actors. In spite of the 

7.In the original proposition the resource is called relation. However, it has preferred the term “resource” because it is 
more clear and refer directly to what it actually represents. The social relation is given by means of shared resources, 
i.e. when a social actor is related to another means that it controls a resource that is used by the other or vice versa.
8. The notation used in this work differs from that presented in Sibertin-Blanc, Amblard and Mailliard (2006) and 
Sibertin-Blanc et al. (2013). The changes occurred in order to provide more concise equations and provide clarity to 
the social simulation algorithm.
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numeric value, λm has an qualitative interpretation, i.e. , values close 
to -10 denote difficulties in access to the resource, values around zero 
indicates the neutrality of the access to the resource, and values close to 
10 demonstrate a good level of access to the same.

• the relations of control: A → R, if αn → rm, then αn controls rm , i.e., 
the value λm of resource rm is determined by αn,. Each social actor must 
control at least one resource.

• the relations of dependence: A ← R, if αn ← rm, then αn depends on rm.

• a stake matrix S, where smn ∈ [0, 10] and , where for each depen-
dency relationship between a social actor αn and a resource rm will be assigned 
a stake smn so that the sum of all stakes for each social actor must be equal to 
10. Each social actor will be responsible for the distribution of these stakes.

• a set E of F effect functions, E = {e1, e2, ... , eF}, one for each relation of 
dependence and control. All functions are continuous with domain D 
∈ [-10, 10] and image I ∈ [-10, 10]. For each dependency relationship, 
the function computes the effect of resource rm on the social actor αn that 
depends on or controls, it having as independent variable the state of the 
resource λm. For each relation of dependence it is possible to calculate the 
impact, Imn, of the resource rm on the social actor αn, Imn = emn(

 λm )smn.

• a matriz WNxN of solidarity where wij ∈ [-1, 1], Σw.j = 1. Being that values 
close to -1 symbolize a certain hostility toward the social actor αi with 
the actor αj, the value 0 denotes indifference and values around 1 mean 
a high degree of solidarity. The matrix W is not symmetrical, because 
each social actor defines a degree of solidarity in relation to the others, 
i.e. each row i of the matrix represents how the social actor αi observed 
the degree of solidarity with him in relation to the others.

4.2 The social actor

The social actor is the agent that controls at least one uncertainty zone, or resource 
in the adopted terminology. It can be an individual or a group, has goals and col-
laborates directly or indirectly with the socioterritorial system. The strength of 
the link between the social actor and the social system depends on the number 
of connections among social actors and resources. For each social actor you can 
compute their capacity of action Cn (Eq. 1) and power Pn (Eq. 2), the first being 
the sum of effects weighted by the respective stakes of relations that he depends 
on, and the second the sum of effects weighted by the respective stakes of relations 
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that he controls. The cooperative power  (Eq. 3) can be calculated in a similar 
way to the Pn , but considering only the sum of the positive effects. These values 
should be computed and compared considering the same value of r. 

  (1)

 (2)

 (3)

 (4)

If the matriz of solidarity W is taken into account, it is possible to compute 
the values of satisfaction Sn perceived by the actor αn (Eq. 4). While the capacity 
of action quantifies the freedom of action of the social actor, the satisfaction 
corresponds to the value that will guide their behavior on the basis of the capabilities 
of the other actors. However, if the solidarities are not considered W = diag(1) 
and Sn = Cn.

4.3 The resource (“uncertainty zone”) and the effect functions

The resources may be concrete elements such as financial, material or human  
resources, but also services such as consultancy, technical support, political sup-
port etc. Moreover, the geographic space location is a important matter and, thus, 
it is possible to map these spatial elements as resources since they are controlled 
by a social actor and shared directly or indirectly by a set of other social actors. 
The resource is the means by which the social actor establishes the relationship 
of control and dependence, and your state will define the level of access to it by 
the social actors.

For each resource, the social actor will specify a value, smn, which correspond 
to the level of need for the achievement of their specific goals, measured by the 
level of satisfaction or capacity of action. To compute the effect a function must be 
defined, called effect function, which, for each resource-social actor relation, will 
define the level of effect in the interval [-10, 10] based on the state of the resource, 
which also varies in the interval [-10, 10]. The curve of the effect function may 
take any form, however, to simplify the process of interpretation of the results it 
can be restricted to linear, sigmoidal or quadratic (figure 3).
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FIGURE 3
Some examples of effect functions

3A – Linear effect function 3B – Sigmoidal effect function 3C – Quadratic effect function
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Elaborated by the author.

The effect function should be interpreted as follows. In the case of a linear curve, 
passing through the origin of the graphic (figure 3A): the greater the access to the re-
source, broader will be the effect on the social actor, and vice-versa, and at the origin 
of the graphic both the access and the effect can be seen as indifferent. In the case of a 
sigmoidal curve (figure 3B), also passing through the origin: this means that you have a 
behavior analogous to the linear curve, but with upper and lower limits, i.e., this means 
that the social actor is sensitive to variations of access to the resource near the origin 
of the graphic. For a quadratic function with the curve facing down and maximum 
on the y axis (figure 3C): in this case the effect on the social actor is maximum for the 
indifferent level of access to the resource and tends to decrease when the level of access 
to it increases or decreases.

The process of social modelind by Soclab framework should be considered in 
conjunction with traditional methods of social research. The Soclab framework, 
however, facilitates and systematize the process of data collection and organiza-
tion. In Annex A there is a template of a research form to assist the data collec-
tion process via interviews, application of questionnaires or, even, based on the 
experience of the modeler. The software Soclab9 can be used as technical support 
to the development of the model and subsequently as the means by which the 
analysis of the structure, the states of the resources and of the simulations will 
be performed.

4.4 The social game (the social simulation algorithm)

The Soclab framework defines the social dynamics as being an iterative pro-
cess where social actors change the state of the resources which they control to 
achieve their ambitions. This process stops at a particular configuration of states 

9. Available at: <http://soclabproject.wordpress.com/>.
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of resources, where there is no more interest on the part of the social actor to 
change their behavior based on their current satisfaction. In computational terms, 
this behavior is represented by a simulation algorithm where social actors can 
be implemented as objects endowed with characteristics such as capacity of ac-
tion, power, cooperative power and satisfaction. Each social actor, or object, will 
act based on a set of rules created during the simulation process by a reinforce-
ment learning technique. Each rule consists of three components: a vector ,  

 whose values correspond to the value of the effect function 
of the resources that it depends on; another vector , , whose 
values correspond to the increment, positive or negative, on the resource states that 
the social actor controls; and a variable F that indicates the strength of the rule. 
The values of increments and strength are updated every step of the algorithm by 
Eqs. 5-7, respectively.

  (5)

  (6)

 (7)

Where Sn(t) represents the variation in satisfaction of the actor after 
the application of the rule in time t and  a random value between -1 and 1. 
The function f1(t) is applied to calculate the strength of the rules that are 
applied at time t-1, while the function f2(t) to upgrade the strength of the 
rules applied at time t-2.

4.4.1 Psycho-cognitive parameters

The Soclab framework includes in the simulation algorithm four psycho-cognitive 
parameters: tenacity, Tn, reactivity, Rn, discernment, Dn, and distribution of rein-
forcement, {RR1, RR2}, for each social actor αn . The tenacity takes an integer values 
between one and ten and determines how much the social actor will explore new 
rules to achieve his ambition, Kn(t). The higher Tn, greater will be the processing time 
of the algorithm searching for a solution. The reactivity is also an integer constant, 
assumes values between one and ten and determines the importance that the social 
actor attaches to the present and the past in the learning process. The higher the 
value of Rn, smaller will be the memory which refreshes the exploitation rate, TXn, 
and his ambition, Kn(t), the lower the value of Rn, greater will be the importance 
of the past. The discernment is an integer constant, assumes values between one 
and five and is used to calculate the threshold γ, Eq. 8, that will be used to define 
if one rule is applicable or not. So, if the euclidean distance weighted by the stakes 
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between the actual situation10 and the situation of the rule is less than  then this 
rule may be chosen as appropriate. The distribution of reinforcement indicates 
the percentage of reward that will be given to the rules which led the social actor 
to a good situation, close to the ambition. At time t+1 the social actor realizes 
the effect of the last action track via your satisfaction or capacity of action, and 
at time t+2 the actor perceives as the other reacted to their action at time t. The 
distribution of reinforcement of each rule will be divided to these two moments, 
RR1 and RR2, so that you can focus on the immediate perception by assigning a 
higher percentage for RR1, or vice-versa, by assigning a greater percentage value 
for RR2. The default values are 50% and 50 %.

 (8)

 (9)

  (10)

  (11)

  (12)

4.4.2 Exploitation rate and ambition of the social actor

The rate of exploitation, TXn(t), of a social actor, TXn(t)  [0.1; 0.9] (Eq. 
13), determines the way in which the value of ambition, the strength of each 
rule and the intensity of the action of a new rule will be calculated. The 
exploitation rate is calculated from the immediate rate of exploitation (Eq. 
14), TXIn(t), calculated at each step of the simulation as a function of the 
distance between the current situation and the ambition of the social actor, 
as well as his tenacity.

 (13)

  (14)

The ambition of a social actor, Kn(t), is the level of satisfaction or capacity of 
action desired by him and varies over time. The ambition starts with the maximum 
value of satisfaction (Eq. 15) or capacity of action (Eq. 16). For the remaining steps it 
is considered two situations. First, if the social actor not achieved its ambition, then, 

10. Represented by the vector containing the values of the effects of all the relations between the social actor and the 
resources that he depends on.
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the ambition will decrease as a function of the distance between the current situation 
and the ambition, as well as the exploitation rate according to Eq. 17. If the social 
actor has reached or exceeded its ambition it will increase according to the Eq. 18. 

 (15)

  (16)

 
 (17)

  (18)

The difference between ambition and satisfaction, difn(t), is calculated as 
a ratio between the satisfaction and the ambition that indicates the part of the 
satisfaction which the actor has in relation to its ambition (Eq. 19).

 (19)

4.4.3 The simulation algorithm

The simulation algorithm is based on the reinforcement learning para-
digm, is guided by trial and error and can be summarized in three steps: 
i) perception of social actor; ii) decision-making by the social actor; iii) 
execution of the action by the social actor. The ultimate goal of the algo-
rithm is to find a final situation of states of resources r such that there is 
no more interest of each actor in act, i.e., changing states of resources that 
he controls. At the stage of perception the actor calculates his satisfaction 
and compares it with his ambition Kn(t). The distance between one and 
another will determine how the actor will behave in the next phase. At the 
stage of decision the actor evaluates which rule apply from a list created 
in the reinforcement learning process. During the execution phase of the 
action the social actor applies the rule chosen and changes the values of the 
states of the resources he controls.

The simulation algorithm can be summarized as follows (El Gemayel, 2013, p. 99):

define Tn,Rn,Dn and {RR1, RR2}n for each social actor αn

initiate r at random

compute the satisfaction Sn(0) for each social actor (Eq. 4)

compute the ambition Kn(0) (Eqs. 15-16)

compute difn(0) (Eq. 19)
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initiate TXn(0)=TXIn(0) (Eqs. 13-14)
for each discrete time t do

for each social actor αn do

1) calculate Sn(t) (Eq.4); difn(t) (Eq. 19)

2) update Kn(t) (Eqs. 17-18); TXn(t) (Eq. 13)

3) update the strength of the applied actions (Eqs. 6-7)

4) select applicable rule where ǁactual-situation n – rule.  ǁ 

5) if no selectioned rule then 

creates new rule

rule. ← actual-situationn

rule. ← (t)(Eq. 5)

rule.Strength ← 0

6) choose one rule among the ones with the highest strength or 
the new one 

end-for

for each resource rm do

update the values of the states of the resources according to the values σ 
of the choosen rules

end-for

end-for

5 THE PRISONER’S DILEMMA ANALYSIS THROUGH THE SOCLAB FRAMEWORK

The functions of Cn and Sn can be interpreted as utility functions, as well as are 
defined in the game theory. So, it is worth to analyze the prisoner’s dilemma 
from the Soclab perspective (El Gemayel, 2013). Consider, therefore, two 
social actors A1 and A2, suspects and prisoners in two incommunicable and 
separate jails. Both can confess (C) or not confess (CN) the “delict”, and for 
each combination of choices of these two prisoners there will be a positive 
or a negative return in terms of time of conviction for each of them. If both 
deny the crime the joint penalty assigned to them will be the minimum, 
when both confess the joint penalty is maximized, when one confesses and 
the other does not, the first will receive the minimum sentence and the other 
the maximum penalty.
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GRAPH 1
Effect function for all relations 
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Elaborated by the author.

In this situation the uncertainty zone controlled by each social actor is 
their choice to confess or not. At the same time that each prisoner controls their  
uncertainty zone, he depends on the status of the situation of the uncertainty zone 
controlled by the other, then it is observed a situation of interdependence between 
these two social actors. The distribution of the stakes will follow this situation, 
because no matter the decision of A1, despite controlling his own uncertainty zone, 
is the state of the uncertainty zone of A2 that will define the satisfaction of A1. 

In this way, A1 assigns the weight (stake) one for the resource that he controls,  
R1, and the weight nine to the resource controlled by A2, and vice-versa. The resources  
R1 and R2 will assume states in the interval [-10,10] in a way that negative  
values mean confess and positive values mean do not confess. It has opted for linear 
effect functions that behave inversely for each resource and for each social actor 
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as shown in graph 1. Observing R1, it is noticed that A1 will have more positive 
effects if he confess independent of the choice of A2, state of R2. The same happens  
with A2 for R2 and R1 (El Gemayel, 2013).

Table 1 shows the capacities of action (Cn) calculated from a combination 
of particular values of R1 and R2. If it is considered the overall Cn, which is the 
algebraic sum of the capacity of actions of the social actors, the best case happens 
when both not confess (80,80) and the worst case, when both confess (-80, -80), 
that corresponds to the Nash equilibrium (Dutta, 1999).

TABLE 1
Satisfactions for social actors A1 e A2 considering particular values of R1 and R2 

R2 states

-10 0 10

R1 states

-10 -80/-80 10/-90 100/-100

0 -90/10 0/0 90/-10

10 -100/100 -10/90 80/80

Elaborated by the author.

The social simulation, considering different values of the stake distribution, 
shows that the social game changes according to how social actors weight the 
relevance of the resources that they control and depend on. The table 2 presents 
the results of simulations performed using the Soclab software for the social 
system presented above. According to El Gemayel (2013), it has considered 
the same values of discernment (Dn=1), tenacity (Tn=5), reactivity (Rn=5) and 
distribution of reinforcement {RR1=snR1*10%, RR2=snR2*10%} for both social 
actors. The simulation has performed one hundred simulations with 200,000 
steps each one at most.

The distribution of stakes denotes how a social actor will face the social 
game. If someone puts more stakes on the resources that he depends on it means 
that he expects a cooperative game, otherwise, if he puts more stakes on the 
resources that he controls, then the game will be a non-cooperative one. The 
simulations have performed varying the stakes for each social actor from zero 
to one, or from totally cooperative (0/10) to totally non-cooperative (10/0), 
according to the table 2. The results showed that: the capacity of action is 
maximum in the extremes and decreases until the minimum value, zero, when 
the stakes are equally distributed; the final states for the resources stabilizes 
positively for cooperative social games and negatively for non-cooperatives 
ones; and it needs more steps of simulation to reach the equilibrium when the 
stakes are equally divided.
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TABLE 2
The results of the social simulation for the prisoner’s dilemma taking into consideration 
the variation of the stakes distribution

Stakes distribution of social actor A1 for the resources R1 and R2

<- Totally cooperative Nash equilibrium Totally non-cooperative ->

0/10 1/9 2/8 3/7 4/6 5/5 6/4 7/3 8/2 9/1 10/0

Capacity of action 
for A1 (average)

100 80 60 40 20 0 20 40 60 80 100

State of the relation 
R1 (average)

10 10 10 10 10 -10 -10 -10 -10 -10 -10

Number of steps 
needed for the con-
vergence (mean)

1060 5646 13644 18446 19486 21183 17232 14766 11888 6320 25

Elaborated by the author.
Obs.:  It is shown only the results for the social actor/resource A1/R1 because this social game is symmetric, so the results for 

A2/R2 are exactly the same. 

It is important to notice that the social game in the Soclab framework 
tries to reach a stable state observing the sum of the all social actors’ capac-
ity of action/satisfaction. The table 2 shows that, in this social game, this 
stability is equivalent to the Nash equilibrium only when the stakes are 
equally distributed. 

In sum, this exercise showed that the Soclab framework can be a suit-
able tool to design social games and, by the effect functions, to generate 
payoff matrices.

6 EXAMPLE OF A HYPOTHETICAL SOCIOTERRITORIAL SYSTEM

Consider a socioterritorial system composed of two social actors, the farmer 
and the environmental agency. The first controls the resource “access to rural 
property” while the second controls the resource “environmental regularization 
report” (figure 4). The environmental agency must have physical access to the 
resource controlled by farmers, while the farmer needs to regularize their property 
to have access to financial resources. Although it seems a win-win game, if the 
farmer fully facilitates the access of the environmental agency it may compromise 
its production and consequently his income; if the farmer completely block the 
access he will not have the means to finance their activities. On the other hand, 
the environmental agency cannot fully exercise its supervisory power because it 
can lead to mistrust the farmer that may eventually block the access to the rural 
property. The environmental agency, then, would seek to maintain a level of 
access to this resource controlled by farmers to achieve, at least, the minimum 
goals of the agency.
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FIGURE 4
UML diagram for the hypothetical model of the hypothetical socioterritorial system

Farmer
Environmental regularization report

Access to rural property
Environmental agency

Elaborated by the author.

Once defined the social actors and the resources that make up the system, it 
is necessary to proceed with the distribution of stakes for each resource, i.e., define 
the weight of each resource for each social actor within the socioterritorial system 
(table 3). Although dependent on the environmental regularization, the farmer 
allocates more stakes, six, for the resource “access to rural property”, because the 
risk of having their economic activity blocked by environmental monitoring pre-
vents him from giving more attention to resource controlled by the environmental 
agency, four stakes. In turn, the environmental agency depends almost entirely on 
the “access to rural property”, eight stakes, in order to attain the internal goals of 
the agency through the “environmental regularization report”, two stakes.

TABLE 3
Distribution of stakes by resource

Farmer Environmental agency

Access to rural property 6 8

Environmental regularization 4 2

Elaborated by the author.

The effect functions describe, by means of a continuous curve with domain 
and image in the range [-10,10], the effect of the resource on the social actor that 
depends on it. In this hypothetical case, it has four effect functions as shown in 
graph 2. The effect function of the farmer for the resource “access to rural prop-
erty” is quadratic and means that the effect increases if the access to this resource 
is near to zero (neutrality). The effect function of the same actor for the resource 
“environmental regularization report” is sigmoidal, i.e., the greater the access to 
this resource greater will be the effect on the rural producer. For the environmental 
agency the effect function for the resource “access to rural property” is also sigmoi-
dal with lower and upper limits equal to -8 and 8, this means that the greater the 
access to rural property better will be the impact on the agency. However, for the 
resource “environmental regularization report” the agency has its peak in return 
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for a certain access, the minimum goal of the environmental agency, and decays 
to the other states.

GRAPH 2
Effect functions for each relation social actor – resource
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Elaborated by the author.

After running the simulation algorithm for this case it has observed that 
the socioterritorial system reached its stability in an average of 11,843 steps, 
for the states of “access to rural property” and “environmental regularization 
report” equal to 4.18 and 5.95, respectively, with an individual capacity of 
action equal to 104.93 and 76.48 for the actors farmer and environmental 
agency, respectively (table 4). These values correspond to 66% and 68% of 
the percentage equivalent to the maximum possible capacity of the actions 
of the respective actors.

The analysis of the capacity of actions and states for the various iterations 
of the simulation algorithm, see table 4, show that the environmental agency has 
less freedom because it depends on a restricted resource. The resource “access to 
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rural property” varied less because it will be in a narrow limit that the farmer can 
achieve the best of their capacity of actions.

TABLE 4
Mean and standard deviation for capacity of actions and resources for converged 
situations from the simulation algorithm

Mean Standard deviation

Capacity of action
Farmer 104.93 5,26

Environmental agency 76.48 2,19

State of the resources
Access to rural property 4,18 0,47

Environmental regularization 5,95 1,20

 Elaborated by the author.

7 APPLICATIONS OF THE SOCLAB FRAMEWORK IN SOCIOTERRITORIAL SYSTEMS

The empirical origin of SOA and its formalization through Soclab framework 
allowed the application of this theoretic-methodological approach in some  
territorial problems of analysis of collective action (Adreit et al., 2009; Casula, 
2011; Baldet, 2011; Silva, Sibertin-Blanc and Gaudou, 2011; Silva et al., 2014; 
Silva, 2014). These applications can be considered as analysis of power relations 
in socioterritorial systems and presents certain general characteristics such as: are 
inserted in contexts of territorial multidisciplinary research; are exploratory and 
not conclusive approaches; to some extent, the social actors related to agriculture, 
the main human activity which modifies the natural environment, are present in 
the governance of the all analysed socioterritorial systems.

The next two subsections will briefly review these works and describes in 
some detail a case study about the analysis of power relations in the Southern 
Rural Territory of Sergipe, Brazil.

7.1 A brief review

Although the Soclab framework had been elaborated to deal with any kind of 
collaborative social studies the main focus has been the analysis of socioterrito-
rial systems. Casula (2011) used this approach to investigate the social structure 
around the water management in Corse, France, and showed that it increase our 
capacity of understanding the microfoundations of the overall behavior of that 
kind social system. 

Adreit et al. (2009) applied the Soclab in sociological analysis of the behavior 
of social actors tied to agriculture in the river basin Adour-Garonne, southwest of 
France. This is a vulnerable area in terms of pollution of rivers and their tributaries 
mostly due to agricultural activity. According to the authors, although the Soclab 
framework be more appropriate for exploratory analysis of the social structure 
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and their power relations around a particular set of resources, it is possible to use 
the results of modeling and simulation to take concrete decisions. Thus, from the 
analysis of the capacity of action and power, according to the definitions of Soclab, 
the authors evaluated the acceptability and applicability of public policies elaborated 
to reduce the pollution of the rivers.

Baldet (2011) and Sibertin-Blanc et al. (2013) analyzed the conflicting rela-
tions between social actors involved in the prevention and management of flood 
risk in the basin of the river Touch, southwest of France. This scenario has two 
groups of social actors, those who represent the municipalities of agricultural areas 
and those who represent the municipalities of the metropolitan area of Toulouse. 
The first are obliged to reserve part of their arable area to prevent flooding in  
urban areas, represented by the second group. The solution adopted was the change 
in perspective regarding the interpretation or conceptualization of the river, it 
should be managed as an integrated element in an ecosystem and not simply as a 
continuous flow of water. The social actor SIAH, intermunicipal association for 
the management of the river Touch, was responsible for this perspective change. 

In this study the Soclab framework has been used to evaluate four hypotheses: 
i) the social actor SIAH, according to the actor-network analysis, is an obliga-
tory passage to the other; ii) the social actor SIAH holds the means to introduce 
significant changes in the management of flood risk; iii) the social actor SIAH 
has allies with enough power to impose his strategy; and iv) the agreement on the 
“Territorial Public Interest” extinguished the main conflicts in territorial system. 
The authors validated the first three hypotheses and concluded that the social actor 
SIAH has enough power to drive the paradigm shift and that this power is purely 
cooperative. In spite of this, the paradigm shift hasn’t ended the conflict between 
these two opposing groups.

7.2 The Southern Rural Territory of Sergipe, Brazil

Silva et al. (2014) applied the Soclab framework in modeling the Southern Rural Ter-
ritory of Sergipe (SRTS), which is part of the Sustainable Rural Development Public 
Policy of the Ministry of Agrarian Development (MDA). This empirical research had 
as objective the survey of the main social actors and their relations of interdependence 
in order to serve as a possible baseline for future analyzes of the impact of territorial 
policy of the MDA. The analysis took as a point of departure the territorial council, 
which is responsible for the coordination and governance of the SRTS.

The Southern Rural Territory of Sergipe, Brazil includes twelve mu-
nicipalities. The total population comprises 278,955 inhabitants, of which 
44% resides in rural areas. It has more than a thousand settled families and 
20,599 rural properties attached to the familiar agriculture. The agriculture 
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(orange and coconut) and livestock are the main rural economic activities 
(Siqueira, Silva and Aragão, 2010).

The Ministry of Agrarian Development (MDA) created the SRTS in 
2007. To rule this new entity, it has created a council, composed of represen-
tatives from institutions tied to the familiar agriculture, to design a plan for 
a sustainable territorial development. Despite some initiatives, this process is 
still going on. In general, it has perceived a fragile social engagement around 
the territorial council and a sectoral bias that isolates the territory from other 
economic, environmental and social actions.

The research has executed by means of interviews, questionnaires and 
documental analysis and the first social actors and resources draft became 
visible in Silva et al. (2014). This paper showed that some social actors, 
associated with the environmental conservation and to the economic activi-
ties, does not take part in the SRTS council and that there was not a strong 
engagement among the communitarian rural associations and the council. 
So, it has decided to model only the relations among social actors that have 
strongly tied with the SRTS Council. The solidarities were not considered, 
so Sn = Cn.

FIGURE 5 
UML class diagram for part of the SRTS socioterritorial system 

Emdagro

Asscomprod

Sindicato

Embrapa

Rural spaceTechnology diffusionTechnological knowledge Sociopolitical mobilization

Elaborated by the author.

7.2.1 The model

It has assumed that: the behavior of social actors which are part the same group 
is homogeneous enough to allow us to represent it by only one social actor 
(e.g., associations, unions, majors, banks and municipal councils); it is possible 
to identify informal relations among social actors by yours institutional resources. 
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Figure 5 shows part of the UML class of the SRTS socioterritorial system.  
In this graphic some social actors have represented (Emdagro, Sindicato, Embrapa  
and Asscomprod) as well as their resources and the links among them. 

The chart 1 shows the social actors from the SRTS and the resources 
controlled by them (Silva, 2014). For each resource it has defined a range of 
accessibility which denotes whether one resource is available or not and in 
what extent. 

CHART 1
The list of social actors and their resources 

Social actor Social actor’s description Resource Resource’s description and accessibility

Pronese

The Company for Sustainable De-
velopment of the State of Sergipe 
manages programs and activities 
in rural areas with a focus on 
poverty reduction, managing credit 
programs and design of environ-
mental management plans.

Consulting on SD
Consulting on sustainable public policies for rural 
areas. There is no restriction to access this re-
source, so the accessibility is in the range [-10,10].

Emdagro

The Agricultural Development 
Company of Sergipe works with 
the family farming and sustainable 
agriculture.

Technical as-
sistance and rural 
extension

The lack of structural capacity limit the access to 
it and prevents a greater commitment of Emdagro 
with their customers, so there is some restriction 
to access it [-8, 8].

Technology dif-
fusion

Range of access is [-10,6].

Asscomprod
The communitarian/producers as-
sociations organize the community 
politically and administratively. 

Rural space
The access may not be complete and is rarely 
inaccessible, [-9,9].

Banco

The Banco do Nordeste, the World 
Bank and the Banco do Brasil 
finances low cost projects for local 
sustainable development.

Financial resources The range of access is [-6,6].

Condem_ Cmds

The Economic Council for 
Municipal Development / The 
Municipal Council for Sustainable 
Development.

Plan for municipal 
development

The plan for municipal development by CONDEM/ 
CMDS. It can assume extreme situations, [-10,10].

Prefeitura City hall

Public policies 
for municipal’s 
sustainable devel-
opment

This resource can assume extreme situations, 
[-10,10].

Sindicato Rural workers’ Union.
Sociopolitical 
mobilization

Meant sociopolitical mobilization as the ability 
of the Rural workers’ Union to mobilize people 
for the defense of the union ideology. Range of 
access is equal to [-9,9].

Embrapa
Brazilian Agricultural Research 
Corporation.

Technological 
knowledge

The access to it is extremely limited due to various 
social and not social aspects of our society, [-5,5].

Source: adapted from Silva (2014). 
Elaborated by the author.

The stakes of the social actors have distributed to all resources according to 
a cooperative social game, so each one put more stakes on resources controlled by 
others. As expected, Embrapa is the least dependent on the others. As an agrarian 
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research organization with a limited capacity to technology diffusion its stakes were 
put on resources controlled by the Emdagro and in the rural space controlled by 
the Asscomprod (Silva, 2014). 

The effect functions are illustrated in figure 6. The effect of the resource 
“sociopolitical mobilization” on the Sindicato social actor reflects that it will be 
negative only for a situation where people are apathetic, the value of this resource 
is around zero. Otherwise, this social actor, which represents the rural’s labor force, 
will get positive effects for negative values of the resource, which means sociopolitical 
demobilization or vulnerability, and for positive values, which means a completely 
social engagement (figure 6A).

Figure 6B shows the effect of the resource “consulting on SD”, controlled by 
Pronese, on the Emdagro. The parabolic curve shows that the extreme difficulty 
of access this feature negatively affects Emdagro, as well as the abundant supply, 
because Emdagro not have the means to reach the demand generated by the  
unrestricted access to the resource. The impact will be positive only for intermediate 
situations, so a restricted access can be a turning point and forces the Emdagro to 
assume the role of consultant in sustainability. The effect will also be positive for 
slightly easier access situations, as this would generate requests of feasible actions 
by the Emdagro.

FIGURE 6
A sample of the effect functions from the model 
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Elaborated by the author.

The last graphic is a good example of a restricted resource, range from -5 to 5  
(figure 6C). This short straight line shows that the effect of the “technological 
knowledge” on Comdem_cmds is almost insignificant, or that this social actor 
does not use such kind of information in the decision making process.
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7.2.2 The simulations

To perform the social simulation to check if this socioterritorial systems is stable 
or not, and to see how is the distribution of power and capacity of action among 
social actors it has used the Soclab software. It has considered default values for all 
psycho-cognitive parameters and performed 100 simulations with 200,000 steps 
each one at most. The social simulation algorithm reached the stability in 98% 
simulations with an average steps of 73,883.

GRAPH 3
The average value of capacity of action and power for stable social games after one 
hundred simulations
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Elaborated by the author.

The graph 3 shows the average values for capacity of action and power for 
all social actors. The Banco, the Pronese and the Embrapa have high scores for 
capacity of action (55.09, 49.30 and 41.23, respectively), this means that they 
have more chances to cooperate with others. The Sindicato is the social actor with 
the worst capacity of action (16.70), this suggests that the Sindicato is somehow 
locked and placed with a limited space of action. Despite of the centrality and 
importance of the Emdagro it has a small capacity of action (20.62), so the two 
resources controlled by this actor do not give him the necessary capacity due to its 
opposition to others actors and its limitation to attend the demand for rural as-
sistance. Analogically, the same occurs to the Prefeitura and to the Condem_cmds.

The most powerful social actors are the Asscomprod (92.6), the Emdagro 
(67.4) and the Sindicato (58), this means that they control important resources and 
which maximize the impact on each of these social actors. In fact, the Asscomprod 
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controls a key resource, “rural space”. The Embrapa (5), the Prefeitura (5.7) and 
the Condem_cmds (6.7) have the worst values for the variable power.

Only two resources presented a greater access to it after converging simula-
tions, “consulting on SD” controlled by the Pronese and “rural space” controlled 
by the Asscomprod (graph 4). In fact, they are key social actors that shares their 
resources without restriction. Some resources’ states stabilized in the neutral region, 
around zero, this means that this socioterritorial system shows some kind of indif-
ference toward local initiatives (plan for municipal development, public policies 
for municipal’s sustainable development) and to the technological developments.

GRAPH 4 
The average value of the resources’ states for stable social games after one 
hundred simulations
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Elaborated by the author.

7.2.3 Territorial public policy assessment and some remarks about this case study

A comprehensive assessment of a territorial public policy is a tough task and it 
demands a multidimensional approach to take into account as many as possible 
aspects of the reality to be understood. The Soclab framework address part of 
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this challenge but does not offer a falsifiable and conclusive method. However, it 
showed to be effective to systematize the information from sociological studies, 
to map social relations, to evaluate the stability of these interdependences, and to 
construct a baseline for future comparisons of different relational states for the 
same socioterritorial system.

In our case study, the Soclab framework showed some evidences that the SRTS 
socioterritorial system could be interpreted as a stable organization, that presents some 
characteristics which must be addressed in order to explain the overall functioning 
of the system, such as: it showed to be, to some extent, sectorial, so privileging only 
matters related to the family farm group; there are some resources with restricted  
access; and, there is a power/capacity of action distribution imbalance among the 
social actors. Obviously, one way to change this scenario is adding new social actors 
to bring a new structure to the social game by changing the formal and informal rules 
of the territorial council.

Silva (2014) evaluated two scenarios for this socioterritorial system by changing 
a effect function and the range of access to a resource. All the results have evaluated/
validated by researchers with enough expertise to judge the plausibility of the simula-
tion outputs.

8 FINAL CONSIDERATIONS

Although there are already mechanisms of territorial observation, it is important to 
emphasize the need for interdisciplinary methods that integrate the different concepts 
of areas of the guiding principles of sustainable development. In this chapter the theory 
of systems is used as the common thread of connection between the social system of 
actors, their relations of power and space system through the Soclab framework. The 
socioterritorial system approach can be modeled for different purposes and proved to 
be applicable in the processes of territorial public policy evaluation.

The analysis of power in socioterritorial systems through SOA allows the establish-
ment of the interdependencies between the various social actors through the relations 
of control and dependence on the “uncertainty zones” which can serve as subsidies for 
studies in the areas of social networks and social cohesion. The strategic analysis does 
not allow one to conclude categorically if some sociterritorial system will reach or not 
your goals, but if he has the necessary conditions for this instead.

The conceptualization territorial proposal by Moine shows a tendency to focus the 
analysis of the human-space interaction in the system of social governance. However, 
this new direction adds to the process of territorial analysis the challenge to integrate 
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the space system to the social system. This work has been simplified this task through 
the mapping of geographic elements as relations and resources in the Soclab framework.

The modeling process through the Soclab framework presents increasing  
difficulty as the number of social actors and resources are added to the model. The main 
difficulties are the construction of the effect functions that requires deep knowledge of 
the problem and the analysis of the results of the simulation for the cases with multiple 
actors and resources. In fact, the simulation algorithm has exponential complexity 
which imposes limitations of computacional processing simulation. 

One of the main applications of the Soclab framework is in the exploratory 
analysis of the social relations to search: whether or not the socioterritorial system is 
stable and in what conditions it occurs; if there is an imbalance in the distribution  
of power between social actors, which can explain, among other things, the  
indifference of certain actors; and the establishment of a baseline for comparative 
purposes. Of course, the use of Soclab framework also creates a standardized record 
of territorial sociological investigations.

The process of social modeling and simulation creates opportunities and 
challenges for research and development in various areas, such as: a multivariate 
statistical analysis of the results of the simulation; the evolution of the link between 
the spatial system and the social system; the spatialisation of the results and sub-
sequent connection with models of land use; the analysis of the social system by 
means of other social theories; and the design of systems of analysis and monitoring 
of territorial public policies.

Finally, it is expected that the method of modeling and simulation exposed 
in this chapter could collaborate in the process of understanding the complex 
socioterritorial systems as well as assisting the government in the planning and 
development territorial public policies.
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ANNEX A

TABLE A.1
Simplified suggestion of a survey form for the construction of socioterritorial model 
(mainly, the effect functions) based on Soclab framework 

Social Actor:____________________________

Relevant resources ( "uncertainty zones") 
for the social actor

A B C

1. What resources are needed for the completion of their tasks and achieve their goals?

2. Who controls the resources?

3. How important is the resource for your activity? (0.10)

4. Describe your behavior in the case of restricted access to feature

5. Evaluate the effect of the behavior described in item 4 in its activity (-10.0)

6. Describe your behavior for the case of unrestricted access to feature

7. Evaluate the effect of the behavior described in item 6 in its activity (0.10)

8. Describe your behavior for the case of neutral situation with regard to access to feature

9. Evaluate the effect of the behavior described in item 8 in its activity (-10,10)

10. What is the situation usal with regard to access to the resource?

11. Evaluate this situation in terms of impact on their activity (-10,10)

12. For each social actor assign a value which represents a solidarity degree with the others. 
Values close to -1 means a situation of conflict, values close to zero denote neutrality or 
impartiality, while values close to 1 correspond to a cooperative relationship.

Social Actor A Social Actor B Social Actor C Social Actor D Social Actor E Social Actor F

Solidarity

Source : Sibertin et al. (2013).

The values of question 3 should be normalized so that the sum of all and peer 
assessment resulted to the social actor is equal to ten. Questions 4 to 11 should 
be used for the construction of the effect functions. The values of the question 12 
will be used to construct the matrix WNxN.
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